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Abstract

We prove some criteria for the convergence of weak solutions of the

2\mathrm{D} incompressible Navier‐Stokes equations with Navier slip boundary
conditions to a strong solution of incompressible Euler. The slip rate

depends on a power of the Reynolds number, and it is increasingly
apparent that the power 1 may be critical for L^{2} convergence, as

hinted at in [14].

1 The inviscid limit problem with Navier‐slip
boundary conditions

In this brief note, we shed some light on how some well‐known criteria for

L^{2} convergence in the inviscid limit for incompressible fluids work when the

boundary condition is changed. We consider the two‐dimensional Navier‐

Stokes equation on the half‐plane  $\Omega$=\{(x, y)\in \mathbb{R}^{2} |y>0\},

\left\{\begin{array}{l}
\partial_{t}u^{ $\epsilon$}+u^{ $\epsilon$}\cdot\nabla u^{ $\Xi$}-\mathrm{e} $\Delta$ u^{ $\Xi$}+\nabla p^{ $\epsilon$} = 0\\
\mathrm{d}\mathrm{i}\mathrm{v}u^{ $\epsilon$} = 0\\
u^{ $\epsilon$}|_{t=0} = u_{0)}^{ $\epsilon$}
\end{array}\right. (1)
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and study the inviscid limit problem. This involves taking  $\epsilon$\rightarrow 0 , and the

question of whether the solutions of (1) converge towards a solution of the

formal limit, the Euler equation,

\left\{\begin{array}{l}
\partial_{t}v+v\cdot\nabla v+\nabla q = 0\\
\mathrm{d}\mathrm{i}\mathrm{v}v = 0\\
v|_{t=0} = v_{0},
\end{array}\right. (2)

in presence of a boundary is one of the most challenging in fluid dynamics.
This is because the boundary conditions required for (2) are different to

those for (1). In the inviscid model, there only remains the non‐penetration
condition

v\cdot n|_{y=0}=v_{2}|_{y=0}=0 , (3)
hence inviscid fluids are allowed to slip freely along the boundary, while

viscous fluids adhere to it when the most commonly used boundary condition,
homogeneous Dirichlet,

u^{ $\epsilon$}|_{y=0}=0 , (4)

is used. As  $\epsilon$ goes to zero, solutions of the Navier‐Stokes equation are ex‐

pected to satisfy the following ansatz,

 u^{ $\epsilon$}(t, x, y)=v(t, x, y)+V^{ $\epsilon$}(t, x, \displaystyle \frac{y}{\sqrt{ $\epsilon$}}))
where V^{ $\epsilon$} is a boundary layer, such that V^{ $\epsilon$}(t, x, 0)=-v(t, x, 0) .

However, the validity of such an expansion is hard to prove, and, in some

cases, such as when v is a linearly unstable 1\mathrm{D} shear flow, it is wrong in the

Sobolev space H^{1}
, as shown by E. Grenier [3]. General validity results require

considerable regularity on the data. M. Sammartino and R. Caflisch proved
the stability of Prandtl boundary layers in the analytic case [15], and the first

author [9] proved in the case when the initial Euler vorticity is located away

from the boundary. Recently, this has been extended to Gevrey framework

by the first author in collaboration with D. Gérard‐Varet and N. Masmoudi

[2]. Precisely, in [2] a Gevrey stability of shear boundary layer is proved when

the shear boundary layer profile satisfies some monotonicity and concavity
conditions. One of the main objectives there is the system

\left\{\begin{array}{l}
\partial_{t}v^{ $\epsilon$}- $\epsilon \Delta$ v^{ $\epsilon$}+V^{ $\Xi$}\partial_{x}v^{ $\epsilon$}+v_{2}^{ $\epsilon$}\partial_{y}V^{ $\epsilon$}\mathrm{e}_{1}+\nabla p^{ $\epsilon$} = -v^{ $\epsilon$}\cdot\nabla v^{ $\Xi$},\\
\mathrm{d}\mathrm{i}\mathrm{v}v^{ $\epsilon$} = 0,\\
v^{ $\epsilon$}|_{y=0}=0, v^{ $\epsilon$}|_{t=0} = v_{0}^{ $\Xi$}.
\end{array}\right. (5)

Here V^{ $\epsilon$}(y)=U^{E}(y)-U^{E}(0)+U(\displaystyle \frac{y}{\sqrt{ $\epsilon$}}) , and (U^{E}, 0) describes the outer shear

flow and U is a given boundary layer profile of shear type. In [2] the data is
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assumed to be periodic in x
, and the following Gevrey class is introduced:

X_{ $\gamma$,K} = \{f\in L_{ $\sigma$}^{2}( $\Gamma$\times \mathbb{R}_{+}) |

\displaystyle \Vert f\Vert_{X_{ $\gamma$,K}}=\sup_{n\in \mathbb{Z}}(1+|n|)^{10}e^{K|n|^{ $\gamma$}}\Vert\hat{f}(n, \cdot)\Vert_{L_{y}^{2}(\mathbb{R}_{+})}<\infty\}.
(6)

Here K > 0,  $\gamma$ \geq  0
,

and \hat{f}(n, y) is the nth Fourier mode of f y). The

key concavity condition on U and the regularity conditions on U^{E} and U are

stated as follows:

(A1) U^{E}, U\in BC^{2}(\mathbb{R}_{+}) , and \displaystyle \sum_{k=0,12},\sup_{\mathrm{Y}\geq 0}(1+\mathrm{Y}^{k})|\partial_{\mathrm{Y}}^{k}U(\mathrm{Y})|<\infty.
(A2) \partial_{\mathrm{Y}}U>0 for \mathrm{Y}\geq 0, U(0)=0 , and \displaystyle \lim_{Y\rightarrow\infty}U(\mathrm{Y})=U^{E}(0) .

(A3) There is M>0 such that -M\partial_{\mathrm{Y}}^{2}U\geq(\partial_{\mathrm{Y}}U)^{2} for Y\geq 0.

