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SMOOTHING DUE TO MIXING IN THE STATIONARY
LINEARIZED BOLTZMANN EQUATION

I-KUN CHEN

1. INTRODUCTION

We consider the stationary linearized Boltzmann equation

(1.1) ¢-Vi(z,Q) = L(f),

where ¢ € R3 and z € Q, a C! bounded convex domain in R3. The linear
collision operator L here is corresponding to the Grad’s cutoff hard potential
gases, hard sphere model, or cutoff Maxwellian gases, which are indicated
by 0 < v < 1. Furthermore, we assume the cross section is a product of a
function of the length of relative velocity and a function of the deflecting
angle. Under this assumption, L has the following know properties (See [1,
4, 6]). L can be decomposed into a multiply operator and integral operator.

(1.2) L(f) = —v(KI)f + K(f),

where K(f)(z,{) = [gs k(¢, ¢) f (2, () dCy is symmetric. The precise expres-
sion of the collision frequency is

(13) A(6) = [ 7 in—cPran,

where 3y is a constant that comes from to angular part of the cross section.
Let 0 < 4. The collision frequency v(|¢|) and the collision kernel (¢, («)

statisfies
(1.4)
w(1+ €))7 < (<) < m(1+ K7,
(1.5)
_1=3 120 KIE—1Ex1% 2

(¢, )| < CLIC = Gl ™ (1 + [¢] + [¢e) = * ('C = ) )
(1.6)

_1=45 2, 1817 =1¢«]“\2
[ VekC G < Qoo +f1'2(1+|q+|c )=0e * (k-cr+cif=s?)
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Here, the constants 0 < vy < v; may depend on the potential and C, and
C, may depend on § and the potential. Suppose z is a point inside 2. We
define p(z, () to be the boundary point that the backward trajectory from
z with velocity ¢ touches. The corresponding traveling time is denoted by
7—(z,(). We write

(1.7) ¢V, Q)+ (<) f (=) = K(f).

The corresponding integral equation is as follows:

(1.8)
- (=,
F(2,0) = f(p(z, ), eIV @0 4 / Y MO0 1)z - 5, ).
0

In this paper, we say f is a solution to (1.1) if the integral equation above
is satisfied almost everywhere.
We iterate the integral equation once more and obtain

(1.9)
#(2,¢) = f(p(z, ¢), (e~ 1D @0)

. /T-(’”’O / D¢, ¢")e (D™= @=45) £ (p(z — Cs, ¢"), ¢')dC'ds
0 R3

T—(2,¢) 7 (z—(8,{")
=v([¢])s Ne—v(I¢ )t e — (! /
+ /0 fR /0 D¢, ¢)e IR (f) (2 — Cs — C't, ¢')dbd('ds
= I(2,¢) + I1(x,¢) + F(z,C).

The boundary of € is denoted by 92, and the outer normal is denoted by
7. We define

(1.10) I_:={(z,0)|z € 090,( - 7 (z) < 0}.

We consider norms as follows:

(111) lo(@lzg = [ #eDistoPac)

D) WOl = ([ [ i 2dxd<) ,

019 @ Oler; = ([ D@ OPK) ;

The indexes above denote the corresponding functional spaces.
The main conclusion in this paper is as follows.

Theorem 1.1. Let € > 0 and o, = 3+_6 Suppose f € Lg"LZ solves the
stationary linearized Boltzmann equation (1.1) with cutoff hard potential,
hard sphere, or cutoff Mazwellian gases.



Then, there exists a constant Co depending only on || f| L Ly € Q and
the potential such that, for any x, y € Q and ¢, & € R3,

1.14
(1.14) Co(l+dg"P (K —¢P +1z—-y?) %,

where dy is the distance of z, y to 0.

The key observation is that, in F', the regularity in velocity can first be
increased by the integral part of the collision operator, K. Then, the regu-
larity in velocity can be partially transferred to space through combination
of transportation and collision. Readers familiar to the time evolutional
Boltzmann equations may find an analogy to the Mixture Lemma studied
by Liu and Yu, [8, 9], and later extend by Kuo, Liu, and Noh, [7], and Wu,
[10]. This kind of idea can be traced back to the celebrated Velocity Aver-
aging Lemma by Golse, Perthame, and Sentis, [5] discussing the regularity
of moments. Although it is with the same spirit, in the context of stationary
solution, a subtle interplay between velocity and space is needed to carry
out the mixture effect, which will be discuss in detail in section 2.

