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Finite type cluster algebras and Demazure crystals

Yuki Kanakubo
(Sophia university, Graduate school of Science and Technology)

Notation

Let G = SL,y4+1(C) be a classical algebraic group of type A, over C and
I=1{1,2,---,r} be indices set. Let B, (B~) C G be the set of upper-(lower)
triangular matrices, H := BNB~, N C B,N~ C B~ unipotent radicals, and
W := Normg(H)/H =< $;H > the Weyl group of G with the simple reflections
s; = 5;H. Here, 5; € Normg(H) is defined as 5; := exp(—e;)exp(fi)exp(—e;).
For a reduced expression u = s8;, - -- s;, € W, setting u = 55, - - - 37, we get

G =, yewBuBN B TB".
We call G%" := BuB N B~75B~ Double Bruhat cell.

1 Introduction

Fomin and Zelevinsky have invented cluster algebra for the study of total pos-
itivity and dual semi canonical base in 2002 [4]. It is a commutative algebra
generated by so-called cluster variables. Choosing a part of the cluster variables
properly, we can combinatorially calculate other variables from them. These
chosen variables are called initial cluster variables.

It is known that cluster algebra structures appear in many algebras relevant
to simple algebraic groups, which include C[G**], C[N] and Grothendieck rings
of certain category of representations of quantum affine algebras. In this way,
cluster algebras are closely related to algebraic groups or its Lie algebras [6, 7].

Cluster algebras which have only finite many cluster variables are called finite
type. In [5], cluster algebras of finite type are studied thoroughly, and they are
classified by the set of Cartan matrices up to coeflicients. For a fixed Cartan
matrix, all the cluster variables are parametrized by the set of “almost positive
roots”,; which is, a union of all positive roots and negative simple roots corre-
sponding to the Cartan matrix. Thus, we define the type of such cluster algebra
to be the type of the corresponding Cartan matrix. Let ¢ € W be a Coxeter
element whose length I(c) satisfies [(c?) = 2I(c) = 2rank(G). It is known that
one can realize a cluster algebra of finite type on the coordinate ring C[G®*’],
whose type coincides with the Cartan-Killing type of G [1].

In [8, 9], we showed that certain cluster variables of C[G™¢] (v € W) are
realized as a sum of monomials in Demazure crystals in the case G is type A, B,
C or D. Then we treated only a part of the cluster variables. In this article, we
consider the case G = SL,+1(C) (r > 3) and describe all the cluster variables in
C[G®*<"] using direct sum of certain monomial realizations of Demazure crystals
and gave a new parametrization of these cluster variables different from those
of [5]. We see that each initial cluster variable in C[G*"] is described as a sum
of monomials in the Demazure crystal B(Af )., with some k € {1,2,---,r} and
wg € W. And other variables are described as sums of monomials in Demazure
crystals in the forms B(ng As)w ® @Y B(At)w, with some w,w; € W,
p,a,b € Zwg and \; € Z';:a As — Y ;c1 Z>oa;. By this, we see that a natural
correspondence —ay, — B(Ag)uwg, Yooey s = B(30_y As)w & BF_; BA\t)w,



gives a parametrization of the cluster variables in C[Ge’cz] by the set of almost
positive roots.
This is joint work with T.Nakashima (Sophia university).

2 Quantum groups and crystal base

First, let us recall representation theory of quantum groups and monomial real-
ization of crystal base. We set g := Lie(G) = sl,.;1(C), and let PV := ®;c1Zh,
be a dual weight lattice, (a; ;)i jer Cartan matrix of g. Let {A;}:cs be the set
of fundamental weights, P = @_, ZA; and Pt = @]_; Z>oA; be the weight
lattice and positive weight lattice respectively.

2.1 Quantum group and its representation

We suppose that g € Cxo is not root of unity.

Definition 2.1. A quantum group Uy(g) is C-algebra generated by e;, fi, ¢"
(i € I, h € PV) with the following defining relations:

e ¥ =1, qhqh’ — qh+h' (kb € PY),
o qhejgh = ¢ P,

o ¢"figh =g,

hy __—h
eifj — fiei = 0i; L=

—a., |1—a;; - .,
i;,”[ k”’] (~1)ke; ™™ Fejek =0 (i #7) ,
q
—a,, |1 —a;; —a,,,— L,
* Yico [ k"’] (DR TR =0 G # ).
q

Here, [n], := 9-%};, [n]g! :== [n]q[n — 1], - - - [1]4 and. [ZLL 1= [_an—'[[r%—'_nI?

