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Explicit formula for the Siegel series of a quadratic
form over a non-archimedean local field

Tamotsu IKEDA and Hidenori KATSURADA

1 Introduction

The Siegel series is one of the simplest but most important subjects, and it appears
in the Fourier coefficients of the Hilbert-Siegel Eisenstein series (cf. [10]) and of the
Duke-Imamoglu-Tkeda lift (cf. [2], [6]). Moreover it is also related with arithmetic
geometry (cf. [8]). In any case, it is very important to give an explicit form of the
Siegel series. In [7], the second named author gave an explicit formula for the Siegel
series of a half-integral matrix over Z, with any prime number p of any degree. In this
report, we give an explicit formula for the Siegel series of a half-integral matrix of any
degree over any non-archimedean local field of characteristic 0. This topic is discussed
in detail in [5]

2 Siegel series

Let F' be a non-archimedean local field of characteristic 0, and 0o = op its ring of
integers. The maximal ideal and the residue field of o0 is denoted by p and &, respectively.
We fix a prime element w of ¢ once and for all. The cardinality of £ is denoted by
g. Let ord = ord, denote additive valuation on F' normalized so that ord(w) = 1. If
a = 0, We write ord(0) = oo and we make the convention that ord(0) > ord(b) for
any b € F*. We also denote by | * |, denote the valuation on F' normalized so that
|wl, = ¢7'. We put ey = ordy(2). For an integral domain R, let Sym,(R) be the
set of symmetric matrices of degree n with entries in R. We say that an element A
of Sym,,(R) is non-degenerate if the determinant det A of A is non-zero. We say that
a symmetric matrix A = (a;;) of degree n with entries in F' is half-integral over o if
a; (i =1,...,n) and 2a;; (1 < ¢ # j < n) belong to 0. We denote by H,(0) the set of
half-integral matrices of degree n over o, and by H,,(0)*¢ the subset of #,(0) consisting
of non-degenerate matrices.

For an element B € H,,(0)™, we put D = (—4)"/4 det B. If n is even, we denote
the discriminant ideal of F'(v/Dg)/F by ©p. We also put

1 if Dg € sz,
€ =4 —1 if F(y/Dg)/F is unramified quadratic,
0  if F(v/Dp)/F is ramified quadratic.



Put

ord(D5) if n is odd.

Let { , Y= { , )r be the Hilbert symbol on F. Let B be a non-degenerate
symmetric matrix with entries in F' of degree n. Then B is GL,(F)-equivalent to
byL---1Lb, with by,...,b, € F*. Then we define g as

Ep = H (b,;, b])
1<i<j<n
This does not depend on the choice of by,...,b,. We also denote by 7p the Clifford
invariant of B (cf. [3]). Then we have

_J (=1, -1ymm+D2(—1)™ det B)ep  ifn=2m+1
e (=1, =1)mn=0/2((~1)™+1 det B)ep  if n = 2m.

(cf. [[3], Lemma 2.1]). We make the convention that {g = 1,ep =0andng =1if Bis
the empty matrix. Once for all, we fix an additive character v of F' of order zero, that
is, a character such that

o={a€F|vY(ax)=1 for any z € o}.
For a half-integral matrix B of degree n over o define the local Siegel series by(B, s) by

bp(B,s) = Y _¥(tr(BR))u(R) ™,

{ord(DB) —ord(®p) ifniseven
B =

where R runs over a complete set of representatives of Sym,, (F)/Sym, (o) and u(R) =
[Ro™ + o™ : o"].

Now for a non-degenerate half-integral matrix B of degree n over o define a poly-
nomial v,(B, X) in X by

(1 - X)[T2(1 - ¢¥X?)(1 — ¢*/%pX)™* if nis even
(B, X) = n—1)/2 2 y2 e
(1-X) L5771 —g*X%) if n is odd.
Then it is shown by [10] that there exists a polynomial F,(B, X) in X such that
- by(B, s)
F,(B,q %) = A
P( ) ’Yq(B, q_s)

We define a symbol X/ so that (X'/2)2 = X. We define Fp(B, X) as
Fy(B,X) = X~*82F(B,q~™V/2X).
We note that Fy(B, X) € Q[g¥/?|[X, X ] if n is even, and F,(B, X) € Q[X/2, X~1/?]

if n is odd. We sometimes write Fy(B, X) and Fy(B, X) as F(B,X) and F(B,X),
respectively.