Theorem 1 ([2]). Assume that (\mathrm{A}1)-(\mathrm{A}3) hold. Let K > 0,  $\gamma$ \in [\displaystyle \frac{2}{3} , 1].
Then there exist C, T, K', N>0 such that for all small  $\epsilon$ and  v_{0}^{ $\epsilon$}\in X_{ $\gamma$,K} with

\Vert v_{0}^{ $\epsilon$}\Vert_{X_{ $\gamma$,K}}\leq$\epsilon$^{N} , the system (5) admits a unique solution  v^{ $\epsilon$}\in C([0, T];L_{ $\sigma$}^{2}( $\Gamma$\times
\mathbb{R}_{+})) satisfying the estimate

\displaystyle \sup_{0\leq t\leq T}(\Vert v^{ $\epsilon$}(t)\Vert_{X_{ $\gamma$,K}}, +( $\epsilon$ t)^{\frac{1}{4}}\Vert v^{ $\epsilon$}(t)\Vert_{L}\infty+( $\epsilon$ t)^{\frac{1}{2}}\Vert\nabla v^{ $\epsilon$}(t)\Vert_{L^{2}}) \leq C\Vert v_{0}^{ $\epsilon$}\Vert_{X_{ $\gamma$,K}}.

(7)

In Theorem 1 the condition  $\gamma$\geq \displaystyle \frac{2}{3} is optimal at least in the linear level,
due to the Tollmien‐Schlichting instability; see Grenier, Guo, and Nguyen
[4]. More general results, including the case when U^{E} and U depend also on

the time variable, can be obtained; see [2] for details.

The situation remains delicate when the Dirichlet boundary condition (4)
is replaced by (3) plus a mixed boundary condition such as the Navier friction

boundary condition,
\partial_{y}u_{1}^{ $\epsilon$}|_{y=0}=a^{ $\epsilon$}u_{1}^{ $\epsilon$}|_{y=0} . (8)

This was derived by H. Navier in the XIXth century [12] by taking into

account the molecular interactions with the boundary. To be precise, the

Navier condition expresses proportionality between the tangential part of

the normal stress tensor and the tangential velocity, thus prescribing how

the fluid may slip along the boundary. As indicated, the coefficient a^{ $\epsilon$} may

depend on the viscosity. Typically, we will look at

a^{ $\epsilon$}=\displaystyle \frac{a}{$\epsilon$^{ $\beta$}}) (9)
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with a>0 and  $\beta$\geq 0 . A previous paper by the second author [14] showed

that nonlinear instability remains present for this type of boundary condition,
in particular for the case of boundary‐layer‐scale data,  $\beta$=1/2 ,

where there

is strong nonlinear instability in L^{\infty} in the inviscid limit. However, the same

article also showed general convergence in L^{2} when  $\beta$<1.

Theorem 2 (Theorem 1.2 in [14]). Let u_{0}^{ $\epsilon$} \in  L^{2}( $\Omega$) and u^{ $\epsilon$} be the Leray
solution of (1) with initial data u_{0\mathrm{z}}^{ $\epsilon$} satisfying the Navier boundary conditions

(3) and (8), with a^{ $\epsilon$} as in (9) with  $\beta$ < 1 . Let v_{0} \in  H^{S}( $\Omega$) with s > 2_{f} so

that v is a global strong solution of the Euler equation (2)-(3) ,
and assume

that u_{0}^{ $\epsilon$} converges to v_{0} in L^{2}( $\Omega$) as  $\epsilon$\rightarrow 0 . Then, for any T> 0 , we have

the following convergence result:

\displaystyle \sup_{t\in[0,T]}\Vert u^{ $\epsilon$}(t)-v(t)\Vert_{L^{2}( $\Omega$)}=\mathcal{O}($\epsilon$^{(1- $\beta$)/2}) .

This theorem is proved using elementary energy estimates and Grönwall�s

lemma, and it extended results by D. Iftimie and G. Planas [5], and X‐P.

Wang, Y‐G. Wang and Z. Xin [18]. It is worth noting, on one hand, that

convergence breaks down for  $\beta$ = 1
, and on the other, that a comparable

result is impossible to achieve in the no‐slip case, since the boundary term

\displaystyle \int_{\partial $\Omega$}\partial_{y}u_{1}^{ $\epsilon$}v_{1}dx cannot be dealt with.

The first remark is important since  $\beta$ = 1 is what we call the �phys‐
ical� case, because this was the dependence on the viscosity predicted by
Navier in [12], and because it is indeed the Navier condition that one obtains

when deriving from kinetic models with a certain scaling (see [10] for the

Stokes‐Fourier system, and recently [6] extended the result to Navier‐Stokes‐

Fourier). One purpose of this work is therefore to further explore whether

or not  $\beta$= 1 is effectively critical for convergence. By using the L^{2} conver‐

gence rate and interpolation, we can obtain a range of numbers p for which

convergence in Ii^{p}( $\Omega$) occurs depending on  $\beta$ , which also breaks down when

 $\beta$=1 . The following extends Theorem 2.

Theorem 3. Let u_{0}^{ $\epsilon$}\in L^{2}( $\Omega$) and u^{ $\epsilon$} be the Leray solution of (1) with initial

data u_{0}^{ $\epsilon$} , satisfying the Navier boundary conditions (3) and (8), with a^{ $\epsilon$} as

in (9) with  $\beta$ < 1 . Let v_{0} \in  H^{s}( $\Omega$) with s > 2
,

so that v is a global strong
solution of the Euler equation (2) -(3) , and assume that u_{0}^{ $\epsilon$} converges to v_{0} in

L^{2}( $\Omega$) as  $\epsilon$ \rightarrow  0 . Then, for any T> 0
,

we have the following convergence

result:

\displaystyle \lim_{ $\epsilon$\rightarrow 0_{t}}\sup_{\in[0,T]}\Vert u^{ $\epsilon$}(t)-v(t)\Vert_{Lp( $\Omega$)}=0 if 2\displaystyle \leq p<\frac{2(1+3 $\beta$)}{5 $\beta$-1}.
The convergence rate is $\epsilon$^{(1- $\beta$)/2-(p-2)(1+3 $\beta$)/4p}.
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On the second remark, relating to the Dirichlet case, even if no general
result like Theorem 2 is known, there are necessary and sufficient criteria for

L^{2} convergence. We sum two of these up in the following statement.