There are several basic facts about representations of Uy(g):

e A finite dimensional irreducible representation V of U,(g) have highest
weight vector vy (A € Pt), that is, V = Uy(g)va, ¢"*vx = ¢*Muvy(h € PV)
and e;uy =0 (¢ € I).

e For the finite dimensional irreducible representation V(A) with highest
weight ), it is decomposed to weight spaces:

V) = @uep, paV W VO = {v € V(N)lg™v = ¢*®)v}.

e V() has the crystal base B(A) [11].
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2.2 Crystal bases
e Remark that the crystal base B()\) is not a base of V(}\).
e B()) is a set which includes the highest weight vector 7.

e There exist Kashiwara operators &, f; : B(\) — B(A\)U{0}. Each element
in B(A) has weight, that is, there exists a function wt : B(A) = P.

The crystal base B()) is described as Young tableaux, Laurent monomials
and so on. Using these descriptions, we can calculate dim V()),, and roughly
reveal a structure of representations combinatorially.

Example 2.2. Let us consider the case G = SL4(C). The crystal base B(Az)
of the representation V(Az) is described by Young tableau as follows:

S "’]‘;_1‘“1"“‘

The above figure implies that the representation V' (A;) has dimension 6 and it
is decomposed to 1 dimensional weight spaces as follows:

V(A2) = V(A2)a, ® V(A2)as-ns+0; © V(A2)as—n, ® V(A2)-as+a,
@ V(A2)—A3+A2—A1 57 V(A2)—A2’

where we used wt( ) =AM —Ai1+ A — A

Now, we define the Demazure crystal B()\),, for w € W.

Definition 2.3. Let u) be the highest weight vector of B()\). For the identity
element e of W, we set B(\). := {ux}. For w e W, if s;uw < w,

B(N)w :={fFb | k>0, be B(A)s,w, &b=0}\{0}.

Theorem 2.4. [12] For w € W, let w = s;, ---8;, be an arbitrary reduced
expression. Let u) be the highest weight vector of B(A). Then

B(\)w = {F20 ... f&™uy, la(1), - ,a(n) € Zxo} \ {0}.
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2.3 Monomial realization of crystal base

In the previous subsection, we have seen the Young tableau description. Next,
let us recall the monomial realization of crystal base [10, 13].

First, for a sequence (i1,%2,--- ,%-) such that {i1,i,--- 4} = {1,2,--- ,7},
let p = (p;,i)j i1, j#i be integers such that

o _J1 if a>b,
Piaio =10 it a<b.

Second, for doubly-indexed variables {Y;, |i € I, s € Z},

y=<v= [[ ¥
S€Z, i€l

ForY= [] YS' €Y, wi(Y):=Y (il
8E€EZ, €I %,8

Cs,i € Z, only finitely many (,; # 0} .

¢u(Y) 1= max {z Chils € z} ;&Y = piY) = wi(Y) (o).

k<s

Setting
A =Y, Yo [ [ Yo, s
J#i
Define the Kashiwara operators as

iy = A;;”iy' if i(Y) >0, LY — Apn, Y if &(Y)>0,
* 0 if @(Y)=0, 0 if £(Y)=0,

e, = MAax {n

(i) For the set p = (pj;) as above, (I, wt, ¢;, &;, fi,€i)ier is a crystal.
(ii) If a monomial Y € Y satisfies €;(Y) = 0 for all ¢ € I, then the connected
component containing Y is isomorphic to B(wt(Y")).

where

ny, := min {n

Theorem 2.5. [10, 13]

3

oY) =) Ck,i} .

k<n

wi(Y) = 2 Ck,i} ,

k<n

A monomial realization of crystal base is determined by a monomial Y satis-
fying €;(Y") = 0. Note that if Y has no negative power, then ¢;(Y) =0 (i € I).



Example 2.6. Let us consider the case G = SL4(C). A monomial realization
of crystal base B(As) is described as follows.

Y12
f2
YiaiYis fs Y11
Yo o Y23
A h
Yis Y22 1
Yz2,1 s Y2,1Y2,3 7 Y3,2

We can verify wt(Y7,2) = A and €;(Y1,2) =0 (i = 1,2, 3).

