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1. Introduction

The rationality of CM values for modular forms was studied in Shimura’s work
(summarized in [18]), and developed by Katz [12, 13, 14], Eischen [3, 4] and others.
Furthermore, the integrality of CM values was studied by Bruinier-Ono [1] and Larson-
Rolen [15] in the connection with singular moduli. The aim of this paper is to review
the algebraic theory of (vector-valued) nearly holomorphic Siegel modular forms given
in [11, Sections 2 and 3], and apply this theory to showing the integrality of their CM
values. Another application of this theory to p-adic modular forms is given in [11,
Section 4] and [16].

First, following [11] we study algebraic counterparts of nearly holomorphic Siegel
modular forms as nearly Siegel modular forms which were considered in Darmon-Rotger
[2] and Urban [19] in the elliptic modular case. Nearly Siegel modular forms are defined
as global sections of certain vector bundles arising from the de Rham bundle on a Siegel
modular variety. Then one can study their integrality since the Siegel modular variety
has a Shimura model as the moduli space of abelian varieties. Based on results of
[10], we show that the space of nearly Siegel modular forms of fixed weight is a finitely
generated module, and that there exists the arithmetic Fourier expansion on this space
satisfying the g-expansion principle. Furthermore, we consider the analytic realization of
nearly Siegel modular forms given by the Hodge decomposition of the de Rham bundle,
and show that this realization map gives an isomorphism between the spaces of integral
nearly Siegel modular forms and of integral nearly holomorphic ones. By this theorem,
one can study the integrality of nearly holomorphic Siegel modular forms using their
Fourier expansions.

Second, we apply the above results to showing the integrality of CM values. Roughly
speaking, our result is as follows:

Theorem (for the precise statement, see Theorems 3.6 and 3.7). Any (component
of) CM value for an integral nearly holomorphic Siegel modular form is integral over
Z(1/d}, where d denotes the discriminant of the corresponding CM field.

This fact was observed in [1] and [15] for non-holomorphic modular functions with
giving upper bounds of the denominators of these CM values.

2. Nearly modular forms
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2.1. Representation of classical groups. Let V be a 2g-dimensional vector
space with symplectic form, and W be its anisotropic subspace of dimension g. Then
GL, = GL(W) is a general linear group of rank g which is contained in a symplectic
group Speg = Sp(V') of rank g as

A O
Gng{(O tA_l)eszg

Let By be the Borel subgroup of GL, consisting of upper-triangular matrices, and Bag
denote the Borel subgroup of Spy, given by

A
(4 i) eom

Then the maximal torus T, C B, of GL, becomes that of Spy,, and Z9 is identified with
the group X (Ty) of characters of T, as

AeGLy}.

AcB,}.

t 0 O
0 . 0 l—)t'fl"'t;’
0 0 ¢t

for (k1,...,kg) € Z. Then
XH(T,) = {(Kny -y 5g) €Z° | 1 > -+ > kg > 0}

becomes the set of dominant weights with respect to Byg. Let & be an element of X*(T})
which is naturally regarded as regular functions on By and on Bs,. Then

W, = Indg*(-k) = {¢ €T (Oar,) | $(ab) = k(b)$(a) (b € B,)},
Vo = Indg(—k) = {9 €T (Osp,) | $(ab) = n(b)(a) (b € Byy)}

are representation spaces of GLg, Spyg by

pla) = (o-9)(a) =d(a"a) (p €Wy, a€GL),
¥(a) — (a-¥)(a)=v(aa) (Y€ Vi, o€ Spay)

respectively. The duals W (resp. V;¥) of W, (resp. V;) are called the universal repre-
sentations of highest weight x (cf. [9, 5.1.3 and 8.1.2]), and hence the highest weight
of W, (resp. V) are (—Kg,...,—#1) (resp. k). By construction, Wy, V, give rational
homomorphisms of GL,, Spy, respectively over any base ring, and for each h € Z,
Wen,)) =W ® det®®. Over a field of characteristic 0, W (resp. V;*) are realized
as direct summands of certain tensor products of W (resp. V) associated with x, and
hence W, can be regarded as a direct summand of V; = V.



