BRI ST R S B
#2039% 20174 11-30

SYMMETRIES OF INTEGRABLE DEFORMATIONS
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ABSTRACT. In this note , we will explain symmetries of isomonodromic
deformations as Wey! groups of some quivers and give classifications of
isomondromic deformations of linear ordinary differential equations with
at most unramified irregular singularities and 2 or 4 accessory parame-
ters.

INTRODUCTION

In the series of works by Okamoto [30], it was clarified that Painlevé
equations have affine Weyl group symmetries. After these pioneering works,
many studies of symmetries of Painlevé type equations are successfully de-

- veloped in connection with the algebraic geometry, representation theory of
affine Lie algebras and so on (see Noumi and Yamada. [29], Sakai [32], Sasano
[34], Boalch [5] and their references for instance). On the other hand, the
recent work of Kawakami, Nakamura and Sakai [23] suggests that many
known Painlevé type equations are uniformly obtained from isomonodormic
deformations of linear ordinary differential equations. In this note, inspired
by their work, we shall introduce a study of symmetries of isomonodromic
deformations from those of moduli spaces of meromorphic connections. The
detail of this note can be found in the paper [13]

Let us explain the organization of this note. The first section is a prelim-
inary which collects necessary notions for the latter sections, gauge trans-
formations of differential equations, Hukuhara-Turrittin normal forms, and
quiver varieties. In the second section, we explain a realization of the moduli
space of differential equations as quiver variety. In the final section, we will
discuss relationship among middle convolution on differential equations, the
Weyl group action on quiver varieties, and the symmetry of isomonodromic
deformations. Also we shall apply-a classification of root systems to that of
isomonodromic deformations.

1. PRELIMINARIES

For a commutative ring R, M(n,R) denotes the set of n x n matrices
with coefficients in R and GL(n, R) C M(n, R) consists of invertible ele-
ments. The sheaves of holomorphic functions and meromorphic functions
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on a complex manifold X are written by Ox and M x respectively. In par-
ticular when X = P!, we write O = Op1 and M = Mp for short. Let
us denote the ring of convergent (resp. formal) power series of z by C{z}
(resp. C[z]). Their total quotient fields are written by C{{z}} and C((2))

respectively.

1.1. Gauge equivalences of differential equations. We recall gauge

transformations of systems of first order linear ordinary differential equations

defined locally on P! and moreover recall Hukuhara-Turrittin-Levelt normal

forms of local differential equations under formal gauge transformations.
Let U be an open subset of P! and z a local coordinate on U.

Definition 1.1 (gauge transformation). For a linear differential equation

d

EY = AY
with 4 € M(n, M(U)) and X € GL(n, M(U)), we define a new differential
equation £Y = BY by

B:=XAX"1+ (ix) X1
dz

We call B the meromorphic gauge transformation of A by X and write
B =: X[A]. In particular if X € GL(n,O(U)), we say the holomorhic gauge
transformation.

Here we note that if a vector Y is a solution of dizY = AY thenY = XY
is a solution of Giizf’ = BY for B = X[A].

Let us take a € U and choose a local coordinate z which is zero at a. Then
the stalks O, and M, at a can be identified with C{z} and C{{z}}. We can
similarly define holomorphic and meromorphic gauge transformations of a
local differential equation dizY = AY with A € M(n, M,). In this case, we
can moreover define formal gauge transformations, namely we say X[4] is
the formal holomorphic gauge transformation of A by X if X € GL(n,C[z2])
and formal meromorphic gauge transformation if X € GL(n,C((2))).

For a local differential equation £Y = AY with A € M (n,C((2)), it is
known that there exists a normal form under the formal meromorphic gauge

transformations as follov;/s.
Let P := {Usez,, C(27)), the field of Puiseux series.

Definition 1.2 (Hukuhara-Turrittin-Levelt normal form). By Hukuhara-
Turrittin-Levelt normal form or HTL normal form for short, we mean an
element of the form

diag (91(z"* )l + Ray. . Ga(2™ Mg, + B ) 27
€ M(n,C(2+)) C M(n,P)

where ¢;(t) € tC[t] satisfying ¢; # g¢; if ¢ # j, and R; € M(n;,C) with
ny+ Ny =n.
For an HTL normal form H € M(n,P), we call Hyy := H — prye(H)z ™!

the irregular part of H. Here we denote the coefficient matrix of z~1 in
A € M(n,P) by prs(A).
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The following is a fundamental fact of the local formal theory of differen-
tial equations with irregular singularity.

Theorem 1.3 (Hukuhara-Turrittin-Levelt, see [36] for instance). For any
A € M(n,C(2)), there exist an integer 1 € Z~g and X € GL(n,(C((z%)))

such that X[A] is an HTL normal form in M(n, C((z%))) We call this X [A]
the normal form of A.

In the above theorem, we may assume the field extension is minimal, i.e.,
r = min {s . normal form X[A] € M(n,C((z%)))} .

