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Mathematical analysis of
Kuramoto-Sakaguchi equation

Hirotada HONDA (NTT Network Technology Laboratories)*!
Atusi Tani (Keio University)*?

1. Introduction

It is remarkable that theoretical investigations of weakly coupled limit cycle oscilla-
tors [10] are conducted over several research fields these days. For example, in statistical
physics, various network models are being developed, whereas in network science, syn-
chronization on random and complex networks [9] is currently attracting researchers’
attention.

As for mathematical arguments, there is study on a partial integro-differential equa-
tion called the Kuramoto-Sakaguchi equation, which describes the behavior of the prob-
ability density of the phase of oscillators as an infinite limit of population [2][3][5][6][8][12].

In this paper, we introduce some of our results concerning the solvability and the
existence of the maximal attractor and inertial set concerning the Kuramoto-Sakaguchi
equation, which describes the temporal behavior of the phase distribution of weakly
coupled oscillators. We also add some detail to the proof of the statements presented
in the previous article [8].

This paper is organized as follows. In the next section, we formulate the problem.
In Section 3, we overview the existing related results. In Section 4, we introduce
function spaces and notations used in the following discussion. In Section 5, the results
concerning the existence of the solution are stated. Then, in Section 6, we discuss the
vanishing diffusion limit. The existence of the maximal attractor and inertial set are
provided in the final section.

2. Formulation
The Kuramoto-Sakaguchi equation is a model equation of the physical theory of coupled
oscillators, and describes the temporal evolution of the probability distribution of each
oscillator’s phase.

By applying the mean field approximation, the temporal evolution of the order
parameter r(t) and the phase of the mean field 9(¢) at time ¢ is described as:

2m
r(t)exp(i(¢)) = /0 /Rexp(iO)g(ﬂ, w,t)g(w) ddw i=+/—1, t >0,

where ¢(8,w,t) is the probability density function of phase # and natural frequency
w at t, and g(w) is the probability distribution function of w. In addition, it is well
known that the time evolution of g is subject to the following evolution equation when
the population of oscillators tends to infinity:

do
ot
2010 Mathematics Subject Classification: 45K05, 45M10.
Keywords: Kuramoto-Sakaguchi equation, absorbing set.

*1e-mail: honda.hirotada@lab.ntt.co.jp
*2e-mail: tani@math.keio.ac.jp

+ %{ [w+ Kr(t)sin(y(t) - 9)]9} =0 0¢€(0,2r),t>0.




Combining these yields the following nonlinear partial integro-differential equation:

( 27
B, B0, g0 [g(e,w,o [ st [ sin(s - o)e(6., t)dqs] —o,

ot 06 o0
(8,w,t) € (0,27) x R X (0, 00),
< (2.1)

ol o .
% 60 = -a—é; o (] = 0,1), (w,t) € R x (0,00),

\ g|i=0 = Q()(e, UJ), (67 w) € (01 27T) X R

The parabolic regularization of (2.1), which is called the Kuramoto-Sakaguchi equation
reads:

( Op ) 0o
o Pae 5
a 27
+K g5 |e6,,t) [ gtw)aw’ [ sin(s — 6)e(o,, 38| =0,
. (6,w,t) € (0,21) x R x (0,00), (22)
Bo| _ e
803 lo=0 ~ 9607 lp=2n

\ g‘t=0 =0o(0,w), (O,w)E€E (0,21r) x R.

(=0,1), (w,t) €R x(0,00),

Here, D corresponds to the diffusion coefficient of additive white noise. Hereafter,
we mainly deal with (2.2), except for the discussion on the vanishing diffusion limit
presented in Section 6.

3. Related works

In this section, we overview the past mathematical arguments concerning (2.1) and
(2.2). The classical solvability of (2.2) was first shown by Lavrentiev [11]. Although
they assumed that the support of g(w) is compact, they later removed the assump-
tion [12]. In it, they also discuss the regularity of the solution with respect to w. Ha
et al. [6] discussed the nonlinear stability of the incoherent state. They showed that
the trivial stationary solution g = 1/27 of (2.2) is stable when the diffusion coefficient
D is sufficiently large. Later, they also discussed the nonlinear instability of g when D
is small [7]. They also discussed the existence of the solution to (2.1) as a vanishing
diffusion limit of (2.2).