If a linear map 7 : V — W satisfies that W < V 5 W is the identity map on
W and that Ker(7) is anisotropic for the symplectic form on V, then 7 gives a decom-
position V' = W & Ker(w) compatible with the symplectic form. This decomposition
induces an inclusion GL, <+ Spog, and hence by the associated pullback, one has a ring
homomorphism T (Osp,,) — T (Ogz,) which gives a GLg-equivariant map Vi, — Wi.

2.2. Modular variety. We review results of Chai-Faltings [5] on the moduli space
of abelian varieties and its compactifications. For positive integers g and N, let {x be a
primitive Nth root of 1, and A, x be the moduli stack classifying principally polarized
abelian schemes of relative dimension g with symplectic level N structure. Then A, y is
a smooth algebraic stack over Z [1/N, {n] of relative dimension g(g+1)/2, and becomes
a fine moduli scheme if N > 3. Furthermore, the associated complex orbifold A v(C) is
represented as the quotient space H,/I'(IV) of the Siegel upper half space Hy of degree
g by the integral symplectic group

1w ={1=(& 5 ) esm® | 52020 mea) )

of degree g and level N which acts on #, as
Hy > Z > v(Z) = (A,Z + B,) (C,Z+ D) € H, (y e T(N)).

Let m : X — Ay n be the universal abelian scheme with 0-section s, denote by E the
Hodge bundle of rank g defined as m, (Q}Y y AQ'N) = g (Q}( ) Ay.N)’ and by w = det(E)
the Hodge line bundle.

For a smooth and G L (Z9)-admissible polyhedral cone decomposition of the space of
positive semi-definite symmetric bilinear forms on RY, Chai-Faltings [6, Chapter IV] con-
struct the associated smooth compactification A, y of Ay n, and the semi-abelian scheme
G with O-section s over A,y extending X — A, y. Then @ = det (s* (Q;, /Zg.zv)) is an

extension of w = det (E) to A, , and

A} = Proj (@ H° (Zg,N,wW‘))

h>0

is a projective scheme over Z[1/N,(y] called Satake’s minimal compactification. It is
shown in [5, Chapter IV, 6.8] that any geometric fiber of A N is irreducible, and hence
Ag n has the same property.

Assume that N > 3. Then Aj y contains Ay, and its complement has a natural
stratification by locally closed subschemes, each of which is isomorphic to A; x (0 <7 <
g — 1). Therefore, the relative codimension

codimzj; /N, ¢cy] (-A_;,N — Agn, 'A;.N )
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over Z[1/N,(n] of Aj y — Agn in Aj n becomes

gg+1) (9—-1)g _
) 2 9

which is greater than 1if g > 1. Furthermore, there is a natural morphism A,y — Ay N
(which is an isomorphism if g = 1) extending the identity map on Ay y such that @ is
the pullback by this morphism of the tautological line bundle w* on A7 y.

2.3. CM point. Let ¢ : S — A, n be a morphism of schemes over Z[1/N, {n]
which becomes a R-rational point on Agy if S = Spec(R) for a Z[1/N,{y}-algebra
R. Then as the associated object, there is an abelian scheme X over S with principal
polarization )\ and symplectic level N structure o. A test object (resp. an extended test
object) over S associated with a morphism ¢ : S — Ay n is the above (X, A, o) together
with basis of regular 1-forms on X/S (resp. basis of H}g(X/S)). By definition, any
element of M,(R) is evaluated as an element of O% at each test object over an R-scheme
S, where this evaluation is functorial on S and equivariant for p under base changes of
regular 1-forms.