If two HTL normal forms H,H' € M (n,C((z%))) are normal forms of an
A € M(n,C((2), then there exists g € GL(n,C) such that
g—lHirrg = Hilrr, g—lexP(27rV —1k proes(H))g = exp(2mv _1kprres(H/))

for some integer k > 1, see Theorem 6.3 in [2] for example.

1.2. Quiver varieties. In this subsection we shall introduce quiver vari-
eties.

1.2.1. Representations of quiver and quiver variety. Now let us recall repre-
sentations of quivers

Definition 1.4 (quiver). A quiver Q = (Qo, Q1, s,t) is the quadruple con-
sisting of Qo, the set of vertices, and Q;, the set of arrows connecting vertices
in Qq, and two maps s,t: Q; — Qp, which associate to each arrow p € Q;
its source s(p) € Qo and its target t(p) € Qo respectively.

For a fixed vector a € (Zxp)?, the representation space of the quiver
with the dimension vector « is

Rep (Q, a) = @ Homc((ca-‘i(p)’(cat(p))’
PEQL

Let us recall the double of a quiver Q.

Definition 1.5 (double quiver). Let Q = (Qop, Q1) be a finite quiver. Then
the double quiver Q of Q is the quiver obtained by adjoining the reverse arrow
p*: b — a to each arrow p: a — b. Namely Q := (60 =Qo, Q1 := QU Q)
where Q} := {p*: t(p) = s(p) | p€ Q1 }.

Let us note that for each p € Q1 we can identify
Homg (C%(), C%))* 22 Homg(C*s(e"), Ce™))

by the trace pairing. Thus the representation space Rep(Q, a) can be iden-
tified with the cotangent bundle

T*Rep(Q, @) = Rep(Q, ).
In this case the canonical symplectic form is given by

w(z,y) = Z (tr(zpyp+) — tr(zpryp))-

PEQL
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Thus we can see Rep(Q, ) as a complex symplectic manifold with the action
of
G := |] GL(e.,C).
a€Qo
Then the following map is a moment map;

to: Rep(Q, @) — H M(aq,C)
a€Qo
whose images ((a(Z)a)acq, are given by

pa(Z)e = Z TpTpx — Z TprTp.

PEQ1 PEQ1
t(p)=a s(p)=a

Now we are ready to define quiver varieties.

Definition 1.6 (quiver variety). Let us take a collection of complex numbers
A = (\g) € C. Then a quiver variety is the affine quotient

MA(Q, @) := p~1(N)//G := Specm C[u~1(N)]E.

Here C[u~1())] is the coordinate ring of p~'()\). Let us consider the
(possibly empty) subspace

p HN)T = {z € p~Y(N) | z is irreducible}.
Then the action of G/C* on this space is proper and moreover free (see
King [24]). Thus the symplectic reduction
ME(Q, 0) = ' (N)/G

can be seen as a complex manifold with the symplectic structure, i.e., a
complex symplectic manifold. We call this manifold the quiver variety too.

Remark 1.7. The above quiver varieties are special ones of Nakajima quiver
varieties which enjoy rich geometric properties and applications for repre-
sentation theory and theoretical physics and so on (see [27] for instance).

1.2.2. Some geometry of quiver varieties. As we noted before, the complex
symplectic manifold 9#(Q, a) is possibly empty. Thus next we see a nec-
essary and sufficient condition for the non-emptiness of 9} 8(Q, &) obtained
by Crawley-Boevey in [6].

In order to explain the condition, recall the root system of a quiver Q (cf.
[19]). Let Q be a finite quiver. From the Fuler form

<a7 18) = E aa/Ba - Z as(p)/Bt(p)7
a€Qo PEQ:
a symmetric bilinear form and quadratic form are defined by

(o, B) :== (e, B) + (B, ),
g(a) == %(a, a)

and set p(a) :=1 — g(a). Here a, 8 € Z,

For each vertex a € Qo, define ¢, € ZX (a € Qo) so that (€5)s = 1,
(a)» = 0, (b € Qo\{a}). We call ¢, a fundamental root if the vertex a has
no edge-loop, i.e., there is no arrow p such that s(p) = t(p) = a. Denote

14



by II the set of fundamental roots. For a fundamental root ¢,, define the
fundamental reflection s, by

54(@) == a — (@, €)e, for o € Z%,

The group W C AutZQ0 generated by all fundamental reflections is called
the Weyl group of the quiver Q. Note that the bilinear form (, ) is W-
invariant. Similarly we can define the reflection r4: C2 — C% by

ra(/\)b =X — (Eaa Eb)Aa
for A € C2 and a,b € Qp. Define the set of real roots by

AT = U w(ID).

weW

Define the fundamental set F C Z90 by
F:= {a € (Z>0)%\{0} | (a, €) < 0 for all € € II, support of a is connected} .

Then define the set of imaginary roots by

A™ = | | w(FU-F).
weWw
Then the root system is
A =A™ UA™,
An element At := a € AN (Zxo)? is called a positive root.
Now we are ready to see Crawley-Boevey’s theorem. For a fixed A =

(\a) € C, the set Xy consists of the positive roots satisfying

1) Aa:= Eaer Agq = 0,

(2) if there exists a decomposition a = 81 + B2+ -- , with 8; € At and

A« Bi =0, then p(a) > p(B1) +p(B2) + - - .

