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1 Introduction

This article gives a summary of [2]. We consider the artificial compressible system:

e29p+dive = 0, (1.1)
Pr! (0w +v - Vv) — Av+ Vp— Rafe; = 0, (1.2)
86 +v-VO—A§—-Rav-e3 = 0. (1.3)

Here v = T(v!(z, t),v*(z, t),v3(z,t)), p = p(z, t) and = 6(z,t) denote the unknown
velocity field, pressure and temperature deviation from the heat conductive state,
respectively, at time ¢t > 0 and position z € R3 e3 = 7(0,0,1) € R3; Pr > 0
and Ra > 0 are non-dimensional parameters, called Prandtl and Rayleigh numbers,
respectively; and € >0 is a small parameter, called artificial Mach number. Here
and in what follows, the superscript ' - stands for the transposition. The system
(1.1)~(1.3) is considered in the infinite layer Q = {z = (2/,z3);2" = (21,22) €
R2, O0<z3 < 1}

By putting ¢ = 0 in (1.1) we obtain an incompressible system, called the
Oberbeck-Boussinesq equation, which is a system of equations describing convec-
tion phenomena of viscous fluid in  heated from below (heated at z3 = 0) under
the gravitational force. As for the Oberbeck-Boussinesq equation (1.1)-(1.3)|.=o, it
is well known that under the boundary condition: v|z;—01 = 0, 8|z,—0,1 = 0, there
exists a critical number Ra, > 0 such that when Ra < Ra,, the heat conductive state
v = 0, 6 = 0 is stable, while, when Ra > Ra,, the heat conductive state is unstable
and convective cellular stationary solutions bifurcate from the heat conductive state.

A.. Chorin ([1]) proposed the artificial compressible system such as (1.1)—(1.3)
with & > 0 to find stationary solutions of equations for viscous incompressible fluid
numerically. In the context of the Oberbeck-Boussinesq equation (1.1)—(1.3) with
e = 0, the idea is stated as follows. Obviously, the sets of stationary solutions
for the systems with ¢ = 0 and € > 0 are the same ones. If solutions of the
artificial compressible system (1.1)—(1.3)|.»0 converge to a function u; = " (ps, vs, 0s)
as t — 0o, then the limit u, is a stationary solution of (1.1)—(1:3)|.>o which is thus
a stationary solution of (1.1)—(1.3)|.—o. By using this method, Chorin numerically
obtained stationary cellular convection solutions of (1.1)—(1.3)|e=o-

Since the limit u, in Chorin’s method described above is a large time limit of
solutions of (1.1)—(1.3)|¢>0, us is stable as a solution of (1.1)—(1.3)[c>o. It is of



interest to consider whether u; is stable as a solution of (1.1)—(1.3)|c—o, in other
words, whether u, represents an observable stationary flow in the real world, and,
conversely, what kind of stationary flows can be computed by Chorin’s method.
These questions are to be formulated as stability problem for stationary solutions
of the systems (1.1)—(1.3)].—p and (1.1)—~(1.3)|c>0. Since the system with € = 0 is
obtained from the one with € > 0 as the limit £ — 0, one could expect that solutions
- of (1.1)—(1.3)|c=o would be approximated by solutions of (1.1)—(1.3)|.>0 when e < 1.
However, this limiting process is a singular limit, and hence, it is not straightforward
to conclude that stability properties of u as a solution of (1.1)—(1.3)|.=o are the same
as those as a solution of (1.1)—(1.3)|.>0 even when 0 < ¢ < 1.

The purpose of this article is to study the stability relations of stationary solu-
tions between the systems with ¢ = 0 and € > 0 when ¢ is sufficiently small. We
thus consider the spectra of the linearized operators around a stationary solution of
(1.1)~(1.3)|e=0 and (1.1)—(1.3)[e>o for € < 1.