This result is first used to study the regularity of stationary solution to the
linearized Boltzmann equation. After that, the smoothing effect is further
explored and resulting a better regularity of locally Holder continuous up to
order %— in [3]. However, this original argument assumes less regularity of
the solution f and might be suitable to the discussion in other applications.
Beside the major difference just pointed out, because of the evolutional
relation between this paper and [3], there are some similarity in arguments
and repeat calculations. In order to strike the balance between to be self-
contained and concise, we keep some while refer others to [3].

2. GAINING REGULARITY BY COLLISION AND TRANSPORTATION

We will elaborate the smoothing effect due to the combination of collision
and transportation in this section. The connection between velocity and
space is a nature of transport equation. To use this to facilitate our analysis,
we first change ¢’ to the spherical coordinates so that

(2.1) ¢’ = (pcos b, psin 6 cos ¢, psin § sin ¢).
Also, we change traveling time to the traveling distance:

(2.2) r = pt.
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Let f’ = g—:l Then,

(2.3)
(@)
Fz,¢) = / O —ulies

m  plzp(z—s¢, C')l e 2
/ / / 2 / ,, ¢,¢)e FTK(f)(@ ~ (s — C'r, (' )psin BdrddBdpds

~(2,0)
= / eV ICDsG(x — ¢s,¢)ds.
0

Notice that we can parametrize €2 by 8, ¢, and r. Therefore, by regrouping
the integrals, we can change the formulation to contain an integral over
space. Let g =z — (s and y = z — (s — {'r. We have

(2.4)
G(IEO,C)_
/ / k(¢ (a:o y)p) -u<p)'i*%?—'K(f)(y, (:vo—y)p) p |zdydp-

lzo —yl| " |0 —y

Now, we will investigate the regularity of K(f) in ¢ first. Then, use the
formula above to partially transfer the regularity to space. In [2], the locally
Hoélder continuity of K(f) in velocity has been shown for f € Lg and for
hard sphere gases. Here, we use a similar technique to improve and extend
the result.

Lemma 2.1. If f € LZ and € > 0, then

(25) K())C) — K| < Cel¢ = 7= £ s

Proof. Since ||K(f)“Lc<>o < C’||f||Lg, the inequality is trivial if [¢ — {'| > 1.
We only need to check the case | — (| < 1.

20 KOQ-KOE) = [ )~ K G
Let [( —(¢’| =1 and 0 < b < 1 to be determined later. We divide the domain
of integration into two, R3\ B((,20%) and B((,20%). The corresponding

integrals are denoted by H; and H respectively. We first deal with H;. Let
n(z) = ¢+ (¢ — {')z. We have

ld
—k «)d 2 )dCs
/1123\3(4,2#)/0 75K 0(2), G)dzf (Ge)d

1
: A /]R;3\B(C,Zlb) i Vn k(m G) - (€= ¢ | f (Gl dudu.

|Hy| =

@2.7)



Applying estimate (1.6) for 7»k(n, («), we have
(2.8)

1+ Y =1 |p—c.2+ 2 2:|C* 2)2
| < Cl/ /Rs\B( ) (In |g||)2 € ! el )If(C*)IdC*du
n, *

1
1-bide ¥ 2
<o [+ ( R SIS dc*)
1 ——(In —Gpop UL ) 1 :
: - [ —— A
(/Ra\B(n,l") |"'?_C*|3_€e 1+ |C*|)7| ‘ ) ’

! 1= 1-pite
<Ce( | Q)T dz ) I S
<C. ll-" salil

Notice that in the inequalities above, we apply an estimate from [1]:

=

Proposition 2.2. For any €,a;1,a2 > 0,

1 —a1|n—Cu[2—ap (22=1ex ) 1
2.9 —_— =&l | < C(1+ ,
e | [ = <0 +1n)
where C may depend on €,a;1, and az.
On the other hand,
Bl < () HOGI + M GIPdc) iz,
(2.10)
< Cl?lifllL*-
We find the optimal b = 5% and conclude the lemma. O

We now return to the regularity in space, which is characterized by the
following lemma.