Theorem 1.8 (Crawley-Boevey. Theorem 1.2 in [6]). Let Q be a finite
quiver and Q the double of Q. Let us fix a dimension vector o € (ZZO)QO
and X € C. Then u~}(\)" C Rep (Q, @) is nonempty if and only if a €
3. Furthermore, in this case p~1(}) is an irreducible algebraic variety and
p~t(N)T is dense in u~t(N).

Moreover Crawley-Boevey showed the following geometric properties of
quiver varieties.

Theorem 1.9 (Crawley-Boevey Corollary 1.4 in [6]). If a € X, then the
guiver variety My (Q, ) is a reduced and irreducible variety of dimension

2p(a).

Combining these results, we have the following non-emptiness condition
of regular parts of quiver varieties.

Corollary 1.10 (Crawley-Boevey [6]). The guiver variety M?(Q, ) is
non-empty if and only if a« € X). Furthermore in this case, it is a connected
complex symplectic manifold of dimension 2p(c).
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2. MODULI SPACES OF STABLE MEROMORPHIC CONNECTIONS ON TRIVIAL
BUNDLES

Let us define moduli spaces of meromorphic connections on trivial bundles
following Boalch’s paper [3] (see also [17]).

2.1. Moduli spaces of meromorphic connections. Let
B = diag(q1(2 ) In, + R1z7Y, - gz VI, + Rz 1) € GL(n,C((2))

be an HTL normal form. The equivalent class of B under formal holomorphic
gauge transformations is

Op = {X[B] | X € GL(n,C[2])}.

Let us consider another equivalent class of B called the truncated orbit of
B. Let us consider the projection

v M(n, C(2) — M(n, C((2))/C[z])-

The map ¢ induces the action of GL(n,C[z]) on M(n,C((2))/C[z]) from
the adjoint action of that on M(n,C((z))). Namely for g € GL(n,C[2]),
Z € M(n,C((2))/C[z]) define g~ Zg := 1(gZg™") where Z € M(n,C((2))) is
chosen so that 1(Z) = Z. We can see that this is independent of the choice
of Z. '

Then regarding B as an element in M (n,C((z))/C[z]), we define the trun-

cated orbit of B by the action of GL(n, C[z]) on M(n,C((2))/C[z]);
0% := {g7'Bg € M(n,C(2)/C[2]) | g € GL(n, C[2])} -

Let us consider a meromorphic connection (O™, V) on the trivial bundle
over P1. We write V, € Op (resp. oY) for a € P! if there exists A, €
M (n,C((24))) such that V = d — A, dz, near a and A, € Op (resp. 1(4,) €
z—a Tf aeC with the standard coordinate z of C.
1/z ifa=o00

Let S = koao + . .. + kpap be an effective divisor on P! as before. Define a
set of meromorphic connections on the trivial bundle O" over P!

v == {(0", V)| V: 0" - 0" @ Qs }.

O%Y). Here z, :=

We say (O™, V) € ’I‘rivg") is stable if there exists no nontrivial proper sub-
space W C C™ such that the subbundle W:=W 0O Cc C"® 0 = O" is
closed under V, i.e.,

VW) Cc W Qg.

Let B = (By,...,B,) € M(n,C((2)))P*! be a collection of HTL normal
forms satisfying ord(B;) = k; for all i = 0,...,p. Then the moduli space of
stable meromorphic connections on trivial bundles is

_ n . (n) (0", V): stable,
M(B) := {(0 , V) € Trivg Va, € OF for all i = 0,...,p /GL(n,C).

Here GL(n,C) = GL(n, O(P')) acts on ’I‘riv‘(g") as holomorphic gauge trans-
formations.
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We can identify meromorphic connections on trivial bundles over P! and
linear ordinary differential equations on P!. Thus we can regard M(B) as a
moduli space of meromorphic differential equations on P!,

M(B) =
irreducible,
0) v—2 (*)
e O R i e
i=1v=1 2<v<ko i1=0,...,p
/GL(n, C).
Here we set

p 3
Ago) = — Z Agz).
i=1

2.2. Moduli spaces of connections and quiver varieties. We shall give
a realization of the moduli space 9(B) as a quiver variety. Let us suppose
that BO, ..., B®) are written by

m(’-)

B® = diag (qy)(z_l)lngi) + Rgi)z_l, g, (z_l)In(t)( + R )(,)z_1>

and choose complex numbers di’j], ceey ,[3’[;]]]] 50 that

€[i,j]

[TRY - =0
k=1

fori=0,...,pand j=1,...,m®. Set

ki i= —max;_y o ford(g{’ (1)}
for each i =0,...,p. Set

Ly = {i €{0,...,p} | m® > 1} U {0}
and

Leg :={0,...,p}\ irr-

Here Iy may be seen as the set of irregular singular points and 0o, and Ireg
of regular singular points other than oco.
Then let us define a quiver Q as follows. Set

t=0,...,p,

,m® } Qe = { [i,5,k]| j=1,...,m®D,
k=1,...,e55—1

1 € Iy, -
j=1,.