2 Main Results

Let u, = T (ps, vs,0;) be a stationary solution of (1.1)-(1.3) satisfying

/ ps(z)dz =0
nper

under the boundary condition:
vl$3=0,1 = 01 0':3:0,1 = 0,
and the periodicity condition:
p, v and 6 are Q-periodic in (z1, Z2).
Here Q = [-7/a;1,7/a1) X [—7/az, ™/as) with positive constants a;, j = 1,2; and
Qper = Q x (0, 1) is the basic period domain.
We consider the linearized problem around us = T (ps, vs, 65):

e29p+divw = 0, (2.1)
Prlgw — Aw+Pri(v,- Vw+w-Vv,) + Vp—Rabfe; = 0, (2.2)
00— AN0+v,-V8+w-Vb,—Raw-e3 = 0 (2.3)

under the boundary condition
Wg3=01 =0, Olay=01 =0, (2.4)
and the periodicity condition

p, w and @ are Q-periodic in (z1, Z2). (2.5)



By applying the Helmholtz projection PP to the system (2.1)-(2.3)|c—o, we have the
linearized operator around U, = T (vs,6;) associated with problem (2.1)-(2.3)|.—o
under (2.4) and (2.5). We define the operator L : L2, , x L2, — L2, , x L2, by

per,c per
[ (~PPA+P(v, -V + T(Vv;)) —PrRaPe;
- T(Ves) - Ra,Te3 —A + v, - \V/

with domain D(L) = [(H2, N H} ,.,)* N L2, ,] x [HZ, NH] ..|. Here L2, HY ., ---,
denote L?, H*, - - spaces over (., with periodicity condition in z’; Hy ., denotes
the set of all functions in H,, that vanish on {z3 = 0,1}; and L2, , denotes the set
of all vector fields w in (L2,,)? that satisfy divw = 0 in Qper, w* = 0 on {z3 = 0,1}
and ’wj'zj=_aLj = wj|a;j=alj, i=12

We also introduce the linearized operator around u, = ' (ps, ws,8;) associated
with (2.1)~(2.3)|e>o under (2.4) and (2.5). We define the operator L. : HL,, X
(L2,)3 x L2, — HY,, x (%)% x L2, by

per,x ‘per

0 Ldiv 0
L.= [PtV —-PrA+wv,-V+ T(Vv,) —PrRae;
0 T(V9,)—RaTe; = —~A+w,-V

P x [HZ, N Hj ). Here H) =

with domain D(L.) = H,,,, x [HZ, N Hj,,,

HY NIR,, L%, ={$€ L[, ¢dv=D0).

per,x
We state our main results. See [2] for more general forms. We begin with

Theorem 2.1. ([2]) If there exists a positive number by such that p(—L.,) D {X €
C;Re )\ > —bo} for some sequence €, — 0 as n — o0, then there exists a constant
b1 > 0 such that p(—L) D {A € C;Re A > —b1 }.

Theorem 2.1 shows that if u, is obtained by Chorin’s method with 0 < ¢ < 1,
then it is stable as a solution of the Oberbeck-Boussinesq system. In particular, if
u, is unstable as a solution with £ = 0, then so is u, as a solution with 0 < ¢ < 1,
and hence, unstable stationary solutions of the Oberbeck-Boussinesq system cannot
be obtained by Chorin’s method with 0 < ¢ < 1. We next give a sufficient condition
for u, to be computed by Chorin’s method with 0 < € < 1.

We denote by || - ||, the LP norm over Q... We also denote by (f, g) the L? inner
product of f and g over Qpe.

Theorem 2.2. ([2]) Suppose that p(—L) D {A € C;Re X > —bo} for some constant
bp > 0. Then there exist constants g > 0, 6o > 0 and by > 0 such that if

- Re (w . V’U.saw)
Mwer, 2 wA™ | TwlE =

~5o, (2.6)

then p(—L;) D {A € C;ReX > —by} for all0 < e < €.

In Theorem 2.2 we require smallness condition only for the velocity field v, but
not for the temperature 6,.

Since the velocity fields of cellular stationary convective patterns bifurcating
from the heat conductive state are small when Ra ~ Ra,, Theorem 2.2 is applicable.



Remark 2.3. Due to the translation invariance in z1 and xo variables, 0 is an
eigenvalue of — L. whenever O, us # 0 or Ogus # 0. In this case the theorems above
also hold with reasonable modifications. See [2].