Concerning the nonlinear stability of coherence, Bertini et al. [2] first held the
mathematical argument by using the Gelfant’s triplet. Later, Giacomin et al. [5] argued
the existence of the maximal attractor and inertial manifold. However, their arguments
are limited to the case g = d(w) in (2.2). Chiba [3] discussed the stability of incoherence
in (2.1) by generalizing the definition of the spectrum.

4. Function spaces
We introduce the functions spaces and some related notations used throughout this
paper. Let @ = (0,27), Qr = Q x (0,T) and f(8,w,t) = f(6 — wt,w, ).

By C"*%(Q) with a non-negative integer r and a € (0,1), we mean the Banach
space of functions from C7(f2), whose rth derivatives satisfy the Holder condition with
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exponent «, i.e., the space of functions with the finite norm
|u|(r+a) Z IDkuln + [Dru](a)
k=0
where D = 8/dz, and
 lu@) ~u(w)|

(o) _
ulg =sup lu(z)|, [v]g =
| | zeg! ( )l [ ] ,ZIGQ Ifl? - yla

By Cr+ot® (Qr) with r = 0,1, 2, we mean the spaces of functions defined in 7 and
having the finite norms

e ® = fula, + ISP (r=0),

where
(%)
ulo, = sup [u(z,t)], [ulge? = (), + [ulih,
z,t)EQT
[u] = su 'u(x:t) - u(y7 t)l [u] — {u(w, t) - u(x,T)|
e P A I T
and for r =1, 2,
1+ ,J'_) a’u (,3) 1ta
S = fula, + | 24P L GE),
20,2 Pu|@) |Ou|@d) |Ou|iF=
luls()+a Ha) — |u|ﬂr + ‘____ - ou 2 ou ,
T 0 oz?lar ot lap oz lt.0r
respectively.

Let ¢ be a fixed number satisfying 0 < € < 1/2, and define the smooth monotone

function h(w) as:
2 (v < 1);
h(w) = 2+e
1+ w**e (lw] 2 1).

Then, for o € (1/2,1), we define

2+a

Vre = { (6,0, (@) F(0,10,8) € €2+ @), sup () w)'( el <'oo}.

For functions independent on ¢, we define

Ve = {f(e, w) () (8;w) € C*(%), sup [h(w)f () &) < oo}-

The Ly-norm is denoted by ||f|| = ||f|lz,), and for those depending also on w, we
introduce

Il = sup I/ (@)l



Following the definition by Temam [14], we say that a 27-periodic function %(6) on Q
belongs to the Sobolev space H™ (m € R) if the Fourier coefficients {a,}2> _ . of

o
— Z an einf
n=—0o0
satisfy
[l = sup flu(w) I = Z 1+ [n[*)"]an(w)[* < 0.
n=-o00
For periodic functions depending also on w, we define

H = {u(ﬁ w) z an(w)e™

n=—00

sup [Ju(: L@l < 00}

In addition, we define
LY = {u(~,w) € Ll(Q)‘u >0, /Qu(ﬁ,w) =1, weR }
LOT) = {u(-,w,t) € Ll(Q)’u >0, /Qu(e,w,t) dd=1,te(0,T), weR }
We also use a notation:

271
Flow, e2] = 01(6,t;2,) / Gz — y)dy / @) [ TO - d)erld,t;y,7) do,
R R 0
F (®) [91, 92] =
27
01(6,t; z,w) / G(z —y)dy / gwhdw' [ T®(0 — ¢)oa(,t;y,w') d
R R 0
(k=1,2..).

Hereafter, ¢’s represent constants in the estimate of some quantities. When we
denote c(t) with suffixes, it depends on ¢. For simplicity, we hereafter use notations
J
fOk) = (-55) (gt) f(,k=0,1,2,...) for a function f = f(6,t) in general.
5. Existence of solution to (2.2)
The following theorem is one of our main results.