Lemma 2.3. Suppose f(z,() € LP L is a solution to (1.1) and zo, 1 € 2.
Then,

(2.11) |G(20,¢) = G(z1,{)| < Cell fllLge s |mo — 21|,
where o, = 3+_€

For one space dimension, the Holder continuity of K(f) in space was
proved in [2], thanks to the simple geometry, by the combination of trans-
portation and collision, which is also the important ingredient in [4]. For
the three space dimension problem we consider, we need Lemma 2.1, (2.4),
together with the following observation from [3]:

Proposition 2.4. Let zg, =1, and y € R3 and 0 < a < 1. We note
|zo — 21| = d and Lzoyz1 = 0. If [y —xo| > 2d* and d < 1, then 6 < %dl_“.
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Proof. We first find circles passing both zp and z; with radius d*. For any
y on the larger arcs of these circles, the angle § is the same and

d

(2.12) sin(0)d® = >

Therefore, 8 < %dl‘“. We name the collection of these arcs D. Notice

that @ for those points outside D is smaller then those for points on D. By

applying triangular inequality, we know that |y — zo| < 2d* for any y € D.
Therefore, we conclude the proposition.

O

Now, we are ready to prove Lemma 2.3
Proof of Lemma 2.3. Let 8 = ﬁ We add and subtract to obtain

(2.13)
0 2o — 1)p. e~ P
Gan0) - G0l < | [ [ rie, o002

lzo—yl * |zo—yl?

[K(f)(y, (ro y)lp) K(f)(y ,(ll -y)l ]dydp’

[T [ xS0

u(p)—u'

(o —y)p pe " ° (z1—y)p, pe 2
ke, — k(C, dyd
e e O e B Pyl L 2

=: Gg + Go.

We first deal with Gx. We break the domain of integration into two, 2; :=
Q\ B(zo, 2d*) and Qg := QNB(xg, 2d*) and name the corresponding integrals
as A; and Aj respectively. Applying Proposition 2.4, we have

(2.14)
Al < Gl [ e, S 2

yl 7 J@o — yl?
21r
B Tp — .
<z [ 1 [ [ 6 G0 snaaoisi

R
1
< C.d0-B fll, / / k(C, )| ——d('d
< o R =
< Ced =P fl| 112 R,

lzo—yl
(P =5

|d P oP|dydp

where R is the diameter of €.
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On the other hand,
(2.15)
(o) lzo=yl
el < Cllflagry [ [ e, LT 0L,
B(z0,2d%) yl B

2 2d"‘ 20—
<Clf ”L°°L2/ / f / (E)o y)|p e @5 5 sin fdrdpdbdp

2d®
<Olfligry [ [, WG Olgdd'do < Oy

To optimize the estimate, we choose a = T-%E = 3# which gives the desired

estimate.

Now, we proceed to estimate Go. We dived the domain of integration
into two, Q3 := Q\ B(z1,2d) and Q4 := QN B(z1,2d), and name the
corresponding integrals as As and A4 respectively.

We first deal with A3. Let X (u) = z1 + (zo — z1)u. We will use (1.5),
(1.6) together with

(2.16) K| < CIflzg(1+[¢)™T

in Proposition 4.1 in the following estimate:

(2.17)
|As| =
—y(p) =2

©rod (KXW -yl pe@ET (21 - 1)
| /0 /Q /0 Tl ) e JuK ()3, T2 Py

< Clz1 — zoll| fll oL

3
x@-we2 (14 p)~ 217 2
' / / / Hleo B (l;()(u)—y)p 2 |X(u§—y|3dydpdu
Q3 K_ X (u)—v] |

< Cd| fllzgry

(X(w)— u)Piz

2 CEA
. / /2d / / / |C _ (X(u)—y)p|2 r — sin 0dpd¢d0d’r‘du

< Cd||fl|rgers | / 1/ , / e S Ry
—_ L"" L< 0 2d RS |C - C/I2 r
< Cd(1+ |Ind))| fllzgr;-

Notice that both zy and z; belongs to £24. We can obtain
(2.18) |A4| < Cd||fllzger-

Combining all the estimates above, we conclude the lemma.