The following proposition is due to [[3], Theorem 4.1].
Proposition 2.1. We have
F(B,X™") = (sF(B, X),

where (g = np or 1 according as n is odd or even.
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3 The Extended Gross-Keating invariant

In this section, we review the definition of the Gross-Keating invariant [1], and define its
extended version, in terms of which the Siegel series can be expressed. For two matrices
B, B’ € Hy(0), we sometimes write B ~ B’ if B and B’ are GL,(0)-equivalent. The
GLy(0)-equivalence class of B is denoted by {B}. Let B = (b;;) € H,(0)™d. Let S(B)
be the set of all non-decreasing sequences (ay, .. .,a,) € Z%, such that

ord(b;) > a;,
ord(2b;;) > (a; +a5)/2  (1<4,5<n)

Set
sqBh= U s@)= | s
B'e{B} UeGLyn (o)
The Gross-Keating invariant (or the GK-invariant for short) a = (a;, @2, . . .,a,) of B is

the greatest element of S({B}) with respect to the lexicographic order > on Z%,. Here,

the lexicographic order > is, as usual, defined as follows. For (y1,%2,-- -, Yn), (zl—, 22,y 2n) €
Z%,, let j be the largest integer such that y; = z; for ¢ < j. Then (y1,¥2,--.,%n) >
(21,22, ., 2) if y; > 2;. The Gross-Keating invariant is denoted by GK(B). A se-
quence of length 0 is denoted by (). When B is a matrix of degree 0, we understand
GK(B) = 0.

By definition, the Gross-Keating invariant GK(B) is determined only by the G L,(0)-
equivalence class of B. We say that B € H,(0) is an optimal form if GK(B) € S(B).
Let B € H,(0). Then B is GL,(0)-equivalent to an optimal form B’. Then we say
that B has an optimal decomposition B’. We say that B € H,(0) is a diagonal Jordan
form if B is expressed as

B =w%u; L. lo*u,
with a¢; < --- < a, and u;,--+ ,u, € 0*. Then, in the non-dyadic case, the diagonal
Jordan form B above is optimal, and GK(B) = (ai,...,a,). Therefore, the diagonal
Jordan decomposition is an optimal decomposition. However, in the dyadic case, not
all half-integral symmetric matrices have a diagonal Jordan decomposition, and the
Jordan decomposition is not necessarily an optimal decomposition.

Definition 3.1. Let ¢ = (ai,...,a,) be a non-decreasing sequence of non-negative
integers. Write g as
a=(my,...,mi,...,Mp,..., M)
I W

ny Nr

withm) <.+ <myandn=ny+---+n,_1+n,. Fors=1,2,...,r put

8
* ——
ng = E Ty
u=1

IL={n;, ;+1,n;_,+2,...,n}}.



We denote by &,, the symmetric group of degree n. Recall that a permutation
o € G, is an involution if 02 = id.
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Definition 3.2. For an involution ¢ € &,, and a non-decreasing sequence g = (ay, - ., ap)

of non-negative integers, we set

P’ =P%) ={ill <i<n, i=0()},
Pt =Pt o)={i[l <i<n, a; >amp)},
P =P (0)={i[l <i<n, a; <app}

We say that an involution ¢ € &, is an g-admissible involution if the following two
conditions are satisfied.

(i) P° has at most two elements. If P° has two distinct elements 7 and j, then
a; Z a; mod 2. Moreover, ifi € I,N PO, then i is the maximal element of I,, and

i=max{j | j € P°UP™T,a; = a; mod 2}.
(ii) For s =1,...,r, there is at most one element in I, N"P~. If i € [, NP, then ¢
is the maximal element of I, and
o(i) =min{j € P*|j > i, a; = a; mod 2}.

(iii) For s = 1,...,r, there is at most one element in I, NP+, If i € I, NPT, then 4
is the minimal element of I, and

o(i) =max{j € P~ |j <1, a; = a; mod 2}.

(iv) If a; = a,(), then |i — o(3)| < 1.

This is called a standard g-admissible involution in [4], but in this paper we omit
the word “standard”, since we do not consider an a-admissible involution which is not
standard.