Theorem 5.1. Let €, a and h(w) be those defined in the previous section, and assume:
Let us assume 0 <e < 1/2,1/2 < a < 1 and the following issues:

(i) 9(w) € C*(R), g(w) > 0Vw € R and [; g(w) dw = 1;
(ii) o0 € VLY

Then, there ezists a certain Ty > 0 and a unique solution ¢ € Var® to (2.2).

Next, we state the global-in-time existence of the solution to (2.2).
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Theorem 5.2. In addition to the assumptions in Theorem 5.1, if we assume gy € #,
there ezists a unique solution ¢ € ng" to (2.2) for arbitrary T > 0. In addition, it
satisfies

0(6,w,t) € KXT) = Loo(0, T3 H') () CO, T;H) ( CH0, T, ).

Actually, ¢ stated above has additional regularity with respect to ¢ (see, for instance,
Lemma II.3.2 in [14]).

Corollary 5.1. Under the assumptions in Theorem 5.2, the solution o(6,w,t) to (2.2)
stated in Theorem 5.2 satisfies

o(6,w,t) € K4T) = 00, T; ') (| LI(T).

Proof. The statement follows from the fact

% € Loo(0,T; (1Y),

and Lemma I1.3.2 in [14], where (F') is the dual of 7" O

For the proof of Theorem 5.2, we first show the following lemma.

Lemma 5.1. Let T > 0 be an arbitrary number. If there exists a solution to (2.2) on
(0,T), estimates of the form

le®* OOl S sy (k=1,2,...,4) (5.1)
hold with certain constants cs) independent of t.

Proof. For the sake of simplicity, we introduce the notation g = ¢ — g and derive the
estimate of its norm which leads to the desired estimates. From (2.2), it is obvious
that g satisfies

(06 Op 0 0%

St 95+ 7(Fle+a.6+2) - D3z =0
e, te(0,T), weR,
e _2¢ _
B loms ~ 3 lomge (=01 EEOT) WER,
ké't=o=§‘3590_§ e, weR.

Multiply (5.2); by g. Then, making use of Lemma 5.1 and the periodicity of F[g +
8,0 + B] with respect to 6 yield

[ a0 (Flo+a.a+d) a0 = [ oot g (Flo+a.d+3) oo
= —§/F(1)[Q ,0] dé

< G5
- llo(, )P
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On the other hand, in the same line with the arguments by Lavrentiev [11], we have

eI < [ o6, (% VIR, t)u) a0

1
= — + V2|0 w, 1)

2r

1
<=+ CE' + Elllé(l’O)("wyt”Py

2m
where ¢ is a certain positive constant, and C, is a constant dependent on ¢ (hereafter
we use these notations in the same meaning). We applied the Young’s inequality in
the last inequality.

Thus, after taking the supremum with respect to w, we have the estimate of the
form

1d
2dt
Therefore, if we take €’ so small that ¢ < D holds, then by virtue of the classical
Gronwall’s inequality, we have the estimate of the form (see, for instance, p. 85 of [14])

B2 + DI OO < es + €8O ). (5:3)

12 - 12 _ L Cs7 _ _ e
IEON < lal? exp(-2(D - £)t) + 5o (1 exp(-2(D e)t))
<css Ve (0,T). (5.4)
Next, we show the estimate of g9, which satisfies

aé(l,o) 85(1’0) 825(1’0) o
o Y os PaE tm

(FOle+2,d+ Fla™,4)) = 0.
Then, due to the estimates
0
~(1,0) O (W50 = 5
[ 606,605 (FOle+2.0) as
= / FOY(@00(0,1,0))%, 2] b + 7 / F® [ﬁ(é(e,t, w))’,4] a8
1
= @510 5
+27r/QF [0, g] do
< csoll 80 (- w, O + esa0ll 8, w, 1)1* + esna ]8O w, BN,
. 1o} - - 1 a,. 2 .
(1,0) il (1,0) —___ (71,0
[ 800,05 (P, ) a0 = = [ F[5(600.0.0)",] a0
< es12]| 8NV (-, w, )12,

and the Young’s inequality, and taking the supremum with respect to z and w, we have
the estimate of the form