3 Outline of proof of Theorem 2.2

In this section, following [2], we give an outline of the proof of Theorem 2.2. We

assume that
p(=L) D {A € C;Re X > —bo}.

Since —L is a sectorial operator with compact resolvent, we have the following
resolvent estimate for —L by the standard energy method.

Proposition 3.1. There ezist a constant ag > 0 such that
¥ :={A€C;Re) > —ao|Im > — by} C p(-L)

and the estimates

_ C
A+ L) F|» < WHF"m

I82(A + L)' Fll2 < C||F ||z
hold uniformly for A € .
We set Y = H}

L rx X (L2,)? x L2,,. We consider the resolvent problem for —Le:

M+ Lou=F, (3.1)
where u = "(p,w,6) € D(L.) and F = "(f,g,h) € Y. Problem (3.1) is written as
e2\p + divw = £%f, (3.2)

Pridw — Aw 4 Pr (v, - Vo + w - Vv,) + Vp — Rafe; = Pr'g, (3.3)
A — A0+ v,-VO+w- -V, — Raw - e3 = h, (3.4)
and u = ' (p, w, 0) satisfies the boundary conditions (2.4) and (2.5).

Proposition 3.2. There exist constants a; > 0 and by > 0 such that {\ € C;Re A >
—a1€2|ITm A\ + b} C p(=L;) for all0 <e < 1.

This proposition can be proved by the Matsumura-Nishida energy method ([3]).
See [2] for the detail.

We next show that the spectrum of —L. in a disc with radius O(¢~!) can be
viewed as a perturbation of the one of —L. We introduce the operator % :
H,. . x(L%,)* x L2, — H),., x (L%,)® x L2,, defined by

per,* per per

D("‘ZE,/\) = H;er,* X [Hzer N I{(},per]3 X [Hzer N H(},per]?



0 Elzdiv 0
Ler=|PrtV A-PrA+v,-V+ T(Vv,) —PrRae; .
0 T(V6,) —Ra"e; A-A+v,-V

Note that
Leo=Le.

We prepare the following estimates for E&__'{

Proposition 3.3. Let ¢ > 0. If A € S, then £, » has a bounded inverse £, and
T(p,v,0) = L3F for F=T(f,9,h) €Y satisfies

01 < {2l + 1R
102U ll2 + [18:pll2 < C{(IAl + DI flla + 1P 12},
where U = T(w,6) and F = "(g,h).
See [2] for a proof of Proposition 3.3.
Proposition 3.4. There exist positive numbers €, and as such that
SN{A e Ci|A| < age™'} C p(-Le)
forall0 < e <e.

Proof. We follow the argument in [2]. We write the resolvent problem

A+Lju=F

Lepu+AJu=F, (3.5)

where F = T(f,g,h) € Y. If X € &, then it follows from Proposition 3.3 that (3.5)
is written as

Leall + w;}\J)u =F,
and, furthermore, we have
LA Fllmxaexaz < €Cr(IA + DIl

for all F = T(f,g,h) € Y. It then follows that there exists £; > 0 such that if A € &
and [A| < 1/(4y/Cie), then Z;\JF € D(Z. ) = D(L,) and INZATF || mxmzxme <
%||F|| mixrexre for 0 < e < e;1. Therefore, (I +22 ,{J) is boundedly invertible both
on Y and D(L.) with estimates

(I + /\,g;IJ)_IF”HlezxLz < 2||F||gr1xr2xr2
for F €Y and
"(I + A,?;}\J)‘lFllHleszz < 2"F"H1xH2xH2



for F € D(L.). We thus find that A + L, = £, + AJ has a bounded inverse
A+ L)'= (L. +€2AJ)7! on Y which satisfies

A+ L)t =22 - ALY (-NN(ZaNN Lo

- !
and
[A+ Le) ' Fllmxzaxze < 2C1 {2 (Al + D)I| Il + |1 F 2}
< 2C {ell e + 1 Fl2}
with F = T(g, h). This completes the proof. O

Theorem 2.2 follows from Propositions 3.2 and 3.4 if \/b2/a; < az for 0 <e <« 1.
In the case 1/by/a; > ao, there is some range of A near the imaginary axis with
|Im A| = O(¢7!) to be proved that it belongs to p(—Le).