Definition 3.3. For a = (a4, ...,a,) € Z%,, put
ord(b;) > a;, o

< <
Ord(2bi.i) > (az‘ +aj)/2, (1 Se<J= n) ’

ord(b;) > a;, o
ord(2b;;) > (a; + a;)/2, (1<i<j< n)} _

M(a) = {B — (b) € Ha(o)

M(g) = {B — (b;) € Ha(o)

Definition 3.4. Let 0 € &, be an g-admissible involution. We say that B = (b;;) €
M(a) is a reduced form with GK-type (g, o) if the following conditions are satisfied.

(1) Ifi ¢ P° and i < j = o(3), then

(i ) -



Note that if the residual characteristic of F' is 2, then this condition is equivalent
to the following condition.

{ord(2b,-,,(,-)) = w if ¢ ¢ PO’

Ol‘d(bii) = a; fieP .

(2) If i € P°, then
ord(b,-,-) = Q;.

(3) If j # ¢,0(z), then
Ol'd(2bij) > %,

We often say that B is a reduced form with GK-type g without mentioning 0. We
formally think of a matrix of degree 0 as a reduced form with GK-type 0.
Remark 3.1. If the residual characteristic of F' is odd, then a diagonal Jordan form
diag(by, bo, . . ., b,) such that ord(b;) = a; (i = 1,2,...,n) is a reduced form with GK-
type a.

The following theorems are fundamental in our theory.

Theorem 3.1. ([[4], Theorem 5.1]) Let B be a reduced form of GK type (a,0). Then
we have GK(B) = a.

Theorem 3.2. ([[4], Theorem 4.3]) Assume that GK(B) = a for B € H,(0). Then
B is GL,(0)-equivalent to a reduced form of GK type (a,0) for some a-admissible
involution o.

By Theorem 3.2, any non-degenerate half-integral symmetric matrix B over o is
GLy(0)-equivalent to a reduced form B’. Then we say that B has a reduced decom-
position B’. For a matrix C = (¢;)1<ij<n and a positive integer m < n we put
C™ = (cijhigijm:

Definition 3.5. Let B € H,,(0)? with GK(B) = (a4,...,a,), and ny,...,n.,n},..., 0k
and m;, ..., m, be those in Definition 3.1. Take an optimal decomposition C of B, and

for s=1,...,r we put
(C) = ¢{(C™),

where ((C™)) = &gy or ((C™)) = nymy) according as n? is even or odd. Then (,(C)
does not depend on the choice of C (cf. [[4], Theorem 0.4]), which will be denoted by
{s = (s(B). Then we define EGK(B) as EGK(B) = (n1, ..., M1, ..., Mp; (1, .- -5 Cr)s
and we call it the extended Gross-Keating invariant of B.
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4 EGK datum and its associated polynomial

To formulate our main result, we introduce an EGK datum, which is obtained by
axiomatizing properties of the extended GK invariant, and attach a Laurent polynomial
to it. :

Definition 4.1. Let G = (ny,...,ny;my,...,my;(1,..., () be an element of ZJ x
Z5o x Z5. Put n} =37 n; for s < r. We say that G is an EGK datum of length n
if the following conditions hold:

(E1) nf=nand my <--- <m,.
(E2) Assume that n? is even. Then (; # 0 if and only if ming + - - - + mgn, is even.
(E3) Assume that n?} is odd. Then {, # 0. Moreover we have

(a) Assume that n} is even for any i < s. Then

= (Pt o gt gt

In particular, {; = 1 if n; is odd.

(b) Assume that nym;+-- -+ (ns_1 — 1)m,_; is even and that n} is odd for some
i < s. Let t < s be the largest number such that n; is odd. Then

4.3 — pMstms—1 W+a+m+2<-:1z1+2+m+l Q.

= Gs-1 t+2
In particular, {, = (; if t =s— 1.
We denote by £EGK,, the set of all EGK data of length n.

By construction we easily see the following.

Theorem 4.1. (cf. [[4], Theorem 6.1]) Let B € H,(0)d. Then EGK(B) is an EGK
datum of length n.

We also introduce a naive EGK datum (cf. [4]). Let 23 = {0,1,—1}.

Definition 4.2. An element (a3, ..., an;€1,...,€n) of Z%y X 27 is said to be a naive
EGK datum of length n if the following conditions hold:

(N1) a; <--- < ay.

(N2) Assume that ¢ is even. Then ¢; # 0 if and only if a; + - - - + a; is even.
(N3) Assume that 7 is odd. Then ¢; # 0.

(N4) e, =1.