1d

S5 qlE O OF + DI OFF < x™ eI +x3" 1801 (55)
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with constants x&i’o) (i = 0,1). Now we divide the second term in the left-hand side
of (5.3) into two terms by using a small constant ¢ > 0, and apply the Poincaré’s
inequality

IaC,w, 1)) < 27)|8HO (-, w, 1)

to the first term:

D—-¢

o le@OF + g™ @)

(D = I OO +eld™ O O 2

Then, we obtain

1d ~ 2
S laOI +

D —

E o~ ~ ~
ENEOR + g O OF < cois + LUV O

Summing up this and (5.5) multiplied by a positive constant m®?, which will be
specified later, we have

22 (e + mo21a 0 @) 1) + { Lo meox 09 yae

2dt
+{e—¢ = mOEINI @ +mOO DO o)
< Csa-
Therefore, we take €, ¢ and m(®? in the following manner:
(i) Take € and €’ so that ¢/ < ¢ < D holds;

(ii) Then, take m® > 0 so small that

D—
47r25 - X§0,O)m(1,o) >0,
e—¢ — xil’o)m(l’o) >0

hold.

Then, in the same line with the deduction of (5.4), we have
18" D@ < cs15 VE > 0. (5.6)

Similarly, for k = 2,3,4 we have the estimates of the form

1d

k
- - ,0) i ~(3,
S IO OF + DI @I < 3 OO @)

=0

(k =2,3,4). (5.7)
O

Thanks to Lemma 5.1, ¢ =T, satisfies the assumptions in Theorem 5.1. Therefore,
we can extend it onto the time interval (T,,27,), and it again satisfies the estimate
(5.1). Iterating this procedure finitely many times, we obtain the solution of (2.2) on
the desired time interval.
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6. Vanishing diffusion limit

In this section, we show the existence of the solution when the diffusion D tends to
zero. For the sake of simplicity, we denote the solution of (2.2) with D > 0 by g(p),
and we use g(g) to stand for the solution of (2.1).

As we have stated, Ha and Xiao [6] held a similar discussion for the original
Kuramoto-Sakaguchi equation (2.2). However, they estimated the norm of gy by
using the polynomial of D, which resulted in the convergence in L () with respect
to 8. In the discussion below, we apply the compactness argument for deriving con-
vergence of a higher order than their result. The framework of this discussion was
provided in our previous paper [8], but the details of the proof are presented here since
they were omitted in it.

Theorem 6.1. Let T > 0 be an arbitrary number. Under the same assumptions as in
Theorem 5.2, there ezists a solution p() of (2.1) in K*(T).

Before the proof of Theorem 6.1, we first prepare some lemmas below.
Lemma 6.1. Let T > 0, and gy satisfies the same assumptions as in Theorem 5.2.

Then, the sequence {g%?} p>o 18 bounded in K*(T).

Proof. What we have to verify are

sup [lolyy) (B)llo < cxa(T)  (k+21 < 4), (6.1)
te(0,T)

but these are verified by the arguments similar to those in Lemma 5.1, so we omit
them. O

By virtue of Lemma 6.1, we see that the sequence {g(p)}p>o includes a sub-
sequence, denoted as {¢(p)} again, which is convergent in the weak-star sense as D
tends to zero:

oy = 36 in Ly (0,T; ﬁ‘l) weakly star; (6.2)
0 —
% -39 in Leo(0,T; ) weakly star. (6.3)

Then, in the relationship

t a .
o) = 0o+ / égtD) (1) d7  in Loo(0,T; ’H2),
0

if we make D tend to zero, we have

¢
b= 0o +/ 9 (t)dr in Ly(0,T; ﬁ2),
0

which means ¢’ = %.

The next lemma clarifies the space to which this sequence converges.