Theorem 4. Let u_{0}^{\in}\in L^{2}( $\Omega$) and u^{ $\epsilon$} be the Leray solution of (1) with initial

data u_{0}^{ $\epsilon$} , satisfying the Dirichlet boundary condition (4). Let v_{0}\in H^{S}( $\Omega$) with

s>2_{f} so that v is a global strong solution of the Euler equation (2)-(3) ,
and

assume that u_{0}^{ $\epsilon$} converges to v_{0} in L^{2}( $\Omega$) as  $\epsilon$\rightarrow 0 . Then, for any T>0 ,
the

following propositions are equivalent:

\mathrm{a}. \displaystyle \lim \displaystyle \sup \Vert u^{ $\epsilon$}(t)-v(t)\Vert_{L^{2}( $\Omega$)}=0 ;
\in\rightarrow 0_{t\in[0,T]}

\mathrm{b}. \displaystyle \lim_{ $\epsilon$\rightarrow 0}\sqrt{ $\epsilon$}\int_{0}^{T}\Vert\partial_{y}u_{1}^{ $\epsilon$}(t)\Vert_{L^{2}($\Gamma$_{ $\kappa \Xi$})} dt=0 ,
where $\Gamma$_{ $\kappa \epsilon$}=\{(x, y)\in $\Omega$ |y< $\kappa \epsilon$\} for

 $\kappa$ smaller than some  $\kappa$_{0}\leq 1 (a variant of T. Kato Ĩ71);

\mathrm{c}. \displaystyle \lim_{ $\epsilon$\rightarrow 0} $\epsilon$\int_{0}^{T}\int_{\partial $\Omega$}(v_{1}\partial_{y}u_{1}^{ $\epsilon$})|_{y=0}dxdt=0 (S. Matsui ÍllJ, Theorem 3).

Regarding the key statement \mathrm{b} . in Theorem 4, the original condition

found by Kato [7] was

\displaystyle \lim_{ $\epsilon$\rightarrow 0} $\epsilon$\int_{0}^{T}\Vert\nabla u^{ $\epsilon$}(t)\Vert_{L^{2}($\Gamma$_{ $\kappa \epsilon$})}^{2}dt=0 . (10)

This criterion has been refined by several authors: R. Temam and X. Wang
[16], X. Wang [17], J. P. Kelliher [8], and P. Constantin, I. Kukavica, and V.

Vicol [1]. In fact, the argument of [7] provides the inequality

\displaystyle \lim_{ $\epsilon$\rightarrow 0}\sup_{t}\sup_{\in[0,T]}\Vert u^{ $\epsilon$}(t)-v(t)\Vert_{L^{2}( $\Omega$)}^{2}

\displaystyle \leq c\infty|\int_{0}^{T}\langle\partial_{y}u_{1}^{ $\epsilon$} ,
rot \tilde{V}^{ $\kappa \epsilon$}\rangle_{L^{2}( $\Omega$)}dt| .

(11)

Here C is a numerical constant and \tilde{V}^{ $\kappa \epsilon$}(t, x, y) = \displaystyle \tilde{V}(t, x, \frac{y}{ $\kappa \epsilon$}) , with a suffi‐

ciently small  $\kappa$\in (0,1], is the boundary layer corrector used in [7]. Indeed,
Kato�s result relied on the construction of a boundary layer at a different

scale than in the ansatz presented earlier. It involved an expansion like this,

u^{ $\epsilon$}(t, x, y)=v(t, x, y)+\displaystyle \tilde{V}(t, x, \frac{y}{ $\kappa \epsilon$}) ,

thus convergence in the Dirichlet case is governed by the vorticity�s behaviour

in a much thinner layer than the physical boundary layer. The direction from
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\mathrm{b} . to \mathrm{a} . follows from (11). Meanwhile, Matsui�s result is proved using the

energy estimates.

We will show that Theorem 4 extends �as is� to the Navier boundary
condition case.

Theorem 5. Let u_{0}^{ $\epsilon$}\in L^{2}( $\Omega$) and u^{ $\epsilon$} be the Leray solution of (1) with initial

data u_{0}^{ $\epsilon$} , satisfying the Navier boundary conditions (3) and (8) with a^{ $\epsilon$}\geq 0.
Let v_{0}\in H^{s}( $\Omega$) with s>2 ,

so that v is a global strong solution of the Euler

equation (2) -(3) , and assume that u_{0}^{ $\epsilon$} converges to v_{0} in L^{2}( $\Omega$) as  $\epsilon$ \rightarrow  0.

Then, for any T > 0 , convergence in L^{\infty}(0, T;L^{2}( $\Omega$)) as in Theorem 2 is

equivalent to the same Kato and Matsui criteria in the sense as in Theorem

4.

Indeed, we will show that (11) is valid also for the case of Navier boundary
conditions (3) and (8). Since the right‐hand side of (11) is bounded from

above by

Ce^{2\int_{0}^{T}\Vert\nabla v\Vert_{L^{\infty}( $\Omega$)}dt}\displaystyle \lim_{ $\epsilon$\rightarrow}\sup_{0}$\kappa$^{-\frac{1}{2}}$\epsilon$^{\frac{1}{2}}\int_{0}^{T}\Vert\partial_{y}u_{1}^{ $\epsilon$}\Vert_{L^{2}( $\Omega$)}dt
\leq Ce^{2\int_{0}^{T}\Vert\nabla v\Vert_{L( $\Omega$)}dt}$\kappa$^{-\frac{1}{2}\lim_{ $\epsilon$\rightarrow}\sup_{0}}\infty\Vert u_{0}^{ $\epsilon$}\Vert_{L^{2}( $\Omega$)}T^{\frac{1}{2}}.

As a direct consequence, we have

Corollary 1. Under the assumptions of Theorem 4 or 5, we have

\displaystyle \lim_{ $\epsilon$\rightarrow 0}\sup_{t}\sup_{\in[0,T]}\Vert u^{ $\epsilon$}(t)-v(t)\Vert_{L^{2}( $\Omega$)}\leq Ce^{\int_{0}^{T}\Vert\nabla v\Vert_{L^{\infty}( $\Omega$)}dt}\Vert v_{0}\Vert_{2}^{\frac{1}{L2}}{}_{( $\Omega$)}T^{\frac{1}{4}} , (12)

for some numerical constant C.

Estimate (12) shows that the permutation of limits

lim \displaystyle \lim\sup \displaystyle \Vert u^{ $\epsilon$}(t)-v(t)\Vert_{L^{2}( $\Omega$)}=\lim\lim \displaystyle \sup \Vert u^{ $\epsilon$}(t)-v(t)\Vert_{L^{2}( $\Omega$)}
T\rightarrow 0 $\Xi$\rightarrow 0_{t\in[0,T]}  $\epsilon$\rightarrow 0T\rightarrow 0_{t\in[0,T]}

is justified, and that this limit is zero, which is nontrivial since  $\epsilon$\rightarrow 0 is a

singular limit. In particular, at least for a short time period but independent
of  $\epsilon$ , the large part of the energy of  u^{ $\epsilon$}(t) is given by the Euler flow v(t) .