Q" = {[ ,J]

Then the set of vertices of Q is the disjoint union

Qo == Qf" LI QpE.
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Also set

i=1,...,m0,
Pl i G Im\{O} ,

i'=1,...,m®»

B(z) i 1<j<ji < m(i),
i’ b 1<k<di(G,i)

Qs .- ji= 1 ., m®,
Pli,j.k) - [Z Jak] - [Z Jk 1] } €] — 1 ([

QU = { ot 10,41 = [ 1]

Qs

{ [Z,J,l] [2 ]’ 1] — [Z J] IJ =1 ,m(t)} ,

(4) i,
leg -0, { {0211] [6,1,1] = [0,7] | ¢ € Iteg, 5 =1, mI(O)} )

Here d;(j, j') := deg ci(a)” (2) — 4 (2)) - 2.
Then the set of arrows of Qis the disjoint union

e (3) leg(® 5 B®) leg(®) leg(® leg(®)
Q _Q0—>I LII_I (QB UQeg - Qeg ) I_I (Qleg —>0queg )

1€ Ly i€lreg

Let o = (Qg)acq, € Z% be the vector,

Xiyg] = n{  and Qi j k) += rank H(R(z) flml)

J
=1
Also define A = (A\s)acq, € CR by
Nig) = —€7 for i € Lir\{0}, j = 1,...,m®,
A[O,]] = _5[0,.7] _ Z €][_i’1] for _7 — 1, o ,m(o),
i€leg
[%J] [¢.5] i= 0, D, j= 1 m(‘i),

Alidk] = ~ ki for 4 L... e —

Also define a sublattice of ZQ,

m© m®
L= {5 AL Z Bioj = Z'BW] foralli e Iir,\{O}} .

=1 j=1
Set LT =LN (ZZ())QO.

2.2.1. M(B) and a quiver variety. Now we shall give an identification of
M (B) with a subspace of the quiver variety 9, (Q, ). Before seeing this,
we introduce L-irreducible representations in x~!()) which are defined by a
weaker condition than the irreducibility.

Definition 2.1 (L-irreducible). If z € p~!()) has no nontrivial proper
subrepresentation {0} # y G = in p~()) with dimy € £, then z is said to
be L-irreducible.

Then we have the following bijection from 9t(B) onto a subset of the
quiver variety 9\ (Q, a).



Theorem 2.2 (Theorem 5.14 in [14]). There ezists a bijection
dp: M(B) — M\(Q, o)™
where

M (Q1 a)dif =
x is L-irreducible,
zep ' (A) | det(z # 0,7 € Iiry\{0} /G
p{f”;,]] 1<5<m©®) wr

1<y’ <m(®

As an analogy of Corollary 1.10 by Crawley-Boevey, we can determin a
necessary and sufficient condition for 9(B) # 0. Define a set Ed‘f consists
of B € LT satisfying

(1) B is a positive root of Q and 8-\ =0,
(2) for any decomposition 8 = By + - - - + B, where 3; € Lt are positive
roots of Q satisfying §; - A = 0, we have
p(B) > p(B1) + - - - + p(Br).

Theorem 2.3 (Non-emptiness of moduli spaces. Theorem 0.9 in [14]). The
moduli space M(B) # 0 if and only if o € £,

Let us recall the spectral type which is already appeared in Section 1.2 in
[23]. Consider the inductive limit

Z*® = limZ"™
—

defined by inclusions ¢;;41: Z¢ > (a1,...,a;) — (a1,...,a;0) € ZH?! for
i=1,2,....

Definition 2.4 (spectral type and index of rigidity). The spectral type of
B is the pair

1<j <5’ <m®

(ma’ (dz(]’Jl)) 1=0,...,p )

(%)
where m, = ((m[i»j,ll’ ... ,m[,-,j,e[,.,ﬂ])) o<i<p € B @m 1 Z* which sat-

1<j<m®)
isfies Zm(l ZZIO Dmpo g == =y (11’) Spal myp,j k) is defined by
Mij k) = Xigk~1] — Xi,j,k]
where
0 4] if i € Ly,
a0 = { mO ok 1€ Lo

and apje, ) = 0. Sometimes we write mq = (ma, di(j, 4')) for short.
The indez of rigidity of m,, is defined by
idxm := 2¢(a).
For convenience we introduce the following notation for m. The each

number d;(j,5') + 1 is expressed by the number of parentheses ( ) between
the sequences my; ; 1), m(; j2), - - - and my; jr 1), My j 9], - - -- For instance, if

mpg = - M 51 Mfi 2] - - - Mg, , 1)) (M e, )M g -
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‘then the double parenthesis )) (( between my; ;qj ..., and my; ;1) ... means
dz(]a /) =1.
For example, put p=1,
(m(o),m(%)) =1(2,3), (epap €2 e, €2 e,3) = (1,2,1,1,2),
(d0(17 2)7 dl(]-’ 2)> dl(2a 3); dl(l, 3)) = (0, 07 1, 1)
Then m = ((m[i’j,l], eee ,m[i,j’lm])) 0<i<p is written by
1<j<k;

(m[0,1,1])(m[o,2,1]m[0,2,2])7 ((m[1,1,1])(m[1,2,1]))((m[1,3,1]m[1,3,2]))~

2.3. Integrable deformation. Let us introduce integrable admissible fam-
ilies of connections following Boalch [3] and Yamakawa [41].