For a field extension k of Q({x), a k-rational point o on A,y corresponding to a
CM abelian variety X is called a CM point over k if the following conditions hold:

e The Q-algebra Endy(X) ® Q is isomorphic to the direct sum €, L;, where L; are
CM fields, i.e., totally imaginary quadratic extensions of totally real number fields
K;. Then H}g(X/k) is an invertible Endx(X) ® Q-module.

e There are algebra homomorphisms ¢; : L; ® k = K; ® k such that

@y (pi(z ®Y), ;i (L(z) ®Y)) (z € Li,y € k)

give rise to isomorphisms L; @ k = K;®k® K; ®k, where ¢; denotes the involution
of L; over K.

Note that any CM abelian variety can be defined over a number field, and has
potentially good reduction at all finite places. Therefore, for any CM point o on Ay n
and any rational prime p, there is an (extended) test object & associated with o over
an algebra which is a finite Z)-module, where Z, denotes the valuation ring of Q at

p.
2.4. Modular forms. In what follows, we assume that
g>1 N >3.

First, following [6, 2.2.1] we give the process of twisting a locally free sheaf by a linear
representation. Let X be a scheme, and F be a locally free sheaf on X of rank n. Take
{Ui};c; be an open cover of X trivializing F. Then the natural isomorphism F oo, &
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Flu,nu; gives rise to the transition function gi; € GLy, (Ox|v,nu;) satisfying the cocycle
condition. Let p : GL, — GL,, be a rational homomorphism over a Z-algebra R. Then
we construct a locally free Ox ® R-module F, on X ® R as F,ly, = (Ox ® R) |v,)™,
where the isomorphism J,|v,nv, & Fplu,nv; is given by p(gi;) € GLm ((Ox ® R) lu;nu;)-

For a Z[1/N, {n]-algebra R, a positive integer d and a rational homomorphism p :
GLy — GLg4 over R, let E, be the locally free sheaf on

Agn ® R = Ayn ®zji/nen) R

obtained from twisting the Hodge bundle E by p. If p is obtained from x € Z?, then we
put E, = E,, and denote this rank d by d(E,).

Definition 2.1. Let R be a Z[1/N,(y]-algebra. For a rational homomorphism
p: GLy — GL4 over R, we put

M,(R) = H°(Ayn ® R,Ey),

and call these elements Siegel modular forms over R of weight p (and degree g, level N).
If p=w® : GLy — Gy, then we put Mu(R) = M, en(R), and call these elements of
weight h. More generally, for an R-module M, the space of Siegel modular forms with
coefficients in M of weight p is defined as

M,,(M) = HO(.Ag,N ®R,EP ®r M)
We consider the case where R = C. For each Z € H,, let
Xy =C(Z+79 - Z)

be the corresponding abelian variety over C, and (uy, ..., u4) be the natural coordinates
on the universal cover C? of Xz. Then E is trivialized over H,4 by duy, ...,du,. For an

element vy = ( é" ZB;" ) of I'(N),
v Doy

Xz 3 Xy(z); t(ul, ...,ug) 3 (C—YZ + D'y)wl J t('u,l, ...,ug),

and hence y acts equivariantly on the trivialization of E over H, as the left multiplication
by (C,Z + D7)_1. Therefore, v acts equivariantly on the induced trivialization of E,
over H, as the left multiplication by p (C,Z + Dy)_l. Then f € M,(C) is a complex
analytic section of E, on Ay n(C) = H,/T'(N), and hence is a C%valued holomorphic
function on H, satisfying the p-automorphic condition:

1) =02+ 0) 1 0(2) (Zete v= (& 5 ) eTaw)

which is equivalent to that f (y(Z)) = p(C,Z + D,) - f(Z). Furthermore, the value of
f at a test object (X, \, a;wy, ..., w,) over a subfield k of C becomes p(G) - f(Z) € k¢,
where *(duy, ..., du,) = G - *(wy, ..., wy).
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Let ¢ : Agny < Aj v be the natural inclusion, and let E; be the direct image (or
pushforward) ¢, (E,) which is defined as a sheaf on As n ® R satisfying that E;(U) =
E, (w}(U)) for open subsets U of A} y ® R. This 1mphes immediately that

M,(R) = H* (A, y ® R,E}).