3 Cluster algebra structures of coordinate rings

In this section, we shall recall the definition of cluster algebra. We will refer to
a relation between certain cluster variables on Double Bruhat cells and crystal
bases in the next section. First, let us see an example. For [ € Z(, we set
[1,]]:={1,2,---,1} and [-1,-0] := {-1,-2,--- ,—I}.

3.1 Example

Example 3.1. Let us consider the case G = SL4(C), v := 525183825183 € W
and the double Brubat cell G*¥ = BN B~vB~ C B. For z = (z;;), let

D12,24(x) denote the minor det(i;’z 2:) € C[G*"] and so on. We can

obtain generators of C[G®"] over C[Di55 334, Di5 34, Di4, D 123 D12, DE1]
from 3-tuple (D12,24, D1,2, D123,124). First,

D12,12D1,4D123,234 + D1,2D123,124
b

(D12,12D13,34) = D
12,24
D Dy324D11 + D1,4D1212 _ D12,24D123123 + D123,234D12,12
12,14 = y Digs = .
Ds 2 Ds23,124

Note that the denominator of (Dig,12D13,34) is Dj2,24, the numerator is bi-
nomial of Dy 2, Di23,124 and the coefficients. The same is true of Dig14 and
D12,23. Replacing D124 with (D12,12D13,34), we get new tuple ((D12,12D13,34),
D2, D123,124)-

We can also obtain Dj212D34 and Dy31Da334 from((Di2,12D1334), D12,
D123,124):

D _ (D12,12D1334) + D123,234D1 1
123,134 = ) )
1,2

_ (Dh2,12D13,34) + D1,4D123.123

D3
D123,124
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The denominator of D123,134 is D1,2, the numerator iS binomial of (D12, 12D13’34),
Dh23,124 and coefficients. The denominator of Dy 3 is D123,124, the numerator
is binomial of (D12,12D13,34), _D1,2 and coefficients.

In this way, from (Di224, D12, Di23124), We can constitute elements of
C[G*"] one after another. We call these elements cluster variables. All cluster
variables included in C[G*"] are

Dy3, Dig24, Dissjize, Di2ziza, (Di2,12D13,34),

D13, Disjya, Dizps Dizis.

In the following subsections, we shall give details of it.

3.2 Cluster algebras of geometric type

Let B = (bej)1<i<ntm, 1<j<n be an (n+ m) x m integer matrix (n,m € Zso).
The principal part B of B is obtained from B by deleting the last m rows. For
B and k € [1,n], the new (n 4+ m) x n integer matrix px(B) = (b i;) is defined
by
b/~~‘= —bij ifi=korj=k,/
bij + Lbake [bry Zb:klbka | otherwise.

One calls p(B) the matriz mutation in direction k of B. If there exists a
positive integer diagonal matrix D such that DB is skew symmetric, we say B
is skew symmetrizable. It is easily verified that if B has a skew symmetrizable
principal part then u (B) also has a skew symmetrizable principal part. We can
also verify that prpk(B) = B. Define x := (1, , Tntm) and we call the pair
(x, B) initial seed. Let F := C(z1, - yZnyTnt1," " ,Tn4m). For 1 <k < n,a
new cluster variable z} is defined by

TiT) = H T 4 H , k.

1<i<n4m, b, ;>0 1<i<n4m, b, <0

Let pr(x) be the set of variables obtained from x by replacing zx by «},. Ones
call the pair (ux(x), ux(B)) the mutation in direction k of the seed (x, B).

Now, we can repeat this process of mutation and obtain a set of seeds induc-
tively. Hence, each seed consists of an r-tuple of variables and a matrix. Ones
call this r-tuple and matrix cluster and exchange matriz respectively. Variables
in cluster- are called cluster variables, and Tp41, Tpi2, " ,Tn+m are called
frozen variables.

Definition 3.2. [3] Let B be a integer matrix whose pr1n01pa.1 part is skew
symmetrizable and £ = (x,B) a seed. We set A := Z[z o Tim]. The
cluster algebra (of geometric type) A = A(X) over A associated W1th seed X is
defined as the A-subalgebra of F generated by all cluster variables in all seeds
which can be obtained from X by sequences of mutations.

3.3 Cluster algebra A(i) and generalized minors.

Let A = (a;,7) be the Cartan matrix of G. For a reduced word i = (i1, - , iy(v))
of v, we define the cluster algebra .A(i), which obtained from i. It satisfies that



A(i) ® C is isomorphic to the coordinate ring C[G®?] of the double Bruhat cell
[1]. Let 3¢ (k € [1,1(v)]) be the k-th index of i from the left. For ¢t € [-1, 7],
we set iy ;= 1.