Initially, we hoped to get a result with a correcting layer which could be

more tailor‐made to fit the boundary condition, but it appears that Kato�s

Dirichlet corrector yields the strongest statement. Whenever we change the

 $\epsilon$‐scale layer�s behaviour at the boundary, we end up having to assume both

Kato�s criterion and another at the boundary. So this result is actually proved
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identically to Kato�s original theorem, and we will explain why in section 3.

We will also see that Matsui�s criterion extends with no difficulty, but it has

more readily available implications.
Indeed, the Navier boundary condition gives information on the value of

\partial_{y}u_{1}^{ $\epsilon$} at the boundary. Assuming that a^{ $\epsilon$}=a$\epsilon$^{- $\beta$} as in (9), we see that

 $\epsilon$(v_{1}\partial_{y}u_{1}^{ $\epsilon$})|_{y=0}=$\epsilon$^{1- $\beta$}(v_{1}u_{1}^{ $\epsilon$})|_{y=0}.

Simply applying the Cauchy‐Schwarz inequality to the integral in the Matsui

criterion and using the energy inequality of the Euler equation, we have

 $\epsilon$\displaystyle \int_{0}^{T}\'{I}_{\partial $\Omega$}(v_{1}\partial_{y}u_{1}^{ $\epsilon$})|_{y=0}dxdt\leq$\epsilon$^{1- $\beta$}\Vert v_{0}\Vert_{L^{2}( $\Omega$)}\int_{0}^{T}\Vert u_{1}^{ $\epsilon$}(t)|_{y=0}\Vert_{L^{2}(\partial $\Omega$)} dt . (13)

As the energy inequality for Leray solutions of the Navier‐Stokes equation
with the Navier boundary condition shows that

$\epsilon$^{1- $\beta$}\displaystyle \int_{0}^{T}\Vert u_{1}^{ $\epsilon$}(t)\Vert_{L^{2}(\partial $\Omega$)}^{2} dt\leq\Vert u^{ $\epsilon$}(0)\Vert_{L^{2}( $\Omega$)}^{2},
the right‐hand side of (13) behaves like C$\epsilon$^{(1- $\beta$)/2} , and thus converges to zero

when  $\beta$ < 1 . The Matsui criterion therefore confirms Theorem 2, without

being able to extend it to the physical case. Once again, the physical slip
rate appears to be critical.

2 Proof of L^{p} convergence

To prove Theorem 3, we rely on a priori estimates in L^{\infty} and interpolation.
First, since the vorticity, $\omega$^{ $\epsilon$}=\partial_{x}u_{2}^{ $\epsilon$}-\partial_{y}u_{1}^{ $\epsilon$} , satisfies a parabolic transport‐

diffusion equation, the maximum principle shows that

\displaystyle \Vert$\omega$^{ $\epsilon$}\Vert_{L^{\infty}((0,T)\mathrm{x} $\Omega$)}\leq\max(\Vert$\omega$^{ $\epsilon$}|_{t=0}\Vert_{L^{\infty}( $\Omega$)}, a$\epsilon$^{- $\beta$}\Vert u_{1}^{ $\epsilon$}|_{y=0}\Vert_{L^{\infty}((0,T)\times\partial $\Omega$)}) (14)

by the Navier boundary condition (8)-(9) . To estimate u_{1}^{ $\epsilon$} on the boundary,
we use the Biot‐Savart law:

u_{1}^{ $\epsilon$}(t, x, 0)=\displaystyle \frac{1}{2 $\pi$}\int_{ $\Omega$}\frac{y'}{|x-x'|^{2}+|y'|^{2}}$\omega$^{ $\epsilon$}(t, x', y')dx'dy'.
Let us denote  $\kappa$(x, x', y') the kernel in this formula. We split the integral on

y' into two parts, \displaystyle \int_{0}^{K} and \displaystyle \int_{K}^{+\infty} with K to be chosen. On one hand, we have

|\displaystyle \int_{0}^{K}\int_{\mathbb{R}}\frac{y'}{|x-x|^{2}+|y'|^{2}}$\omega$^{ $\epsilon$}(t, x', y') dx�dy� | \leq C_{0}K\Vert$\omega$^{ $\epsilon$}\Vert_{L^{\infty}((0,T)\times $\Omega$)} (15)
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by integrating in the variable x' first and recognising the derivative of the

arctangent function.

On the other, we integrate by parts, integrating the vorticity $\omega$^{ $\epsilon$}
,

so

\displaystyle \int_{K}^{+\infty}\int_{\mathbb{R}} $\kappa$(x, x', y')$\omega$^{ $\epsilon$}(t, x', y')dx'dy'
=-\displaystyle \int_{K}^{+\infty}\int_{\mathbb{R}}u^{ $\epsilon$}\cdot\nabla_{x,y}^{\perp}, $\kappa$ dx�dy� +\displaystyle \int_{\mathbb{R}}( $\kappa$ u_{1}^{ $\epsilon$})|_{y'=K}dx'.

The first two terms are easily controlled using the Cauchy‐Schwarz inequality:
\Vert u^{ $\epsilon$}(t)\Vert_{L^{2}} is uniformly bounded by the energy estimate for weak solutions of

Navier‐Stokes, while quick explicit computations show that \Vert\nabla_{x',y'} $\kappa$\Vert_{L^{2}} \leq

 C/K . Likewise, in the boundary term, the kernel is also \mathcal{O}(1/K) in L^{2}(\mathbb{R}) ,

but we must now control the L^{2} norm of the trace of u_{1}^{ $\epsilon$} on the set \{y'=K\} :

by the trace theorem and interpolation, we have

\Vert u_{1}^{ $\epsilon$}\Vert_{L^{2}(\{y'=K\})}\leq\sqrt{\Vert u_{1}^{ $\epsilon$}\Vert_{L^{2}( $\Omega$)}\Vert$\omega$^{ $\Xi$}\Vert_{L^{2}( $\Omega$)}},
and both of these are uniformly bounded. Hence, in total,