Furthermore, based on that codimzy /¢y ( —Agn, Ay, N) > 1, Ghitza (7, Theo-
rem 3| proved that E} is a coherent sheaf on .A*‘ N ® R. From this fact, it is shown in
[10, Theorem 1] that M,,(R) is a finitely generated R-module, and that M,(C) consists
of C%valued holomorphic functions on H, satisfying the p-automorphic condition.

2.5. Fourier expansion. Let g; (1 <%,j < g) be variables with symmetry ¢;; =
gji- Then in [17], Mumford constructs a semi-abelian scheme formally represented as

(Gm)g/ ((qij)ISng l 1< .7 < g>; (Gm)g = Spec( [xlila ,.'L‘;:l])

Z(g5" (i # 5)) [lgua, ---» Ggell -

This becomes an abelian scheme which is called Mumford’s abelian scheme over

Z (g (i # 5)] [lart, - dogll [1/11, s 1/gq)

with principal polarization corresponding to the multlphcative form

((a'la'-'aag)7(b1a"'aby))'_) H qu‘b]

1<4,5<g
on Zf x Z8. Hence for each 0-dimensional cusp c on Aj y, this polarized abelian scheme

over
Ryn =7 [1/N, vy G2 (i #j)] [[qi{” , ,qgéN]] [1/qu1, - 1/ggq]

has the associated symplectic level N structure, and w; = dz;/z; (1 < ¢ < g) form a
basis of regular 1-forms. Taking the pullback by the associated morphism Spec (Rgn) —
Ag v, E is trivialized by the basis ws, ...,w,, and hence E,, is also trivialized over

Spec (Rgn ® R) = Spec (R N ®z[1/N,¢n] R) .
In what follows, we fix such a trivialization:
E, X A, var Spec (Ryn ® R) = (Rgn ® R)”.

Then for an' R-module M, the evaluation on Mumford’s abelian scheme gives a homo-
morphism 4
Fo: My(M) = (Ry,v ®zy/wcn) M)
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which we call the Fourier expansion map associated with ¢. Furthermore, it is shown in
[10, Theorem 2] that F, satisfies the following g-expansion principle:

If M' is an R-submodule of M and f € M,(M) satisfies that

Fi(f) € (Ron ®zaywem M')?,
then f € M,(M').

This result was already shown by Harris [8, 4.8, Theorem] in the case where M is a field
extension of a field M’ containing Q({y)-

Assume that M = C and c is associated with v/—10co. Then by the substitution
gij = exp (2nv/—1zy) for Z = (2;)i; € Mg, Mumford’s abelian scheme becomes Xz,
and hence F, becomes the analytic Fourier expansion map times p (27r\/—_1 . 19). Since
each f(Z) € M,(C) is a C%-valued holomorphic function of Z € H, and is invariant
under Z — Z + N - I for any integral and symmetric ¢ X g matrix I, and hence

F(f) =) a(T)-exp (2nv/=1tr(TZ)/N) = >_a(T)-q"~ (a(T) € C7),

T T
where T = (tij)i, ; Tuns over half-integral symmetric g X g matrices, and
T/N _ 1/N 25 1/N tid
=11 (&)  II (&) -
1<i<j<g 1<i<g

Furthermore, as is shown in the Cartan Seminar 4-04, a(T") = 0 if T is not positive
semi-definite.