For k € [-1,—r] U [1,l(v)], we denote by k¥ the smallest index I such that
k <1 and |g| = |ig|. For example, if i = (1,2,3,1,2) then, 17 =4, 2+ =5 and
3% is not defined. We define a set e(i) as

e(i) := {k € [1,1(v)]|kT is well — defined}.

Following [1], we define a quiver I'; as follows. The vertices of I'; are the numbers
[-1,—7r]U[1,l(v)]. For two vertices k € [-1,—r] U [1,l(v)] and [ € [1,I(v)] with
k < I, there exists an arrow k — [ (resp. | — k) if and only if | = k* (resp.
I <kt <1t and a;,,, <0). Next, let us define a matrix B = B(i).

Definition 3.3. Let B(i) be an integer matrix with rows labelled by all the
indices in [—1, —r]U[L,1(v)] and columns labelled by all the indices in e(i). For
k € [-1,-r]U[1,l(v)] and € e(i), an entry by ; of B(i) is determined as follows:
If there exists an arrow k — ! (resp. | = k) in T}, then

- 1 (resp. —1) if |ix| = |4,
—ilir) (TesP. apiyjay)  if Jik] # li]-

-

If there exist no arrows between k and !, we set bx; = 0. The principal part
B(i) of B(i) is submatrix (b;,;); jee(i)-

Proposition 3.4. [1, Proposition 2.6] The principal part of B(i) is skew sym-
metrizable.

By Definition 3.2 and Proposition 3.4, we can construct the cluster algebra:
Definition 3.5. We denote this cluster algebra by A(i).

Set A(i)c := A(i) ® C. It is known that the coordinate ring C[G®"] of the
double Bruhat cell is isomorphic to A(i)c (Theorem 3.7). To describe this
isomorphism explicitly, we need generalized minors.

We set Go := N_HN, and let z = [z]_|[z]o[z]+ with [z]- € N_, [z]o € H,
[z]+ € N be the corresponding decomposition.

Definition 3.6. For i € [1,7] and w € W, the generalized minor Ay, ya, is
a regular function on G whose restriction to the open set Gow™! is given by

Ap, wa, () = ([zwlo)™.

In the case G = SL,4+1(C), it is coincide with an ordinary minor. In fact,
Ap,wa, (%) = Dqa,... i}, w{1,- i} For example, if G = SL4(C), v = 525153825183,
since W =2 Gg,

Dy1,2},v5201,2} = D{1,2},s5818285{1,2} = D{1,2},{2.4}>

where the notation vso will be define in the next subsection (1).
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3.4 Cluster algebras on Double Bruhat cells

For v = 8,84, - -+ 8,,, (n:=1(v)) and k € [1,n], we set
Uk = V(1) 1= Sun iy Sigss )

For k € [-1,—r], we set vsg :=v~! and ix := k. For k € [-1,-r]U[L,n], we
define
A(k; i)(z) == AA|,k|,v>kA|-.k|(m)'

Finally, we set
F(i) .= {A(k; 1) (z)|k € [-1,—-r]U[1,n]}.

It is known that the set F'(i) is an algebraically independent generating set for
the field of rational functions C(G*?) [3, Theorem 1.12]. Then, we have the
following theorem.

Theorem 3.7. [1, 6, 7] The isomorphism of fields ¢ : F — C(G®") defined by
p(zx) = A(k;i) (k € [-1,—7] U [1,n]) restricts to an isomorphism of algebras
A(i)c = C[G*"].

In Example 3.1,i=(2,1,3,2,1,3) and

. (B(i), (D12’24, D, ,, D123,124)) is an initial seed, where

[0 -1 —1]
1 0 0
1 0 0
_ 0 -1 0
Bi=[0 0 -1
1 1 -1
-1 1 0
1 0 ©
-1 0 1

Here, the row is labeled by 1,2,3,4,5,6,-1,-2,-3 from top to bottom, the
column is labeled by 1,2,3 from left to right. The isomorphism ¢ is given
by x1 — D124, 2 = D12, £3 v Di23,124, T4 — D11, 5 — Di23,123,
zg — Di2,12, T7 > D14, 23 = D12,34 and xg > D123 234.

® Di324, D12, D123,124 are initial cluster variables.