\displaystyle \Vert$\omega$^{ $\epsilon$}\Vert_{L\infty((0,T)\mathrm{x} $\Omega$)}\leq\Vert$\omega$^{ $\epsilon$}(0)\Vert_{L\infty( $\Omega$)}+a$\epsilon$^{- $\beta$}C_{0}K\Vert$\omega$^{ $\epsilon$}\Vert_{L^{\infty}((0,T)\times $\Omega$)}+a$\epsilon$^{- $\beta$}\frac{C}{K}.
By choosing K\sim$\epsilon$^{ $\beta$} so that a$\epsilon$^{- $\beta$}C_{0}K< \displaystyle \frac{1}{2} , we can move the second term on

the right‐hand side to the left, and we conclude that, essentially,

\Vert$\omega$^{ $\epsilon$}\Vert_{L^{\infty}((0,T)\mathrm{x} $\Omega$)}\leq C$\epsilon$^{-2 $\beta$}.
Using the Gagliardo‐Nirenberg interpolation inequality from [13], we can

now write that, for p\geq 2,

\Vert u^{ $\epsilon$}(t)-v(t)\Vert_{L^{\mathrm{p}}( $\Omega$)}\leq C\Vert u^{ $\epsilon$}(t)-v(t)\Vert_{L^{2}}^{1-q}\Vert \mathrm{r}\mathrm{o}\mathrm{t}(u^{ $\epsilon$}-v)(t)\Vert_{L^{\infty}}^{q},
where q= \displaystyle \frac{p-2}{2p} . By Theorem 2, the first term of this product converges to

zero with a rate $\epsilon$^{(1-q)(1- $\beta$)/2} when  $\beta$<1 ,
while we have just shown that the

second behaves like $\epsilon$^{-2q $\beta$} , so the bound is

\Vert u^{ $\epsilon$}(t)-v(t)\Vert_{L^{p}( $\Omega$)}\leq C$\epsilon$^{(1- $\beta$)/2-q(1+3 $\beta$)/2}
It remains to translate this into a range of numbers p such that this

quantity converges, which happens when q < \displaystyle \frac{1- $\beta$}{1+3 $\beta$} . Recalling the value of

q ,
we get that weak solutions of the Navier‐Stokes equation converge in Ư

towards a strong solution of the Euler equation if

2\displaystyle \leq p<\frac{2(1+3 $\beta$)}{5 $\beta$-1},
and the right‐hand bound is equal to 2 when  $\beta$=1.
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3 About the Kato and Matsui criteria

The starting point for both criteria is the weak formulation for solutions of

the Navier‐Stokes equation.

Notations. IfE is a function space on  $\Omega$
,

we denote  E_{ $\sigma$} the set of 2D vector‐

valued functions in E that are divergence free and tangent to the boundary.
Recall that, through the rest of the paper, a^{ $\epsilon$} is a non‐negative function of
 $\epsilon$>0 (not necessarily the same form as in (9)).

Definition. A vector field uô : [0, T] \times $\Omega$ \rightarrow \mathbb{R}^{2} is a Leray solution of the

Navier‐Stokes equation (1) with Navier boundary conditions (3)-(8) if:

1. u^{ $\epsilon$}\in \mathcal{C}_{w} ([0, T], L_{ $\sigma$}^{2})\cap L^{2}([0, T], H_{ $\sigma$}^{1}) for every T>0,

2. for every  $\varphi$\in H^{1}([0, T], H_{ $\sigma$}^{1}) ,
we have

\displaystyle \{u^{ $\epsilon$}(T),  $\varphi$(T)\rangle_{L^{2}( $\Omega$)}-\int_{0}^{T}\langle u^{ $\epsilon$}, \partial_{t} $\varphi$\}_{L^{2}( $\Omega$)}+ $\epsilon$ a^{ $\epsilon$}\int_{0}^{T}\int_{\partial $\Omega$}(u_{1}^{ $\epsilon$}$\varphi$_{1})|_{y=0}
+ $\epsilon$\displaystyle \int_{0}^{T}\{$\omega$^{ $\epsilon$} , rot  $\varphi$\}_{L^{2}( $\Omega$)}-\'{I}_{0}^{T}\langle u^{ $\epsilon$}\otimes u^{ $\epsilon$}, \nabla $\varphi$\rangle_{L^{2}( $\Omega$)}=\langle u^{ $\epsilon$}(0) ,  $\varphi$(0)\}_{L^{2}( $\Omega$)},

(16)

3. and, for every t\geq 0, u^{ $\epsilon$} satisfies the following energy equality (in 3D_{f}
this is an inequality):

\displaystyle \frac{1}{2}\Vert u^{\mathrm{e}}(t)\Vert_{L^{2}( $\Omega$)}^{2}+\mathrm{E}a^{ $\epsilon$}\int_{0}^{t}\int_{\partial $\Omega$}(|u_{1}^{ $\epsilon$}|^{2})|_{y=0}+ $\epsilon$\int_{0}^{t}\Vert$\omega$^{ $\epsilon$}\Vert_{L^{2}( $\Omega$)}^{2}=\frac{1}{2}\Vert u^{ $\epsilon$}(0)\Vert_{L^{2}( $\Omega$)}^{2} .

(17)

When formally establishing the weak formulation (16), recall that

-\displaystyle \int_{ $\Omega$} $\Delta$ u^{ $\epsilon$} $\varphi$=\'{I}_{ $\Omega$} ( $\omega$^{ $\epsilon$} . rot  $\varphi$-\nabla \mathrm{d}\mathrm{i}\mathrm{v}u^{ $\epsilon$}\cdot $\varphi$ ) +\displaystyle \int_{\partial $\Omega$}($\omega$^{ $\epsilon$} $\varphi$\cdot n^{\perp})|_{y=0},
where n^{\perp} = (n_{2}, -n_{1}) is orthogonal to the normal vector n . In the flat

boundary case with condition (8) on the boundary, we get the third term of

(16). The differences with the Dirichlet case are two‐fold: first, the class of

test functions is wider (in the Dirichlet case, the test functions must vanish

on the boundary), and second, there is a boundary integral in (16) and (17)
due to u_{1}^{ $\epsilon$} not vanishing there.

We will not go into great detail for the proof of Theorem 5, since it is

virtually identical to Theorem 4. In particular, Matsui�s criterion is shown
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with no difficulty, as only the boundary term in (16), with  $\varphi$ =u^{ $\epsilon$}-v ,
is

added in the estimates, and this is controlled as a part of the integral I3 in

equality (4.2) in [11], page 167. This proves the equivalence \mathrm{a}.\Leftrightarrow \mathrm{c}.