Let T be a contractible complex manifold and a;: T — P! xT, i =0,...,p,
holomorphic sections of the fiber bundle 7: P! x T — T. Moreover assume
that

ailt) # a;(t) if i # j
in each fiber P} := P' x {t}. Moreover we fix a standard coordinate z: P} =
C U {oo} so that ag(s) = co and drz = 0 on the trivial bundle P! x T — T.
Let us set
1/z (¢=0)

z—a;(t) (i#0)
fori=0,...,p. Let us consider a family B(t) = (B® (t))i=o,....p of collections
of HTL normal forms of the forms

BO() =

&%(@uz51m+#%n oty B LG+ R (07 )

z: P! xT—T,; (z,t)»—){

Here all mappings T 2 ¢t — qJ(-i) (t,2) € Clz] and T > ¢t — R§i) (t) €
M (ny), C) depend smoothly on ¢ € T. Define d;(t; j, j') := degcy, (q](-z) (t,2)—
QJ(-f)(t, z71)) — 2. We say that B(t) is an admissible family' of the collections
of HTL normal forms if d;(t;7,5’) and Rgi) (t) are independent of ¢ for all

i=0,...,pand 5,7 =1,...,m®,

Let (B(?))ter be an admissible family of collections of HTL normal forms.
Then as we saw in Remark refinvariance, we can find quiver Q, a € Z% and
e CQ independently of ¢t € T such that we have isomorphisms

B : M(B()) = M(Q, )

for all ¢t € T. We further say that the admissible family (B())ier is non-
resonant if eigenvalues of Ry) (t) never differ by any integer for each i =
0,...,pand j =1,...,m®, which is equivalent to the condition,

Xige & Z\{0} for all [i, j, k] € Qg®.

LThis is a little stronger condition than that in [41].
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Definition 2.5 (admissible family). Then the family (((’);%,vt)) oy Of

meromorphic connections is called an admissible family with (B(%))er if
the followings are satisfied:

(1) the admissible family (B(t)):er is non-resonant.

(2) We have (O3 P> Vi) € M(B(t)) for all ¢ € T.

(3) For each ¢ = 0,...,p and fixed ¢t € T, let us write V; = d —
A;(t, z;) dz;, Ai(t, zi) € M(n,C((#)) near z; = 0. Then there ex-
ists a holomorphic map g;: T — GL(n, C[z2;]) such that

Ai(t, %) =G BOG)-
As we see above, we can define the triple (Q, A, a) from (B(t)):er. We call
this triple the spectral data of the admissible family ((OPI,Vt)) - with

(B(t))ter. We call the number 2p(a) = dim(My(Q, a)) = dlm(Dﬁ(B(t)))
the dimension of the admissible family.

Definition 2.6 (integrable family). Let L VN be an admissible
: P teT

family with (B(¢))ser. If there exists a flat meromorphic connection V on
Oy p with poles on (J}_j ai(T) such that V|p: = V;, then we say that the

family ((Oﬁl’ Vt))te'lr is integrable. In this case such (Op,, 1, V) is called a
on of (05, V)
flat extension o ((’)P%,Vt) et
3. MIDDLE CONVOLUTIONS, WEYL GROUPS AND INTEGRABLE
DEFORMATIONS

In this section, we see the relationship between middle convolutions and
Weyl groups of quivers and give a classification of their symmetries in certain
lower dimensional cases. And we see the symmetries of integrable families
as an application.

3.1. Middle convolution and reflection functor. Let us take (O™, V) €
M(B) and write

p ki A(z)
(Zz(z_a)u T 402) s

i=1v=1 2<v<kg
Set
(Z A( ) J)0<z<p € H OB(!)
j=1
where A{? := — 52 4P get
Ji={l64]1i=1,...,mD} fori=0,...,p
and

P
J = H Ji.
i=0
Then we can define an operation called middle convolution for meromorphic

connections on trivial bundles over P!, see [10], [9],[37], [1],[22],[35],and [40].



Thus form the connection V we can define a new connection mc;(V) on a
trivial bundle O™ over P! satisfying the following properties.
Suppose we can choose i € J so that & # 0.

(1) If V is stable, then mc;(V) is stable.
(2) If V is stable,

mcj omci(A) ~ A,
i.e., there exists g € GL(n,C) such that
mc; o mci(A) = gAg_l = (gAi(z_l)g_l)OSiSp.
3.2. Middle convolutions on representations of a quiver. We shall
define an analogy of the reflection functors for the subspace 9M,(Q, a)df

M\ (Q, o) by using middle convolutions. For i = ([¢, ji])o<i<p € J, let us
define ¢ € Z% by

(&) = 1 ifa=1[i,j), i€ L,
Y410 otherwise.