To prove Theorem 2.2 when 4/bs/a; > aa, we prepare estimates for the 6-
component. We recall that the Poincaré inequality

Vel > B6]
holds for § € Hy,, with some positive constant 3.

Proposition 3.5. Let " (p, w, ) be a solution of (3.2)(3.4) under boundary condsi-
tions (2.4) and (2.5). Then if ReA > —%2, the following estimates hold:

1 2||vs]loo
< -
”0”2 = |Im)\| (1 + ﬂ {(||V03||oo + R,a.)"w"2 + "h“2} )

V62 < %{mvesnoo + Ra)l[w]]z + |All}

This proposition can be proved by the standard energy method. The idea is
that —A with zero-Dirichlet bondary condition is sectorial (self-adjoint) and so
(A—A)1t > 0as |[ImA — 0.

We are now ready to complete the proof of Theorem 2.2.

Proposition 3.6. For given p, > 0 and 0. > 0 there exist constants €1 > 0 and
¢o > 0 such that if

inf Re (w - Vv, w) S Pr
Hweer w0 Gl =782

then n
{A =u+ i;; —ca < p < sy 1| 2 77*} C p(—Le)

for all 0 < &€ < &,. Here g1 and cy are positive constants depending only on Pr, Ra,
"’03"01, "V05"007 ﬁ; Hox and M«



Proof. We give an outline. The details can be found in [2]. We see from (3.2) that

1 . 1

Substituting (3.6) into (3.3), we have
e2\?

2
oW 2AAw — Vdivw + %(vs -Vw +w - Vv,) — £2ARafe; = 2G), (3.7)

where G, = 2.9 — Vf.
Let A = p+ 142 with [n| > n.(> 0). Without loss of generality we may assume
n > n,. Taking the inner product of (3.7) with w, we have

2\ 2 .2 2 : 2
W"“’"z + M| Vawl|z + [|divwlf;
= -2\ (Pr}(vs - Vw,w) + Pr l(w - Vv, w) — Ra(f,w?)) + *(Gy, w).
(3.8)
The real and imaginary parts of (3.8) yield
1 .
5 (€1 =) wl} + | Velf + [|divewl);
= —&’uRe (Pr Y (w - Vo, w) — Ra(6, w®)) (39)
+enm (Pr (v, - Vw,w) + Pr Y (w - Vo, w) — Ra(f, w?))
+52Re (G)‘, 'w)
and
2¢
2 wl} + enl| Vel
= —¢’plm (Pr (v, - Vw,w) + Pr ! (w - Vo, w) — Ra(6, w?)) (3.10)

—enRe (Pr(w - Vo, w) — Ra(6,w®))
+&2Im (G, w).

By Proposition 3.5, we see from (3.9) and (3.10) that
== — <)l
Pr 2

n - _
< (&t L ten) IVl + (€ + en)Pr oo + enPr-?o.I2) ol

Rae 2||vs o
e+ e (14 2% ) (198, + R+ 0l

+e*[|Gallz/lwl2
(3.11)



and

2pum 31
—ﬁllwllg + ZIWWII%

e2uPr=?|lvs |13,

< —nPr'Re(w- Vo, w) + ( i ElulPr“IIIVvsIIoo) w2

Rae 2)|vs oo
el + ) (14 22 ) (196, + R+ )

+el|Gallzllw]l2-

(3.12)

It then follows from (3.11) and (3.12) that there exists a positive constant c, such
that if 0 < € < 1, then

,32
Tolwll3 + g5 IVel3 < Cor(1Fllamcapxse)ele (3.13)

Re(W-VV, W) 5, _Pr
=7

for —c; < p < . and n > 7, provided that infwe(Hg S WAO VW

This completes the proof.

Theorem 2.2 now follows by taking n. = %, u. = 2b; and ¢ > 0 sufficiently
small.
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