2.6. Nearly modular forms. Let Hpg (X/Agn) be the sheaf of de Rham
cohomology groups of X/ Ay v, and define the de Rham bundle as

D = Rbpr (X/Agn) = 1 (Hbr (X/ Agn))

which is a locally free sheaf on Ay n of rank 2g with canonical symplectic form. Then
one has a canonical exact sequence

0—-E—-D—->D/E—0,
and the quotient D/E is locally free of rank g. The Gauss-Manin connection
V:DaDRQy,,

defines Ty, v — Endo e (D) which, together with the above exact sequence, gives the
Kodaira-Spencer isomorphism

Ta,n —+ Homo, . (E,D/E).
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Let k be an element of X*(T}), and denote by V, the universal representation of
highest weight x. Then one can obtain the associated locally free sheaf D, on Agn
whose rank is denoted by d(ID,;). Furthermore, for h € Z, put

Dipy =D ® det(]E)®h
which is also a locally free sheaf on A,y with rank d(D,).

Definition 2.2. Let R be a Z[1/N, {y]-algebra. Then for £ € X*(T}) and h € Z,
we put

Ny (R) = H® (Agn ® R, Diepy)

and call these elements nearly Siegel modular forms over R of weight (x, h) (and degree
g, level N). More generally, for an R-module M, we call

Newy(M) = H* (Agn ® R, Doy ®p M) .
the space of nearly Siegel modular forms with coefficients in M of weight (k, h).

Theorem 2.3 (cf. [11, Theorem 2.3]). The R-module Ni.p(R) is finitely
generated.

As in 2.5, let {w; | 1 < ¢ < g} be the canonical basis of the Mumford’s abelian
scheme. Then there exist 7; (1 < ¢ < g) such that

g
dgij
V) =3 5,

j=1 ¥

and {w;,n; | 1 <4 < g} gives a basis of D over Ry y. By using this basis, one has a
trivialization of D, over R, v and that of det(E) by w; A - - - Aw,y. Therefore, there exists
the Fourier expansion map

d(Dx
Fe': Noswy (M) = (Ron ®zp1/wg M)* ™
which is obtained as the evaluation map on the Mumford’s abelian scheme.

Theorem 2.4 (cf. [11, Theorem 2.4]). The Fourier expansion map F, satisfies
the following g-expansion principle: If M’ is an R-submodule of M and f € Niop)(M)
satisfies

d(Dy
Ff) € (Ron @2y M),

then f € N n(M').
Theorem 2.5 (cf. [11, Theorem 2.5]). Let R be a Z[1/N,{n]-algebra, and f

be an element of Nicp)(R). Then for an extended test object & over R associated with
a point o on Ay, the evaluation f (@) of f at & belongs to R¥Px).



Theorems 2.3-2.5 are easily extended for general representations of GL, as follows.

Definition 2.6. Let R be a Z [1/N, {y]-subalgebra of C, and p: GL, — GLg be a
rational homomorphism over R which is the direct sum of p;, where p; are associated
with Wﬁq._hj(l,,__’l) for Kj € X+(Tg), hj € Z. Put

JV;?(R) = @ A[(Isj,hj) (R)7

and call these elements nearly Siegel modular forms over R of weight p (and degree g,
level N).

Remark 1. Any representation p of GL, over a field of characteristic 0 is repre-
sented as above.

Theorem 2.7. Let R and p be as in Definition 2.6.
(1) The R-module N,(R) is finitely generated.

(2) The direct sum of the Fourier expansion maps on N, n;)(R) gives rise to the
Fourier expansion map on N,(R) satisfying the g-ezpansion principle.

(8) Let f be an element of N,(R). Then for an extended test object o over R associated
with a point o on Agn, the evaluation f(a) of f at & belongs to R¥®) | where

d(p) = 3, d(Dy,).