We note that ¢; for i € J are positive real roots of Q. Let us define
s5i(8) == B - (B,&)&
for i € J and B € ZR°. Also define ri() for p € C by

Tilk)[i,g) *= Cepfe s :
(#)[ il {/"’[O,jo] — 2 if [7’9 .7] = [0>.70],

. s e— Hii,5.k] if [i’j’ k] 7 [7'> Jis 1]’
rl(”)[zﬂ’k] ) {l"'[i,j,—,l] + pi if [7', j1 k] = [i’ji’ 1]

Then we can see that the middle convolutions induce the following oper-
ations on quiver varieties.

Theorem 3.1. Let us consider 9M(B) # O and the corresponding quiver
variety M\ (Q, a)dif under the bijection in Theorem 2.2. Suppose that we
can take i = ([i,j:]) € J so that A := 3 i Ajij) = —& # 0. Then there
exists a bijection

812 MA(Q, )% — M, 11 (Q, si(a))

3.3. The lattice £ as a Kac-Moody root lattice. ' As we saw in Theorem
2.3, if M(B) = M\ (Q, )% # @, then o must be in £ N A where A is the
set of roots in Z. This inclines us to see £ N A as an analogy of the set
of roots of the lattice £ which may not be a true Kac-Moody root lattice.
It can be checked that £ is generated by {e, | a € J U QF®} over Z and
W™ = (spla€e JU Q})eg) acts on £. This may lead us to believe that £
can be seen as a root lattice with the set of simple roots {¢, | a € J U Q%)e €}
and the Weyl group W™°. However elements in {¢, |a € J U Q}fg} are not
independent over Z in general. Thus we shall introduce a new lattice L of
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which £ can be seen as a quotient. Let us note that

1) (e er) =2— Y (diGir 57) +2),

0<i<p
Fi#d}
-1 ifj=j,and k=1,
2 s € ) =
2) (El’e[z’]’k}) {O otherwise,

2 if[4,5,k =[5, K],
(3) (qi,j,k]:e[i',j’,k']) =4q-1 if ('L,]) = (il,jl) and Ik - kll =1,
0 otherwise

for i,i € J and [i, 4, k], [, 7', K] € Q}Jeg. Thus we consider a new lattice £
generated by the set of indeterminate

C={ca|a,€.7UQi,eg},

and define a symmetric bilinear form (, ) on L in accordance with equations
(1),(2) and (3). Then £ becomes a symmetric Kac-Moody root lattice and
we have a projection

= L-—CL

where for v =) o vec € L, the image Z(v) = (Ba)aeq, is given by

:B[i,j] = Z Yei»

{i=([¢.7.])€T |7s=7}
13[1.,_1,’6] = ’YC[i,J,k] °

Then Theorem 3.6 in [13] shows that = maps the Weyl group of £ to W™e.
Namely we can say that Lisa “ift” of L to a Kac-Moody root lattice with
the Weyl group Wm™e.

The kernel of E is a big space in general. Thus if we consider the inverse
image of an element B € L, it is convenient to restrict = to some smaller space
as follows. Fix 8 € £ and set Jg := {([i,5i]) € T | Bji j;) # 0 for all i € Iy}

and (QI8)5 := QI8 Nsupp(B). Then define
(T UQEE)s = Tp U (Qs®)s

and a sublattice and subgroup

Eﬂ = Z Zcg,

{ae(TUQE®)s}
WS := (54 | a € (T UQEE)g).

Denote the set of all positive elements in Eg by E’E We write the restriction
of E on L by Eg.
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3.3.1. A classification of spectral types. Let us define an analogue of funda-
mental set of the root lattice ZR0,

P + B, ea) <0 forallae JUQEE
F: {ﬂ € L7\{0} l support of 3 is connected

called £L-fundamental set. Then we can see that F can be seen as a funda-
mental domain under the action of the group W™¢. Namely, we can show
that quiver varieties with imaginary roots as dimension vectors can be re-
duced to M (Q, @)% with o € F by the action of W™e,

Thus we shall consider a classification of elements in the set F. First let
us introduce the shape of 8 € L.

Definition 3.2 (shape). Fix a Kac-Moody root lattice L = @,; Za; and
a =) ;cymio; € L. For the Dynkin diagram of the support of o, we attach
each coefficient m; of a to the vertex corresponding to «;, then we obtain
the diagram with the coefficients, which we call the shape of a.

For example, if @ = mia;, + maoy, + maa;, € L with the diagram of the

my mz M3
support O—O—O , the diagram with coefficients is O—0O—O

Oy Oy Oljg Qi Oy Qg ’
By using this we define shapes of elements in £ as follows.

Definition 3.3. For 8 € L, the shape of B is the set of shapes of elements
in Egl(ﬂ) C Lg.