(N5) Let ¢ > 3 be an odd integer and assume that a; + --- + a;_; is even. Then
a;t+ai—1 )
g = E‘i—-l Ei—9.
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We denote by NEGK,, the set of all naive EGK data of length n. We will give examples
of naive EGK data in Section 6.

For integers e, €, a real number £, and 7 = 0, 1 define rational functions C(e, €, §; Y, X)
and D(e,&,&;Y, X) in YV/2 and X*/2 by
YE/2X—(e—’é)/2—1(1 _ fY_lX)
X1-X

C(e,6,8Y,X) =
and 2 x—e-2)2
Ye X— e—e
D(e,e,&;Y, X)) = ————
(e) e’ £7 7X) 1 _ §X
For a positive integer ¢ put

Cle,6,&;Y,X) ifiis even

C'i 7~7 7KX = ~ .
(eef. ) {D(e,e,f;Y,X) if 4 is odd.

For a sequence g = (ay, - . - , @y ) of integers and an integer 1 < 7 < n, we define ¢; = ¢;(a)
as

o — ay+---+a; if 7 is odd

* 2[(a1 +---+a;)/2] if i is even.

We also put ey = 0.

Definition 4.3. For a naive EGK datum H = (ay,...,a4;€1,...,6,) We define a
rational function F(H;Y, X) in X2 and Y'/? as follows: First we define

F(H;Y, X) = X0/ 4 X~0/21 .. g X021 4 x0/2

ifn=1. Let n > 1. Then H' = (ay,...,an_1;€1,---,En—1) is a naive EGK datum of
length n — 1. Assume that F(H";Y, X) is defined for H'. Then, we define F(H;Y, X)

as
F(H;Y,X) = Cp(en, en-1,& Y, X)F(H; Y, Y X)
+(Cn(en, tn-1, &Y, X HF(H Y, YX ),
where £ = ¢, or €,-1 according as n is even or odd, and { =1 or &, according as n is
even or odd. :
By the definition of F(H;Y, X) we easily give an explicit formula for F(H;Y, X).

Proposition 4.1. Let H = (ay,...,an;€1,.-.,&,) be a naive EGK datum of length n.
Then we have

F(H;Y,X)
= Y g (en 01, &n Y, X )

(1,58 )E{£1}"

n—1
(1—4;)/2 . Gitiitiag e tiitint o tn_ Gieeed
X Hnj ’ Cj(ejaej—lagja},zy] i+ i1 in=1 X4 n)’

Jj=1
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where
£ = €; if 7 is even

g gj—1 if j is odd,

and
1 if 7 is even

%= e, ifjis odd

for 1 < j <n. In particular,
F(H;Y,X™!) = no F(H;Y, X).

We also have the following induction formulas.
Proposition 4.2. Let H = (ay, ..., an;€1,---,&,) be a naive EGK datum of length n
and H" = (a1, ...,0n—2;€1,---,En—2). Then H” is a naive EGK datum of length n — 2.
Assume that a,_1 = a,. Then the following assertions hold.

(1) Assume that n is odd and a; + - -+ + an_1 is even. Then we have
F(H;Y,X)=Y"2!
Xt H Y, VX
X {‘(‘m (H"; Y, Y*X) +

+ Yon-1(Y2 - Y 2)g,

(WX T~ VXY X)L~ YXT)

In particular, F(H;Y,X) does not depend on ¢,,_;.

6nx(cn—en_2)/2+1
(YX-1)1_yXx-t

.F(H”;Y,Y2X'1)}

F(H";Y, X).

(2) Assume that n is even and ay + - - - + a, s odd. Then we have
F(H;Y, X)
X (—enten—2)/2-1 X (en—en—2)/2+1
— Ven-2 ", 2
Y {——X‘l—X .7-‘(H,Y,YX)-&-—X_X_1
In particular, F(H;Y,X) does not depend on &,_;.

By definition, F(H;Y,X) is a rational function in X'/ and Y'/2 but in fact we
have the following:

F(H";Y, Y2x-1)} .

Theorem 4.2. Let H = (ay,...,0p;€1,...,&,) be a naive EGK datum of length n.
Then X2 F(H;Y, X) is a polynomial in X of degree e, with coefficients in Q[Y,Y1].