3. Arithmeticity in the analytic case

3.1. Differential operator. First, we recall Shimura’s differential operator. Let
R be a Q-algebra, and identify the 2-fold symmetric tensor product Sym?(R?) of RS
with the R-module of all symmetric g X g matrices with entries in R. For a positive
integer e, let S, (Sym®(R?), R?) be the R-module of all polynomial maps of Sym?(RY)
into R? homogeneous of degree e. For a rational homomorphism p : GLy — GLg, let
p®71¢ and p ® o° be the rational homomorphisms over R given by

GL,(R) = Autg(R?) — Autg (S. (Sym?(R?), R?%))
which are defines as
[(p®7°) () (R)] (v) = p()h (‘e - - )

and
[(p ® 0°) ()(B)] (u) = p(@)h (™" - u-taY)
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respectively for @« € GLy(R), h € S, (Sym2(R9),R“), u € Sym?(RY). In particular,
for @ € GL,, 7°(c) (resp. o°(a)) consists of polynomials of entries of o (resp. a™!).
Furthermore, let
¢° : S. (Sym*(R?), S. (Sym*(R?), R*)) — R*

be the contraction map defined in [18, 14.1] as 6°(h) = )_, h (u;,v;), where {u;} and
{v;} are dual basis of Sym? (R?) for the pairing (u,v) — tr(uv), namely tr(u;v;) is
Kronecker’s delta d;;. Then 6° is GLg-equivariant for the representations p ® 0® ® 7°
and p.

Let f be a C%valued smooth function of Z = (2i5);; = X +v—1Y € H,. Then fol-
lowing [18, Chapter III, 12], define S; (Sym?(C?), C%)-valued smooth functions (Df)(x),

(CH@) (u= (ug),; € Sym?(C)) of Z € Hy as

(Bt = 1<z<:< 0@y Tz) 8(2”\/_211)
- (CHw) = (DH((Z2-2)u(Z2-12)),
and define S, (Sym?(C?), C?)-valued analytic functions C*(f), De(f) of Z € H,4 as
C(f) = C(C(S),
Dyf) = (p&T)(2-2) C(0(2-2)f).

It is shown in [18, Chapter III, 12.10] that if f satisfies the p-automorphic condition for
['(N), then Dg(f)(u) satisfies the p ® T°-automorphic condition.

Remark 2. The above Dj becomes (27r\/—1 )¢ times Shimura’s original operator
given in [18].

Let uy, ..., u4 be the standard coordinates on C9, and o4, B; (1 < i < g) be relative
1-forms on Xz (Z = (2;;) € H,) given by

g g g g
(o7 (Z aje; + E ijj) =a;, B ( E a;e; + E bjzj) =b
=1 =1 i=1 j=1

for each aj,b; € R, where e; = (6,])1<Z<g and 2; = (2j1,...,2jg). Since a;, B; have
constant periods for all Xz, V(a;) = V(B;) = 0. Furthermore, one has

g g
du; = a; + Zzz‘jﬁj, du; = o + Z_z—ifﬂj
i=1 Jj=1
which implies that
Yduy, ..., dug) = (Z — Z) - *(B1, ..., Bs) mod (H* (X/H,)) .



Then
w; = dlog(z;) = 2mv/—1du; (1 <i<g),

and hence
9 g
V(w;) = 27v—1V(du;) = 27v/—1 zdzij B = 27“/_—12 gi(}t_]_zlﬁj
=1 = i
which implies
=0 (1<i<g).

The following proposition was obtained by Harris [8, Section 4] substantially, and
shown by Eischen [3, Proposition 8.5] in the unitary modular case.

Proposition 3.1 (cf. [11, Proposition 3.1]). Letw: X — H, be the family of
complez abelian varieties given by

THZ) =Xy =CY(Z° + 29 - Z) (Z € ).
Then D, is obtained from the composition
Qe ®e
B, 5,0 () 5,0 (s (. (3) ™
Here the first map is given by the Gauss-Manin connection
V : Hpp (X/Hg) — Hpg (X/H,) ®

together with the projection Hbg (X [/Hg) — T (Q}Y /Hg) derived from the Hodge decom-
position .