We take more time to show the equivalence \mathrm{a}.\Leftrightarrow \mathrm{b}. , Kato�s criterion. In

[7], Kato constructed a divergence‐free corrector \tilde{V}^{ $\kappa \epsilon$} , acting at a range \mathcal{O}( $\epsilon$)
of the boundary and such that v|_{y=0} = \tilde{V}^{ $\kappa \epsilon$}|_{y=0} , and used  $\varphi$ =v-\tilde{V}^{ $\kappa \Xi$} as

a test function in (16) to get the desired result. We re‐run this procedure,
which finally leads to the identity

\{u^{ $\epsilon$}(t), v(t)-\tilde{V}^{ $\kappa \epsilon$}(t)\}_{L^{2}( $\Omega$)}

=\displaystyle \langle u_{0)}^{ $\epsilon$:}v_{0}\rangle_{L^{2}( $\Omega$)}-\{u_{0}^{ $\epsilon$}, \tilde{V}^{ $\kappa \epsilon$}(0)\rangle_{L^{2}( $\Omega$)}-\int_{0}^{t}\{u^{ $\epsilon$}, \partial_{t}\tilde{V}^{ $\kappa \epsilon$}\rangle_{L^{2}( $\Omega$)}
+\displaystyle \int_{0}^{t}\langle u^{ $\epsilon$}-v, (u^{ $\epsilon$}-v)\displaystyle \cdot\nabla v\rangle_{L^{2}( $\Omega$)}- $\epsilon$\int_{0}^{t}\{$\omega$^{ $\epsilon$} , rot v\}_{L^{2}( $\Omega$)}

(18)

+ $\epsilon$\displaystyle \int_{0}^{t}\{$\omega$^{ $\epsilon$} , rot \displaystyle \tilde{V}^{ $\kappa \epsilon$}\rangle_{L^{2}( $\Omega$)}-\int_{0}^{t}\{u^{ $\epsilon$}\otimes u^{ $\epsilon$:}, \nabla\tilde{V}^{\hslash $\zeta$}\}_{L^{2}( $\Omega$)}.
In deriving this identity, one has to use the Euler equations which v satisfies

and also \langle v, (u^{ $\epsilon$}-v)\cdot\nabla v\}_{L^{2}( $\Omega$)}=0 . On the other hand, we have from (17),

\Vert u^{ $\epsilon$}(t)-v(t)\Vert_{L^{2}( $\Omega$)}^{2}=\Vert u^{ $\epsilon$}(t)\Vert_{L^{2}( $\Omega$)}^{2}+\Vert v(t)\Vert_{L^{2}( $\Omega$)}^{2}-2\{u^{ $\epsilon$}(t) , v(t)-\tilde{V}^{ $\kappa \epsilon$}\rangle_{L^{2}( $\Omega$)}
-2\{u^{ $\epsilon$}(t) , \tilde{V}^{ $\kappa \epsilon$}(t)\rangle_{L^{2}( $\Omega$)}

=-2 $\epsilon$ a^{ $\epsilon$}\displaystyle \int_{0}^{t}\Vert u_{1}^{ $\epsilon$}\Vert_{L^{2}(\partial $\Omega$)}^{2}-2 $\epsilon$\int_{0}^{t}\Vert$\omega$^{ $\epsilon$}\Vert_{L^{2}( $\Omega$)}^{2}
+\Vert u_{0}^{ $\epsilon$}\Vert_{L^{2}( $\Omega$)}^{2}+\Vert v_{0}\Vert_{L^{2}( $\Omega$}^{2}-2\{u^{\mathrm{e}}(t),\tilde{V}^{ $\kappa \epsilon$}(t)\}_{L^{2}( $\Omega$)} (19)

-2\{u^{ $\epsilon$}(t) , v(t)-\tilde{V}^{ $\kappa \epsilon$}(t)\rangle_{L^{2}( $\Omega$)}

Combining (18) with (19), we arrive at the identity which was essntially used
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reached by Kato in [7] for the no‐slip case:

\Vert u^{ $\epsilon$}(t)-v(t)\Vert_{L^{2}( $\Omega$)}^{2}

=-2 $\epsilon$ a^{ $\epsilon$}\displaystyle \int_{0}^{i}\Vert u_{1}^{ $\epsilon$}\Vert_{L^{2}(\partial $\Omega$)}^{2}-2 $\epsilon$\'{I}_{0}^{t}\Vert$\omega$^{ $\epsilon$}\Vert_{L^{2}( $\Omega$)}^{2}+\Vert u_{0}^{ $\epsilon$}-v_{0}\Vert_{L^{2}( $\Omega$)}^{2}
-2\{u^{ $\epsilon$}(t), \tilde{V}^{ $\kappa \epsilon$}(t)\}_{L^{2}( $\Omega$)}+2\langle u_{0}^{ $\epsilon$}, \tilde{V}^{ $\kappa \epsilon$}(0)\rangle_{L^{2}( $\Omega$)}

+2\displaystyle \int_{0}^{t}\{u^{ $\epsilon$}, \partial_{t}\tilde{V}^{ $\kappa \epsilon$}\}_{L^{2}( $\Omega$)}+2 $\epsilon$\int_{0}^{t}\{$\omega$^{ $\epsilon$} ,
rot v\}_{L^{2}( $\Omega$)} (20)

-2\displaystyle \int_{0}^{t}\{u^{ $\epsilon$}-v, (u^{ $\epsilon$}-v)\cdot\nabla v\}_{L^{2}( $\Omega$)}
+2\displaystyle \int_{0}^{t}\{u^{ $\epsilon$}\otimes u^{ $\epsilon$}, \nabla\tilde{V}^{ $\kappa \epsilon$}\}_{L^{2}( $\Omega$)}-2 $\epsilon$\int_{0}^{t}\{$\omega$^{ $\epsilon$} , rot \tilde{V}^{ $\kappa \epsilon$}\rangle_{L^{2}( $\Omega$)}.

Let us run down the terms in this equality. The first line is comprised of

negative terms and the initial difference, which is assumed to converge to

zero. The terms on the second and third lines of (20) tend to zero as  $\epsilon$\rightarrow 0

with the order \mathcal{O}(( $\kappa \epsilon$)^{\frac{1}{2}}) , since the boundary corrector has the thickness

\mathcal{O}( $\kappa \epsilon$) . Meanwhile, on the fourth line, we have

-2\displaystyle \int_{0}^{t}\langle u^{ $\epsilon$}-v, (u^{ $\epsilon$}-v)\cdot\nabla v\rangle_{L^{2}( $\Omega$)}\leq 2\int_{0}^{t}\Vert\nabla v\Vert_{L}\infty\Vert u^{ $\Xi$}-v\Vert_{L^{2}( $\Omega$)}^{2},
which will be harmless when we apply the Grönwall inequality later. For the

Navier‐slip condition case, a little adaptation is necessary to control the fifth

line,

\displaystyle \mathcal{I}:=\int_{0}^{t}\langle u^{ $\epsilon$}\otimes u^{ $\epsilon$}, \nabla\tilde{V}^{ $\kappa \epsilon$}\rangle_{L^{2}( $\Omega$)}.
In the Dirichlet case, the nonlinear integral \mathcal{I} is bounded by using the Hardy
inequality, since u^{\in} vanishes on the boundary. In our case with the Navier

condition, however, u_{1}^{ $\epsilon$} does not vanish, so we need to explain this part.