We say that 8 € Zgg is reduced if it never happens that there exists
i€ {1,...,p} such that #{j | B};;] # 0} = 1 and e}; ;) = 1 where j; € {j |
B,j) # 0}. Let us consider the set of all nonempty moduli spaces D(B).
Set

o0
Ht™ = {(B,) € @M (n,C[z7Y]) | all B; are HTL normal forms}

(o 0]
Ht = | J Ht™.

n=1
Definition 3.4 (fundamental spectral type). Let m be a spectral type.
We say that m is effective if there exists B € Ht such that 9(B) =
MA(Q, )4 #£ @ and m = m,. A spectral type m = m, is said to be
basic if o € F'. Also we say that m is reduced if o is reduced. We say that
m is fundamental if m is effective, basic and reduced. By the shape of m,
we mean the shape of a.

Then we can show the following finiteness of basic spectral types.

Theorem 3.5 (Theorem 8 in [16]). Let us fix an integer ¢ € 2Z<o. Then
there exist only finite number of fundamental spectral types m satisfying
idxm = gq.

Let us see the cases ¢ = 0 and —2 for example. The first case is ¢ = 0.
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Theorem 3.6 (Theorem 9 in [16]). Shapes of fundamental spectral types m
satisfying idxm = 0 are one of the following.

1
2 2
1 2 3 2 1 1 2 3 4 3 2 1
3 1
1 2 3 4 5 6 4 2 1 2 1
1
a l1—a
i:i A 1 1 l-a }( a
Oo=0
(1@),1,11 (W)((D)),11 (1)) (a €Z)
(M@YD@A))  (@HW)((2)) (D), (1)(1)

We simply write sets {z, | a € Z} and {z} by z, (a € Z) and z, respectively.
For the first 4 star shaped graphs, corresponding spectral types are given in
Remark 3.7 below.

If M)(Q, @)% # @ and & € F with g(a) = 0, then by the above list of
shapes of &, we can check that a is invariant under W2°, i.e., w(a) = « for
any w € W3°. Then

sa: MA(Q, )M —> M, (1)(Q, o)™
for each a € (J U Q®), defines a W™ -action on the parameter space

Ta: ZGE(JUQleg) Cca —> EaE(JUQleg) CCa
A — ra()\) ’

see also Proposition 3.7 in [13]. Here if A, = 0, i.e., s, on M\ (Q, a)d is not
well-defined, we formally set s, = id and 7, = id. By the above theorem,
W2 is isomorphic to one of the Weyl groups of the following types,

B, B, BD, DP, 4D, AD, 4D, 4D x AD.

Remark 3.7. In the above list of shapes, we omit the spectral types for
star-shaped diagrams. For these cases spectral types are obtained as fol-
ng,1 _No,2

o

lows. Consider a shape . and put m; 1) = ng — N1,

MG, 5+1) = N5 — T, 5+1, M(,0) = EO%I:Ep ng,1 — 1o and m) = Ef:o N1 —
1]
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no. Then the shape corresponds to the following 5 types.

mM(0,1)T7(0,2) « -+ » TYLD)T(1,2) -+ -1 -+ -5 M(p1)M(p2) - - -»
myno, (Mm(o,2mM©3)---)--- (m(p’z)m(p,;;) R

M3G0)M(i1) - - -5 (ME2)M03)---) -+ (M—1,2) - - ) (MGy1,2) ) -+,
((m(i,l)m(i,Z) .- -))((m(o,z)m(o,?,) ce)een (m(i—2,2) .. -)(m(i+1,2) o))
((no))((mp2ym3)---) - - - (Mp2yM(p3) - - -))-

Next let us see the case ¢ = —2.

Theorem 3.8 (Theorem 10 in [16]). Shapes of fundamental spectral types

m satisfying idxm = —2 are one of the following.
a 1-—a l-a a
Q= 1 A
°>>:<<° (a €7Z) 1— l’.‘l (a € Z)
(@)(), 1) OO, )11
W = @ Wm'u Al
a—1
1 a 1 ( 2) 2—a 2—al1l a a (@cz)
a€ O—=O0—0O0—C=0 (ac€
Pral _§e ‘@@, @)
(1)(11), (1)(11) W™ = A; x A1 X A
Wln’l) A3
a b 2—a—0b 1
.\\zéz%//. (a,b€Z) a_1@=o_i_o=@“ ot e
TATAS ’ (a€Z)
1—a 1-b a+b—1 2)(2), (1)(111
O, @) AT
Wi"w A1 X Al X A1
1
1 1 2 2 1 1 1 1

=0 C=0—7—0 O#O
(@M@ (@NIA))  (@ONA)  (@NA)), 11
Wi — ¢ Wi — A x A W'm'u A x Ay Winv — Ay

2
2 4 1 1 4 3 2 1
i 2
Wmv (A1)5 Wmv D4 XA1 Wz‘nv D6



2 4 6 4 3 2
W”w E6 X Al W“w A7 X A1
1 2 4 6 86 4 2 1 3 4 5 6 4
Wm” FE7 x A1 Wm'” Dg X A1
6 2
1 2 4 6 8 10 128 4 1 2 3 4 54 3 2 1
Wmv Eg x Al Wzm: Ag
4 5
3 4 5 6 7 8 5 2 1 4 7 108 6 4 2
W — D10 Winv —
is 4 3 O—®<i O—O@_O
W = (@)(2)(A1))  ((A1))(A1)((1))