147

In the end of this section, we would like to discuss the regularity of G in
velocity. Notice that

7 (20,(") . Vo
219) | / e K (f) (@0 — ¢'t, ¢ )] < |||z

Use an approach similar to (2.7) and (2.8) in the proof of Lemma 2.1, we
can conclude

Proposition 2.5.
(2.20) |G(0,¢1) — Glxo, @)l < || fllzgoryla — Cal-

3. INFLUENCE FROM THE DOMAIN

In this section, we will introduce some properties of a convex domain,
which are discussed in [3], and then apply to the proof of regularity of F.
These properties are all based on the same observation, that is, a line joint
an interior point and a boundary point can not be too tangent in a convex
domain.

Proposition 3.1. Let Q be a bounded C' convex domain in R and x, y €
Q. Suppose the distance of x and y to 02 is dp > 0. Then,

(3.1) Ip(z,¢) — p(y,¢)| < C(1 +dg )|z — ],

(3.2) I7-(z,¢) — 7-(,¢)| < C(A +dg?) 'ﬂay',

for all nonzero ¢ € R3.

Similarly, for two trajectories passing the same point, we have the follow-
ing proposition.

Proposition 3.2. Suppose  is a bounded C* convez domain and (1,2 € R3
and x € Q. Let P, = p(z,(1) and P> = p(z,(2). Let dy be the distance
between x and OS2 and 0 be the angle between (1 and (2. Then,

(3.3) [Py — Py < C(1+4dg)6,
(3.4) |[zP1| — [zP3|| < C(1 +dg5h)6.

For the detail of the proof, please see [3]. Now we are ready to prove our
main theorem.

Proof of Theorem 1.1. Since F' is bounded the cases for |z —y| > 1 or |1 —
(2] > 1 are trivial. We only consider the case [z — y| < 1 and [¢; — (2| < 1.

Let {; = ]lg—fl[ﬁ and ¢ € R3. We break the estimate into three parts:
(3.5) |F(2,¢) = F(y: )| < C(1+dg ' )[|fll gy |20 — 21|,
(3.6) |F(2,(1) = F(=,62)] < O+ dg )3 fllegerg i — oI,
3.7) |F(z,¢1) = F(z,6)] < Cllfllzgry |6 — Gl
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We start with (3.5). We will assume 7_(y,({) > 7—(z,() and use the nota-
tions in the proof of Proposition 3.1.

(3.8)
|F(z,¢) — Fy, Q)| <
Jz—Xpl T— (er)
i e™*[G(z — s¢,¢) = Gy — 5¢, )] ds| + / . e "Gy — ¢, ()ds

N Y]~
< Olflzzrgle — i+ 00 + &5 e R oz

< C(1+dg")?||fl|zgeglwo — 21|

Notice that we used |z — y| < 1 in the last inequality above.
As for (3.6), we may assume 7_(z, (1) > 7—(x,(2) without lost of gener-
ality. Let P» = p(z,(2). Then,

(39)
|F(z,¢1) — F(z, )| <
T o (@) )
Tl g [G(z - 561,61) = G(z — 562, G2)]ds| + / e V*G(z — 5(1,()ds
0 T-(,(2)
=: Dg+ Rp.

The R,, can be estimated by adopting 3.2 and similar argument in the
corresponding part in (3.8) above. For Dy, we will subtract and add one
term and then apply Lemma 2.3 and Proposition 2.5:

(P
pa<|[ ™ e (G(z — 5(1,61) — Gz — s, (1)) ds
(3.10) * /0 e™*(G(z - 5¢2, 1) — G(z — 5(2,(2))ds

|Poz|
T s (16 = Gals)* + |G — Gal)ds

<Olflszzz |

<C||fllzgerzlCa — G2l
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To prove (3.7), we first change the variable from traveling time to traveling
distance and let (; = ]—g—l, then

|F(z, 1) = F(=,4)] <
)

[P vyl . v(l¢1]) .
/ e TG (e — 16, G) — e Tl TGz — vy, ¢1)ds
A ;
2Pl vl - .
< /0 e ¢ [G(x—TChCl) -G(w—rﬁhﬁ)] ds

|zPr| v(I¢21) v(l¢1 ) .
/ [e_ 2l " — e G r] G(z —r1,¢1)ds
0

=: Dy + Dp.