Lemma 6.2. The sequence {o(p)}p>o forms a Cauchy sequence in K*(T).
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Proof. By subtracting (2.2) with D replaced by D’ from the original one, g = o(D)—0(D)
satisfies

05 06 0% o)
5t a6 Pag 567

[ 6,w,1) / / sin(é — 0)en) (s t)dd)]

K% I:Q(D')w’w’ t) L g(uJ')dw'/nsin(qS - 9)5(43, w’yt)dq&jl =0 (6.4)

—(D- D)

Multiplying (6.4) by g, 1ntegrat1ng by parts over 2, and taking the supremum with
respect to w yield

2 % S1EOI < ca (lllé(t)lll2 +1D - D'lz)-

Here, we used the estimates as an example:

K /ﬂ 5(0,w,t)-é%[§(0,w,t) /R g(w')dw’ /Q sin(¢ — 6)o(py(¢, ', t) dq&l de

5 | 20w t))"’( [ st [ sinGo - ey (6.,1) d¢) a0
<Xjaor,

[)5(9, w, t)%lg(D’)(oawv t)/Rg(w’)dw'/Qsin(c,b—0)§(¢,w’,t) d¢] de

‘( / o) / sin(¢ - e>5<¢,w’,t)) “
R Q

Thus, by virtue of the Gronwall’s inequality, we have

:>q

T méﬂ’m(t)m‘

15O < cealD — D'Ptes,

which implies that {o(p)} p>o makes a Cauchy sequence in Lo (0,T;H _0)

Similar arguments hold for ot Dl) for (k,1) # (0,0), and by summing them up mul-
tiplied by appropriate constants, we arrive at the desired result. O

By Lemma 6.2, we see that ¢ belongs to V4(T). Now, we show that ¢ certainly
satisfies (2.1). To do this, we take an arbitrary function A(f,t) € C*(0,T;C(Q))
satisfying h(6,t)|;=r = 0, h(6,1)|t=0 # 0, and consider

do(p) 30 d*o(p)
/ dt / { +w22D _ pZED) 4 2 (Flow), omy]) ph(6,0) 40 =0

Vw e R. (6.5)
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In virtue of (6.2)—(6.3), if we make D tend to zero,

BQ(D) 39(13) o)
[ o {252 o202 - pZ02 A1t

—+/ dt/{ }h(e t)d0 VYw e R.

Thanks to the Rellich’s theorem [13], we have
o) — @ in LQ(O,T,?ZO)

strongly as D — 0; therefore,

T 0 T 0 o
/0 d /Q %(F [Q(D),Q(D)])h(B,t) df — /0 dt /Q @(F [e,e])h(f’,t) de
holds. Thus, we have

/ dt / { + (F[é, A])}h(o,t)d0=0, (6.6)

which means that g certainly satisfies (2.1);. Next, integrate (6.5) and (6.6) by part
with respect to t, and the assumptions on h(6,t) yield

— o6, w)h /dt/ (D)(that(() £) o

o) 3 o(D)
/ dt/{ 802 + %(F[Q(D),Q(D)D h(e,t) de =0, (67)

— 5(6,w,0)h(6,0) — / at / 86,0, 2(0,1) ap
0 Q ot

+ /0 "t /g {w% + %(F[@, a) }h(e,o d9 =0, (6.8)

respectively. Comparing (6.7) and (6.8) implies g|;—o = ¢(g), so the initial condition
(2.1)3 is satisfied. The periodicity of § obviously holds due to the function space to
which ¢ belongs. Thus, § = ().

This completes the proof of Theorem 6.1. As in the case of Theorem 5.2, we have
the following statement.

Corollary 6.1. Under the assumptions in Theorem 5.2, the solution o(0,w,t) to (2.1)
stated in Theorem 6.1 satisfies

0(6,w,1) € KX(T).

7. Existence of maximal attractor and inertial set

In this section, we discuss the existence of the maximal attractor and inertial set.
Hereafter, let H be a separable Hilbert space equipped with a norm | - ||z, and define
a semigroup {S(t) }+>0 as a family of operators:

S(t) : up € H —> u(t) € H,

where u(t) is subject to a certain dynamical system with initial data uo in general.
First, we define the attractor of a semigroup [14].
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Definition 7.1. An attractor is a set A C H that enjoys the following properties:
(i) A is an invariant set, that is, S(t)A = AVt > 0 holds;
(i) A possesses an open neighborhood U such that, for every ug € U,

distg (S(t)uo, A) = ggt IS(t)uo — yllg — 0 as t — 0.