Let us first manage the terms in \mathcal{I} which involve u_{2}^{ $\epsilon$} , which does vanish

on the boundary. Recall that \tilde{V}^{ $\kappa \epsilon$} has the form \displaystyle \tilde{V}(t, x, \frac{y}{ $\kappa \epsilon$}) and is supported
in $\Gamma$_{ $\kappa \epsilon$}=\{(x, y)\in $\Omega$ | 0<y< $\kappa \epsilon$\} , so we write

|\displaystyle \int_{ $\Omega$}(u_{2}^{ $\epsilon$})^{2}\partial_{y}\tilde{V}_{2}^{ $\kappa \epsilon$}|=|\'{I}_{$\Gamma$_{ $\kappa \epsilon$}} (\displaystyle \frac{u_{2}^{ $\epsilon$}}{y})^{2}y^{2}\partial_{y}\tilde{V}_{2}^{ $\kappa \epsilon$}| \leq C\Vert y^{2}\partial_{y}\tilde{V}_{2}^{ $\kappa \epsilon$}\Vert_{L^{\infty}}\Vert\nabla u_{2}^{ $\epsilon$}\Vert_{L^{2}( $\Omega$)}^{2},
in which we have used the Hardy inequality. Note that \partial_{y}\tilde{V}^{ $\kappa \epsilon$} is of order

( $\kappa \epsilon$)^{-1} , so y^{2}\partial_{y}\tilde{V}_{2}^{ $\kappa \epsilon$} is bounded by c_{\mathrm{K} $\epsilon$} in L^{\infty}($\Gamma$_{ $\kappa \epsilon$}) , and we conclude that

|\displaystyle \int_{ $\Omega$}(u_{2}^{ $\epsilon$})^{2}\partial_{y}\tilde{V}_{2}^{ $\kappa \epsilon$}| \leq C $\kappa \epsilon$\Vert\nabla u^{ $\epsilon$}\Vert_{L^{2}( $\Omega$)}^{2} . (21)
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Here C is a numerical constant. This is what happens on all terms in [7],
and the same trick works for \displaystyle \int_{ $\Omega$}u_{1}^{ $\epsilon$}u_{2}^{ $\epsilon$}\partial_{x}\tilde{V}_{2)}^{ $\kappa$\in} this term is in fact better, since

the x‐derivatives do not make us lose uniformity in  $\epsilon$ . Using the fact that

\Vert u^{ $\epsilon$}\Vert_{L^{2}} is bounded courtesy of the energy estimate (17), we have

|\displaystyle \int_{ $\Omega$}u_{1}^{ $\epsilon$}u_{2}^{ $\epsilon$}\partial_{x}\tilde{V}_{2}^{ $\kappa \epsilon$}| \leq C $\kappa \epsilon$\Vert u^{\in}\Vert_{L^{2}( $\Omega$)}\Vert\nabla u^{ $\epsilon$}\Vert_{L^{2}( $\Omega$)}.
The term \displaystyle \int_{ $\Omega$}u_{1}^{ $\epsilon$}u_{2}^{ $\epsilon$}\partial_{y}\tilde{V}_{1}^{ $\kappa \epsilon$} is trickier, since the y‐derivative is bad for unifor‐

mity in  $\epsilon$ , and we only have one occurrence of  u_{2}^{ $\epsilon$} to compensate for it. Let

us integrate this by parts: using the divergence‐free nature of u^{ $\Xi$} , we quickly
get

\displaystyle \int_{ $\Omega$}u_{1}^{ $\epsilon$}u_{2}^{ $\epsilon$}\partial_{y}\tilde{V}_{1}^{ $\kappa \epsilon$} = \int_{ $\Omega$}u_{1}^{\in}\partial_{x}u_{1}^{ $\epsilon$}\tilde{V}_{1}^{ $\kappa \epsilon$}-\int_{ $\Omega$}\partial_{y}u_{1}^{ $\epsilon$}u_{2}^{ $\epsilon$}\tilde{V}_{1}^{ $\kappa \epsilon$}
= -\displaystyle \frac{1}{2}\int_{ $\Omega$}(u_{1}^{ $\epsilon$})^{2}\partial_{x}\tilde{V}_{1}^{ $\kappa \epsilon$}-\int_{ $\Omega$}\partial_{y}u_{1}^{ $\epsilon$}u_{2}^{ $\epsilon$}\tilde{V}_{1}^{ $\kappa \epsilon$}

The second term can be dealt with using the Hardy inequality as above, and

its estimate is identical to (21). The first term, meanwhile, is the same as

the remaining one in \mathcal{I}.

To handle \displaystyle \int_{ $\Omega$}(u_{1}^{ $\epsilon$})^{2}\partial_{x}\tilde{V}_{1}^{ $\kappa$\in} , in which no term vanishes on the boundary, we

proceed using the Sobolev embedding and interpolation. Indeed, we have

|\displaystyle \int_{ $\Omega$}(u_{1}^{ $\epsilon$})^{2}\partial_{x}\tilde{V}_{1}^{ $\kappa \epsilon$}| \leq 2\Vert(u_{1}^{ $\epsilon$}-v_{1})^{2}\Vert_{L^{2}( $\Omega$)}\Vert\partial_{x}\tilde{V}_{1}^{ $\kappa \epsilon$}\Vert_{L^{2}( $\Omega$)}+2\Vert v_{1}^{2}\Vert_{L^{2}( $\Omega$)}\Vert\partial_{x}\tilde{V}_{1}^{ $\kappa \epsilon$}\Vert_{L^{2}( $\Omega$)}
\leq C( $\kappa \epsilon$)^{\frac{1}{2}}\Vert u_{1}^{ $\epsilon$}-v_{1}\Vert_{L^{4}( $\Omega$)}^{2}+C $\kappa \epsilon$\Vert v\Vert_{L^{\infty}( $\Omega$)}^{2} . (22)

Here we have used that \Vert\tilde{V}_{1}^{ $\kappa \epsilon$}\Vert_{L^{2}( $\Omega$)}\leq C( $\kappa \epsilon$)^{\frac{1}{2}} ,
while