Now let us consider the relation between an EGK datum and a naive EGK da-
tum. Let H = (ai,...,an;€1,...,6) be an naive EGK datum of length n, and
Ny, ...,Npy Ny, ..., N and ma,...,m, be those defined in Definition 3.1. Then put
(s =é€n, for s =1,...,r. Then Gy := (ny,...,ne;m1,...,mp; (..., ¢) is an EGK
datum (cf. [[4], Proposition 6.2]). We then define a mapping Y, from NEGK, to
EGK,, by Tn(H) = Gg. Then we easily see that The mapping T, is surjective (cf. [[4],
Proposition 6.3]). We note that Y, is not injective in general.
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Theorem 4.3. Let G be an EGK datum of length n, take H € NEGK, such that
T.(H) = G. Then F(H;Y,X) is uniquely determined by G, and does not depend on
the choice of H.

For an EGK datum G we define 7(G;Y, X) as F(H;Y, X), where H is a naive
EGK datum of length n such that T,(H) = G.

5 Main result

Now we state our main result.

Theorem 5.1. Let B be a non-degenerate half-integral matriz of degree n- over o. Then

we have _ _
F(B,X) = F(EGK(B); ¢"/*, X).

In particular, ﬁ(B, X) is determined by EGK(B).
We give an outline of the proof. First assume that q is odd. We may assume that
B € H,(0) is a diagonal Jordan form with GK(B) = (ay,...,a,)- Then B® ig also

a diagonal Jordan form with GK(B) = (ay,...,a,—1) if n > 2. Then Theorem 5.1
follows from the following induction formulas.

Theorem 5.2. Under the above notation and the assumption, we have the following.

(1) Let n=1. Then

F(B,X)=Y_ Xi-@/
=0

(2) Let n > 3. Then

ﬁ(By X) = D(em en—1, £B("—1) ) X)ﬁ(B(n—l)7 q1/2X)
+ nBD(en, en—1, fB("—l); X—l)ﬁ(B(n-l)7 ql/2X_1)

if n is odd, and

f(B, X) = Clen, en-1,€5; X)F(B('n—-l)’ ql/zX)
+ C(efh en—-l) {B; X_l)ﬁ(B(n_l)’ q1/2X—1)

if n is even.

Next we consider a more complicated case where ¢ is even. Let B be a reduced
form in H,(o) with GK-type ((a1,-...,an),0). Put a = (ay,...,a,). We say that
(a, o) belongs to category (I) if n = o(n — 1) and a,-; = a,. We say that o belongs
to category (II) if B does not belong to category (I). We note that (a,o) belongs to
category (II) if and only if a,—; < a, or o(n) = n. In particular, (a,o) belongs to
category (II) if n = 1. We also say that B belongs to category (I) or (II) according
as (a,0) belongs to category (I) or (II). We note that if two reduced forms are of the
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same GK-type, then they belong to the same category. Let B = (b;;) € H,(0)™ be
a reduced form of type (g, ). Put ¢ = (ay,...,a,). For a non-negative integer i < n
let ¢; = e(a); be the integer in Definition 4.3. By [[4], Theorem 0.1], we have ¢g = e,.
Now we prove the following assertion by induction on n:

F(B, X) = F(EGK(B); ¢"/2, X). (EF,)
First we easily see that the following.

Proposition 5.1. Let n = 1. Then, we have

a1
F(B,X)=) X/,

=0

Next let us consider the case where n > 2. We give induction formulas for F' (B,X)
in the following cases, which proves Theorem 5.1 combined with Definition 4.3 and
Proposition 4.2.

Case 1. Assume that B satisfies either one of the following conditions:

(1) B belongs to category (II)

(2) B belongs to category (I) and n +a; + - - - + agjn /9] is even.

If B satisfies the condition (1), then B®Visa reduced form with GK(B®~V) = g(*—1),
If B satisfies the condition (2), then we easily see that B is GL,(0)-equivalent to
a reduced form B such that B™ Y is a reduced form with GK(B® D) = gD,
Therefore, we may assume that B™~Y is a reduced form with GK(B®Y) = g(”_l).

Theorem 5.3. Let the notation and the assumption be as above. Then, under the
assumption EF,_;, we have

F(B, X) =D(en, ta_1,£pe-n; X)F(B®D, ¢'/2X)
+ nBD(env Cp—1, gB("—l); X_l)ﬁ(B(n_l)a q1/2x).

if n is odd, and
F(B, X) =C(en, tn-1,£p; X)F(B"V, g2 X)
+ Cen, n1,€5; X ) F(B™Y, ¢'/2X)
if n is even.