Next, we define the mazimal attractor [14].

Definition 7.2. We say that A C H is a mazimal attractor for the semigroup {S(t) }s>0
if A is a compact attractor that attracts the bounded sets of H.

We discuss the existence of the maximal attractor in our problem. Below, let S(t)
be a semigroup associated with problem (2.2) and defined on "

5(t): o0 €H — o(t) €A,

where o(t) is a solution to (2.2) with initial data gy. Theorem 5.2 implies that S(t) is
a continuous mapping from H  to itself for each ¢ > 0.

Theorem 7.1. Under the assumptions in Theorem 1, the semigroup S(t) possesses a
compact mazimal attractor in H that is connected.

The proof of Theorem 7.1 is achieved by the direct application of the a-priori
estimate that we already obtained and Theorem I1.1.1 in [14].

Next, we introduce the definition of inertial set. It is well known that the orbits
of dissipative systems are sometimes absorbed in a finite dimensional set rapidly [14].
Hereafter, let B be a compact subset of H.

Definition 7.3. Let B be invariant under a continuous semigroup S(t), that is, S(t)B =
B Yt > 0 holds. Let A be the mazimal attractor for {S(t)}1>0 on B. Then, set M is
called an "inertial set” for ({S(t)}i>0, B) if it has finite fractal dimension ds(M) and
moreover satisfies

i) ACMcCB, S{EMCcCM foreveryt>0;

(ii) for every ug € B, disty(S(t)ug, M) < cre™* with positive constants cz; (j =
1,2) independent of uy.
Next, we show the existence of the inertial set for the solution of (2.2) [1][4].

Theorem 7.2. Under the assumptions in Theorem 5.1, the semigroup S(t) possesses
an inertial set M for ({g(t)}tzo,ﬁ% satisfying

distz0(S(tyuo, M) < crge™ " Vug € T

with positive constants cz; (§ = 3,4) independent of wy by taking t. and Ny sufficiently
large.

Theorem 7.2 is proved with the aid of the result by Eden et al. [4], which claims
that the squeezing property of a semigroup implies the existence of an inertial set.
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Definition 7.4. A continuous semigroup {S(t)}s>0 is said to satisfy the squeezing
property on a compact subset B C H if there exists t, > 0 such that S, = S(t.)
satisfies the following.
There exists an orthogonal projection Py, of rank Ny such that, if for every u and v in
B
| P (Ssu — Suv) || < (T — Py )(Suw — S,)|| 1
holds, then
1
|Seu — Syv|la < <llu~v|a.

The following theorem is due to Eden et al. [4].

Theorem 7.3. If {S(t)i>0} satisfies the squeezing property on B and if S, = S(t.) is
Lipschitz continuous on B with Lipschitz constant L, then there exists an inertial set

M for ({S(t) }i50, B) such that

dg(M) < Nomax{1,In(16L + 1)/ In2},
diStH(S(t)uO,M) < 6756)(1)(—07611/15,.t Yup € B

with positive constants Ny and c7; (§ = 5,6).

Thanks to Theorem 7.3 it is sufficient to verify the squeezing property of {S()}+>0
to prove Theorem 7.2. In the following, we state the proof of Theorem 7.2. First,
let us define two solutions g; (j = 1,2) of (2.2), whose initial data are g;o (j = 1,2),
respectively:

Oo; Op; 8o,
5 T P (7.1)

+ K'a% [Qj(eawi t) Ag(w/)dwlLQj(¢ywl, t) sin(¢ — 6) dq{l =0 (i=1,2),

from which we derive the problem for g = p; — g2:

08 08 8% B
5+ 9% DW+K[ [gl]—R[gg]]—O (0,w,8) € 2 x R x (0,T),
; _ (7.2)
9|t_ =06 =00—00 (Bw xR,

where

Rlg = [ (0,w,?) / /Q o(¢,w',t) sin(¢ —~ 6) d¢]

d
=557 e el
We also define the eigenvalues {\;}, of the operator 8%/96? under the periodic bound-
ary condition in the order of magnitude. {V;}$2, is the corresponding eigenvector
functions, N € N is specified later, Hy = span{V4,V3,...,Vn}, Py : H — Hpy, the



orthogonal projection onto Hy, Qn = I — Py, gnv = Qn/[d], and gno = Qn[o). Then,
after operating Qy to (7.2), we obtain