\Vert u_{1}^{ $\epsilon$}-v_{1}\Vert_{L^{4}( $\Omega$)}^{2}\leq C\Vert u_{1}^{ $\epsilon$}-v_{1}\Vert_{L^{2}( $\Omega$)}\Vert u_{1}^{ $\epsilon$}-v_{1}\Vert_{H^{1}( $\Omega$)},
and so, in total, we conclude that

|\mathcal{I}|\leq C( $\kappa \epsilon$\Vert\nabla u^{ $\epsilon$}\Vert_{L^{2}( $\Omega$)}^{2}+ $\kappa \epsilon$\Vert u^{ $\epsilon$}\Vert_{L^{2}( $\Omega$)}\Vert\nabla u^{ $\epsilon$}\Vert_{L^{2}( $\Omega$)}
+\Vert u^{ $\epsilon$}-v\Vert_{L^{2}( $\Omega$)}^{2}+( $\kappa \epsilon$)^{\frac{1}{2}}\Vert\nabla v\Vert_{L^{2}( $\Omega$)}\Vert u^{ $\epsilon$}-v\Vert_{L^{2}( $\Omega$)}+ $\kappa \epsilon$\Vert v\Vert_{L^{\infty}( $\Omega$)}^{2}) .

(23)

Here C is a numerical constant. Then, by virtue of the identity \Vert$\omega$^{ $\epsilon$}\Vert_{L^{2}( $\Omega$)}=
\Vert\nabla u^{ $\epsilon$}\Vert_{L^{2}( $\Omega$)} , the term C $\kappa \epsilon$\Vert\nabla u^{ $\epsilon$}\Vert_{L^{2}( $\Omega$)}^{2} in the right‐hand side of (23) can be
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absorbed by the dissipation in the first line of (20) if  $\kappa$ > 0 is suifiiciently
small.

We come to the final linear term -2 $\epsilon$\displaystyle \int_{0}^{t}\{$\omega$^{ $\epsilon$} , rot \tilde{V}^{ $\kappa \epsilon$}\rangle_{L^{2}( $\Omega$)} in the fifth line

of (20). Using $\omega$^{ $\epsilon$}=\partial_{x}u_{2}^{ $\epsilon$}-\partial_{y}u_{1)}^{ $\epsilon$} we have from the integration by parts,

-2 $\epsilon$\displaystyle \int_{0}^{\mathrm{t}}\langle$\omega$^{ $\epsilon$} , rot \tilde{V}^{ $\kappa \epsilon$}\}_{L^{2}( $\Omega$)}

=2 $\epsilon$\displaystyle \int_{0}^{t}\{\partial_{y}u_{1}^{ $\epsilon$} ,
rot \displaystyle \tilde{V}^{ $\kappa \epsilon$}\}_{L^{2}( $\Omega$)}+2 $\epsilon$\int_{0}^{t}\langle\frac{u_{2}^{ $\epsilon$}}{y}, y\partial_{x}\mathrm{r}\mathrm{o}\mathrm{t}\tilde{V}^{ $\kappa \epsilon$}\}_{L^{2}( $\Omega$)}

\displaystyle \leq 2 $\epsilon$\int_{0}^{t}\{\partial_{y}u_{1}^{ $\epsilon$} , rot \displaystyle \tilde{V}^{ $\kappa \epsilon$}\rangle_{L^{2}( $\Omega$)}+C$\kappa$^{\frac{1}{2}}$\epsilon$^{\frac{3}{2}}\int_{0}^{t}\Vert\nabla u_{2}^{ $\epsilon$}\Vert_{L^{2}( $\Omega$)}.
Collecting all these estimates, we get from (20) that for 0<t\leq T,

\Vert u^{\in}(t)-v(t)\Vert_{L^{2}( $\Omega$)}^{2}

\displaystyle \leq-2 $\epsilon$ a^{ $\epsilon$}\int_{0}^{t}\Vert u_{1}^{ $\epsilon$}\Vert_{L^{2}(\partial $\Omega$)}^{2}- $\epsilon$\int_{0}^{t}\Vert$\omega$^{ $\epsilon$}\Vert_{L^{2}( $\Omega$)}^{2}+\Vert u_{0}^{ $\epsilon$}-v_{0}\Vert_{L^{2}( $\Omega$)}^{2}
+C( $\kappa$\displaystyle \in)^{\frac{1}{2}}+\int_{0}^{t}(C_{0}+2\Vert\nabla v\Vert_{L^{\infty}( $\Omega$)})\Vert u^{ $\epsilon$}-v\Vert_{L^{2}( $\Omega$)}^{2}

(24)

+2 $\epsilon$\displaystyle \int_{0}^{t}\langle\partial_{y}u_{1}^{ $\epsilon$} ,
rot \tilde{V}^{ $\kappa \epsilon$}\rangle_{L^{2}( $\Omega$)}.

Here C depends only on T, \Vert u_{0}^{ $\epsilon$}\Vert_{L^{2}( $\Omega$)} ,
and \Vert v_{0}\Vert_{H^{S}( $\Omega$)} , while C_{0} is a numerical

constant. Inequality (24) is valid also for the no‐slip (Dirichlet) case; indeed,
we can drop the negative term -2 $\epsilon$ a^{ $\epsilon$}\displaystyle \int_{0}^{t}\Vert u_{1}^{ $\epsilon$}\Vert_{L^{2}(\partial $\Omega$)}^{2} . By applying the Grönwall

inequality and by taking the limit  $\epsilon$\rightarrow 0 , we arrive at (11). This is enough
to extend Kato�s criterion to the Navier boundary condition case; the rest

is identical to Kato�s proof in [7]. We have achieved this result by re‐using
the Dirichlet corrector because, since the test function  $\varphi$=v-\tilde{V}^{ $\kappa \epsilon$} vanishes

at y=0 ,
the boundary integral in (16) does not contribute. This does not

feel quite satisfactory. One would have hoped to get criteria by constructing
more appropriate correctors, such as one so that the total satisfies the Navier

boundary condition, but, as we have just mentioned, a boundary integral
appears and it is not clear that we can control it. In fact, this boundary
term is similar to the one in the Matsui criterion, which, as we have proved,
is equivalent to Kato�s. We observe that when considering a corrector which

does not vanish on the boundary, convergence of Navier‐Stokes solutions to

Euler solutions happens if and only if both \mathrm{b} . and \mathrm{c} . are satisfied. It appears

difficult to get refinements of criteria for L^{2} convergence in the inviscid limit

problem according to the boundary condition.
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