Case 2. Assume that B belongs to category (I) and that n+a; +---+a,_1 is odd.
Then, B"~? is a reduced form with GK(B®?) = g2,

Theorem 5.4. Let the notation and the assumption be as above. Then under
the assumption EF,,_,, we have the following.
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(1) Assume that n is odd and that a; + - - - + ap—1 is even. Then we have

- X (—enten—2)/2~1
_en—2/2-1/2

o) = s
X (en—en—2)/2+1 g .

+ B (ql/zx—l)—l _ q1/2x_1F(B( )’qX )}

en_1/2( 1)
+ 1B 1-1
((q1/2X) -1 _ q1/2X)((q1/2X 1) -1 __ 1/2x—1)

x F(B®2, X).

F(B™,¢X)

(2) Let n be even and that a; + - - - + an—2 is odd. Then

~ (—en+ten—2)/2-1 _
F(B, X) = g2’ {______X e F(B®,qX)
X(‘n—en—2)/2+1

tx—x—

F(B™2, qX—l)} .

6 Examples

(1) Let G = (n,...,np;m1,...,mp; (1, .., ¢) be an EGK datum of length n. For
1 <7 < n we define m; as

mi=mjifny+---+nja+1<i<n+---+ny,

and for such M4, ..., m, we define the integers e,..., e, as in Definition 4.3.
(1.1) An EGK datum of length 2 is one of the following forms

(a,) G= (1, 1;my, ma; 1,(2) with m; < mg and (; € 23
(b) G = (2;m;¢1) with (3 € {+1}.
Put &€ = {, or £ = {3 according as case (a) or case (b). Then
H= (77’:1,%2; 115)

is a naive EGK datum such that T2(H) = G, and by a simple computation (c£.[[5],
Corollary 4.1]), F(G;Y, X) can be expressed as

F(G;Y, X)
e _ _ . _ -
X e2/2+i—1 X¢2/2 1+1} X ea/2+4 __ X¢2/2 i
S e
=0 Xt-X =0 t-X

Let B € H3(0)*d. Then by Theorem 5.1, we have

F(B, X) = F(EGK(B); ¢"/?, X).
This coincides with [[9], Corollary 5.1].
(1.2) An EGK datum of length 3 is one of the following forms:
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(8) G = (1,1,1;my, ma, ma; 1, G, C) with G2 € 23, and (3 € {+1}
(b) G = (1,2 my, ma; 1, () with ¢ € {+1}

(©) G = (2,1;my, ma; (1, (z) with ¢, € 25 and ¢ € {£1}

(d) G=(3;my;1).

We put
(2 in case (a)
)& incase (c)
&= 1  in case (b) or case (d), and m; + My is even
0  in case (b) or case (d), and m, + my is odd,
and

(s in case (a)
n=4¢ incase (b) or (¢
1  in case (d).

Moreover let ey = 2[(a; + as + a3 + 1)/2]. Then,
H= (iﬁl’ fﬁ% 77"31 1: é, 7])

is a naive EGK datum such that T3(H) = G, and by a simple computation(ct.[[5],
Corollary 4.1]), F(G;Y, X) can be expressed as

FG;Y, X) = X"

¢5/2~i—1 eh/2—i—1
{Z(Yﬁxr S () e 3 > oy

=0 =0

e3—2¢h+e1
+§2Y°2X°2_‘1 Z (£X)J ZXz
=0 =0
Let B € H3(0)*d. Then by Theorem 5.1, we have
F(B,X) = F(EGK(B);¢"/%, X).

This essentially coincides with [[7], Example (3)] and [[11], (2.8)] in the case F' = Q,.
(2) Let g be odd, and let

B~ wh iyl - Lw®™u, (a1 <--- < ap, U,..., Uy € 0F)

be a diagonal Jordan decomposition of B € H,(0)". Put

€pw ifis even
6‘ = . . .
' nge  if 7 is odd.
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Then H = (a4,...,an;€1,...,&pn) is a naive EGK datum such that Y,,(H) = EGK(B),
and by Proposition 4.1 and Theorem 5.1, we can get an explicit formula for ﬁ(B, X)
in terms of H, which is essentially coincides with [[7], Theorem 4.3] in the case where
F = Q,. In the dyadic case, if one can get a naive EGK datum associated with

B € H,(0)™, we can also give an explicit formula for F(B, X) in terms of it.
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