(3.11)

+

We can control Dy, by applying Proposition 2.5. For Dp, we first observe

2y, _ -1 1= g ’
ﬂO Ase |77 CI l

| v v (KD = =]

< vy-1([€D);

where we use the lower index to indicate different potential. Therefore, we
have

(3.12)

du(i,o)| { 0<p<l,
B (1+p)" -2 p>1.

By the Mean Value Theorem, there exist z between |(1| and |(2| such that

2Py 1
Gl=tall [ @+ e
1G — G2l

Therefore, we prove the regularity of the F'. O

(3.13)

Dp <C|fllzgry

<C|fllzgers

(3.14)

4. APPENDIX

The following estimate also appears in [3]. For the completeness of this
paper, we include its proof in this appendix.

Proposition 4.1. For any 0 <y <1,

)~

(4.1) K] < Cllf (1 +1¢]

The constant C above may depend on 7.
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Proof.
(4.2)

KO = ( [ Moo

| (€GP =y % L(OlF(S]e :
lv (C )I R

——(|c P (Sl y2)

D=

<|Ifllz= .
Iz | [, e=eras g eea e
3 (e-ereiely)
<ClIfllz; / &
¢ <KL IC = G2+ (¢ + By
/ G_ZIC_C*P % 2
+ "
le—¢o> &1 [¢ = G[2(1 + [¢])20=)
1

<C|fllz [(Il +IC)E 1P+ ICI)‘(H”’)] :.

Notice that K(f) is also bounded. Therefore, we conclude. O

Acknowledgment. This research is supported in part by JSPS KAKENHI
grant number 15K17572.

REFERENCES

[1] Caflisch, R.: The Boltzmann equation with a soft potential. I. Linear, spatially-
homogeneous. Comm. Math. Phys. 74 (1980), no. 1, 71-95.

[2] Chen, I-K. Boundary singularity of moments for the linearized Boltzmann equation
Journal of statistical Physics October 2013, Volume 153, Issue 1, 93-118

[3] I-Kun Chen. Regularity of stationary solutions to the linearized Boltzmann equations.
arXiv:1604.03653

[4] Chen, I'-Kun.; Hsia, Chun-Hsiung: Singularity of macroscopic variables near bound-
ary for gases with cutoff hard potential. SIAM J. Math. Anal. 47 (2015), no. 6,
43324349. 35Q20 (35A20) More links PDF Clipboard Journal Article

[6] Golse, Franois; Perthame, Benot; Sentis, Rmi: Un rsultat de compacit pour les qua-
tions de transport et application au calcul de la limite de la valeur propre principale
d’un oprateur de transport. C. R. Acad. Sci. Paris Sr. I Math. 301 (1985), no. 7,
341344. 82A70 (35Q20) .

[6] Grad, H: Asymptotic Theory of the Boltzmann Equation, II

[7] Kuo, Hung-Wen; Liu, Tai-Ping; Noh, Se Eun Mixture lemma. Bull. Inst. Math. Acad.
Sin. (N.S.) 5 (2010), no. 1, 110

[8] T.-P. Liu and S.-H. Yu, The Greens function and large-time behavior of solutions
for the one-dimensional Boltzmann equation, Comm. Pure Appl. Math. 57 (2004),
No.12, 1543-1608.

[9] T.-P. Liu and S.-H. Yu, Greens function of Boltzmann equation, 3-D waves, Bull.
Inst. Math. Acad. Sin. (N.S.) 1 (2006), No. 1, 1-78.



151

[10] Wu, Kung-Chien Pointwise behavior of the linearized Boltzmann equation on a torus.
SIAM J. Math. Anal. 46 (2014), no. 1, 639656.

GRADUATE SCHOOL OF INFORMATICS, KYOTO UNIVERSITY, YOSHIDA-HONMACHI, SAKYO,
Koto 6068501, KyoTO, JAPAN
E-mail address: ikun.chen@gmail.com