(@)((1),22  ((11))((1)),111
(@)((2)),211  ((11))((11)),31
Winv — Ay X Ay Wi — Ay

Yo lcotlcol¥te

((2)2)((2)(11)) ((11)(A1))((2)(1)) ((A1)(1)((A1)(1)) ((1)(111))((2)(2))
(2)(2),22,211  (11)(11),22,31  ((11)(1)),21,111  (1)(111),22,22

(2)(11),22,22  (2)(1),111,111 Winv = A, (2)(2),31,1111
Wt‘n’l] A3 X -A]. W’lr’ﬂ?} A5 W’Lﬂv D5

7

((1)(1) ((1)(1)(1)) (W)ANM)Q)
(1)(1),11,11,11  ((1))((1)),11,11
(1H@)@),21,21  ((1)(1))((1)),21
Winv — (A1)3 Wwinv — A; x Ay

Here we simply denote the sets {z, | a € Z} and {y} by z, (a € Z) and
y, respectively. For the spectral types of the star shaped graphs, see Remark



83.7. Here for fundamental spectral types m = m,,

Wi .= (s, | sa(a) = a,a € (J UQI)5) ¢ W<,
Plain circles in the Dynkin diagrams correspond to simple roots c, such that
$a(B) = B and dotted circles correspond to sq(B) # B-

As well as the case ¢ = 0, in the case of ¢ = -2, M (Q, a)3f # @ with

a € F such that g(a) = —2 has a Wi™-action on the parameter space

"'a : ZGE(JUQ:)GG)Q Cca — ZGE(JUQ}_)eg)a CCQ, )

A — Ta(A)

3.4. Integrable deformations and middle convolutions. The theorem
below connects the W™¢-action on J(B) and on integrable deformations.
The following theorem is obtained by Haraoka-Filipuk in [11] for Fuchsain
cases, Boalch in [5] for simply-laced Q with Iy = {0} and Yamakawa in [41]
for general Q.
Theorem 3.9 (Yamakawa. Corollary 3.17 in [41]. cf. Haraoka-Filipuk
[11] and Boalch [5]). Let (B(t))icT be an non-resonant admissible family of
collections of HTL normal forms which satisfies that that (B@(£))ir = 0
and pr,.(BO(t)) is invertible. Let ((O;% Vt))teT be an admissible integrable
family with (B(t))ier and the spectral data (Q,\,a). Then for each i €

J, there exists an admissible integrable deformation (((’)]{,?1 Vi))te’n‘ with the
t

spectral data (Q,7i(\), si()) such that Vi = mc;(Vy) for allt € T.

Definition 3.10. We say that an admissible integral family ((0&, Vt))

with (Q, A, a) is fundamental when a € F N ¥ and « is reduced.

teT

Then Theorem refreduction and Theorem 3.9 show the following.
Theorem 3.11. Let (B(t));cT be as in Theorem 3.9. Let ((O™, V), be
an admissible integrable family with (B(2))ter and the spectral data (Q, A, @)
where o € Eng and q(a) < 0. Suppose that X is generic (for the precise

condition, see [15]). Then ((OP%’vt))t p be reduced to a fundamental
€

admissible integral deformation by a finite iteration of middle convolutions
and additions.

For an admissible integrable family ((0;1, Vt))t T with a spectral data
t €

(Q, A, @), we call m,, the spectral type and also X the spectral parameter.
Theorem 3.12. Let us fix an integer d € 2Z~¢ There exists only finite spec-
tral types of fundamental admissible integrable deformations of dimension d.

Proof. This directly follows from Theorems 3.5 and 3.9. O

We have the classification of spectral types of admissible deformations of
dimension d = 2 and 4.

Theorem 3.13. Spectral types of fundamental admissible integrable defor-
mations of dimension d = 2,4 are listed in Theorem 3.6 (resp. Theorem
3.8) for d = 2 (resp. d =-4). Moreover generic spectral parameters have
Wm™C_qgctions (resp. Winy-action) for d =2 (resp. d =4).
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In [23], Kawakami, Nakamura and Sakai considered isomonodromic de-
formations of linear differential equations which obtained by the confluent
process from Fuchsian differential equations with 4 accessory parameters
classified by Oshima in [31]. And they gave explicit Hamiltonian equations
of the isomonodromic deformations after Sakai’s computation in the Fuch-
sian cases (see [33]). Then under the above identification of spectral types,
Theorem 3.8 shows that the list of spectral types appeared in their paper
[23] is the complete list of fundamental spectral types of dimension 4.

Theorem 3.14. Under the above identification of spectral types, if we ex-
clude the spectral types corresponding to differential equations which have
only 3 regular singular points and no other singularities, then the list of
spectral types appeared in Section 1.3 of [23] is the complete list of spectral
types of fundamental integrable deformations of dimension 4.

Moreover Theorem 3.13 assures that integrable deformations considered
in [23] have W™ - symmetries listed in Theorem 3.8.
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