0on ~ Odn *8n
e + wag D——- 202 + KQn [R[Ql] - R[Qz]] (7.3)

Then, multiplying gy to (7.3) and integrating over Q lead to

1d
2dt

We note that the following estimate holds:
/n on(0,w,t)Qn [R[L?l] - R[@z]] dé
= [ aw(6.0 015 [@n{Tlev, ] - Tlew eal] 06
< K101 ||\QN Tles, o1 = Tlex, ]|
< KNS O Tles, 1 - Tlew, el
< chANHm SRLOI PO

+(1,0) 24 77K
< —
< NP + Ty L

eI + DI O + [ an(6,00,0Q [Rler) - Rlesl] a0 0.

From this, together with the Poincaré’s inequality || 3x ()| < A%l 5\1,0) ®|I?, we have

Lpawor+ 2 — e @I < LS LAY -

2 dt ~ 2DAn4

Thus, the Gronwall’s inequality yields

Ien@OI” < e anoll” + idr (74)

On the other hand, by multiplying § to (7.2) and integrating over €2, we have

a0l + Dhao)?

K [ 0w, t)a%[a(e,w, 0 [ o)’ [ e, sine—0) dqs] a

+K [ 86,0, 55| @000 [ o)’ [ 68,67, )sin(6 - 6) do| 9 =0,
Q o6 R Q
(7.5)
We note that the following estimates hold:

/Q é(e,w,t)%(é(é’,w,t) /R g(w)dw’ /Q 01(6,/, ) sin(¢ — ) d¢) a6
1

= 3 [[@0.0.0)"( [ o) [ 1(6,07,0)o0( - ) 46) 0

< crsl[8(t) |7,
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/Q é(e,w,t)%(gg(e,w,t) / g(w')dw' /Q (6, t) sin(¢ — 6) d¢) a9

/ 8(0,w t)%e (6,w,t) (/Rg(w')dw’/ob(gz&,w’,t) sin(¢ — 0) d¢) dé
+ /n 5(9,w,t)92(0,w,t)( /R 9(w)du /Q B¢, ', t) cos(e — 6) d¢) 49
=J1+ Js.

It is easy to see that
3 < supll & OO | [ s [ 86,1, )sin(6 - 0) g

< c79|||9( .
A similar estimate holds for Jo. Thus, (7.5) yields

2 I LJa1 + DIV W < cnollsOF,

which, together with the Gronwall’s inequality again, leads to

¢
v 1 C v
[ 10 o < gea
Applying this to (7.4) and the fact ||gnoll < ||8]l yield

v 2 —~DAns1t 037K2 2c711t v 2
Lo < (oo 4 S o) e
N+1

Now we show that there exists ¢, and Ny such that if

I P, [ (2N < ll@no [ (7.6)
holds, then

1361 < 21801

holds. To show that, we first take t, large enough so that
e-DAN+1t¢ S i'

256
This is achieved by taking, for instance, ¢, > D/\ log 2. Then, for this t,, we take Ny

so that 2 22
. K% c711tx 1

DAngy1 — 256
holds. Then, we have

lém (I < @”9(0) 1. (7.7)

On the other hand, under the assumption (7.6), we have
I8N = | P[]t + 1@ ]t < 201Qmo [E NI = 208 (B (7.8)
Therefore, by combining (7.7) and (7.8), we obtain
2 < 2
l8t* < 64||9(0)||

which supports the desired squeezing property. Higher derivative terms are estiamted
in a similar manner. By virtue of Theorem 7.3, this completes the proof of Theorem
7.2.
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8. Conclusion

In this paper, we provided local and global-in-time solvability of the Kuramoto-Sakaguchi
equation. We also showed the existence of the solution to the vanishing diffusion limit
problem. The existence of the maximal attractor and inertial set were also discussed.
Our future work will concern the existence of the inertial manifold and the stability
analysis of the coherent state. We will also tackle bifurcation analysis in the future.
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