Hbe (X/Hg) & HY (X/Hy) ® HO (X/Hy) =7 (O pn, ) @70 (Vg )»
and the second map is given by the Kodaira-Spencer isomorphism
Q'lug & Sym?® (71'* (Q}‘_, /Hg)) .
Let k € X*(T}) be as above. Then the Gauss-Manin connection gives
D, - D, ® (Qf“g_N)e )

This, together with the Kodaira-Spencer isomorphism

Q}‘tg,N & Sym2 (ﬂ'* (Q}V/Ag,N)) ,
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gives rise to .
De B, (sym? (. (910,0)))
which we denote by D¢.

Proposition 3.2 (cf. [11, Proposition 3.2]). Let p : GL, — GL4 be the
rational homomorphism associated with W,. Then via the projection Hpg (X/Hg) —

Ty (Q}Y /Hg) derived from the Hodge decomposition, Dy, gives Dj.

3.2. Nearly holomorphic modular forms. We recall the definition of nearly
holomorphic Siegel modular forms by Shimura.

Definition 3.3. Let R be a Z[1/N,(y]-subalgebra of C. A C%valued smooth
function f of Z = X ++1/—1Y € H, is defined to be nearly holomorphic over R if f has
the following expression

)= Zq (T,7'Y1) - exp (2nV~1tr(TZ)/N) ,

where g (T, n~1Y 1) are vectors of degree d whose entries are polynomials over R of the
entries of (47Y)~!. For a rational homomorphism p : GL, — GL4 over R, denote by
N?°(R) the R-module of all C?%-valued smooth functions which are nearly holomorphic
over R with p-automorphic condition for I'(N). Call these elements nearly holomorphic
Siegel modular forms over R of weight p (and degree g, level N).

Theorem 3.4 (cf. [11, Theorem 3.4]). Let R be a Z[1/N,{y]-subalgebra of C,
and p: GLy = GLg be a rational homomorphism over R associated with W_pq,...1) for
k € XT(T,), h € Z. Then there ezists a natural R-linear isomorphism

® : Ny (R) = NJOU(R).
Consequently, N;fml(R) 1s a finitely generated R-module, and
/\f;‘d(R) ®rC= N;f“’l(C).

Theorem 3.5 (cf. [11, Theorem 3.5]). Let R be a Z[1/N,{n]-subalgebra of C,
and p: GLy — GLg be a rational homomorphism over R associated with Wy_p(,..1) as
in Theorem 3.4. Let & be a test object over R corresponding to a CM abelian variety X,
and assume that one can extend the basis of Xy, to a basis of Hyg(X/R) which gives
a projection Hpp(X/R) — @ p compatible with the action of End(X). Then for any
f € N2°'(R), the evaluation f (&) of f at & belongs to R%.

Theorem 3.6. Let R and p be as above, and & be a test object over R corresponding
to a CM abelian variety X satisfying :
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e HAn(X/R) is a free End(X) ® R-module of rank 1,

e R contains all the ring of integers of the Galois closures of L;, where L; are CM
fields such that End(X) @ Q = @, L;,

o All the discriminants of the above L; over Q are invertible in R.
Then for any f € NI°'(R), the evaluation f (@) of f at & belongs to R®.

Proof. By assumption, embeddings of L; < C give rise to an R-isomorphism
End(X) ® R = R¥, and Hjz(X/R) is an invertible R*-module. Then by [14, Lemma
2.0.8], there exits a projection Hig(X/R) — Qﬁ(/R compatible with the action of
End(X). O

Results in this section can be extended by Theorem 3.4 for general representations
of GLyg as follows.

Theorem 3.7. Let R be a Z[1/N, (xn]-subalgebra of C, and p : GLy = GL4 be a
rational homomorphism over R which is the direct sum of p;, where p; are associated
with Wﬂj..hj(l,“_,l) fO’I" Kj € X+(Tg), hj €.

(1) The R-module N,(R) is finitely generated, and there exists an R-linear isomor-
phism ® : N,(R) = NI°(R). Consequently, N;°'(R) is a finitely generated R-
module, and N?*'(R) @ C = N}°(C).

(2) The assertions of Theorems 3.5 and 3.6 hold.
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