® D324, Dij2, Di23124, Di23134, (D12,12D1334), D13, Di2,14, D223,
Ds3,13 are cluster variables.

® Di23234, D12,34, D14, Di23123, D12,12, Di,1 are frozen variables.

e The coordinate ring C[G®"] is generated by all the cluster variables and
frozen variables.
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3.5 Cluster algebra of finite type

A cluster algebra is said to be finite type if it has only finite many cluster
variables. For an n X n matrix B = (b, ;), Cartan counter part A(B) = (a; ;) of

B is defined as
I £ if i = j,
T =gl if i £ 4
Theorem 3.8. [5]

1. A cluster algebra A is finite type if and only if there exists a seed & =
(y, B) such that A(B) is a Cartan matrix C and A = A(X) as C—algebra,
where B is the principal part of B. This Cartan matrix is uniquely deter-
mined.

2. Let A(X) be a cluster algebra of finite type, and C be a corresponding
Cartan matrix. Let ®>_; = ®59 U {—a,)i € I} be the set of almost
positive roots of C, which is a union of the set of positive roots ® and
negative simple roots {—a;|i € I} of C. Then the number of cluster
variables included in A(X) is equal to #®>_;.

3. Let ¢ be a Coxeter element such that I(c?) = 2I(c). Then there exists a
seed ¥ = (y, B) such that A(B) coincides with the Cartan matrix of G

and )
ClG**] =2 A(D).

3.6 A coordinate transformation of cluster variables

For a = diag(ai1,a2, - ,ar41) € H, v =8;, ---8;, € W and its reduced expres-
sion i = (i1, - ,in), we define a map Xj as
Xi: H x (Cyo)" — G (2

h, Ay,
(ast1,--- ,tn) = a(exp(tie;,)t;™) - - - (exp(tnes, )tn™).

Theorem 3.9. (2, 3] The map X; is a biregularly isomorphism from H x (Cy)™
to a Zariski open subset of G*.

Example 3.10. In the case G = SL4(C), v = 328183328183 and i = (2,1, 3, 2,1, 3),

let us calculate X;. In this case, we have

Lie(G) = < €, fi, hi>
= < Eiiy, By, Fii— Eip1,i41 >,

where {E; ;}1<i j<a are the matrix units. Then

1 ¢t00\/t 0 00 t 1 00
0100|[o0 ¢ 00 0 t1 00

hy __ _
expter) ™ =g o6 3 oflo o 1 0/=lo o0 1 o
0001/ \o o 01 0 0 0 1
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Thus, X; : H x (Cx)® =5 G&*25153%29183 ig given by

Xi(a;Y1,2,Y1,1,Y1,3, Y22, Y21, Y2 3) =

1 0 0 0 Yia1 1 0 0 1 0 O 0
0. |0 2 10 0 Y 00 01 0 0
0 0 Y, 0 0 0 10 0 0 Yo5 1
0 0 o0 1 0 0 01 00 0 Y53
Y1,1Y2,1 Yl 1+ g:: Yé,3 1
0 Y1,2Y2,2 Y1223 + YisYes Y12 , Yaz |, 1
=a- ¥1,1Y2,1 Yi1 Y22 Yli} Y22 ' Yo
0 0 Y13Y23 L3 1
Y1,2Y2,2 Y1,2Y2,2 1 Y1,2Y2,3
0 0 0 Y1,3Y23

Recall that in Example 3.1, the minor D;324 is one of the initial cluster
variables in C[G*"]. Now, using above X;, we can regard Dj2 24 as a function
on H x (Cxo)®.

D124 0 Xi(a;Y1,2,Y1,1,Y1,3,Y22,Y2,1,Y23)

Y1.1Y; Y; Y5 Y
=a1a2(Y12+ 11713  Yiz Yoo 11)
Y Yo  Ya1Ya3 Yz 3
Come ring wgh the figure i m Example 2.6, we can easily check that the set
{Y1,2, ’}32 Fa, Y; 3, 3’?12—1%_3’ o 72} of terms in D3 24 0 X coincides with mono-

mial realization of Demazure crystal B(Az)sgs,s,. Similarly, we get

Y-
Di23,124 © Xi(a; Y) = a1aza3(Y1,3 + %),

>

Y
Dy 0 Xi(a;Y) =a1(Y1,1 + Vo)
2,1

which coincide with the total sums of monomials in Demazure crystals B(A1)sgs, sz,
B(A3)s;s,s, respectively. All other cluster variables in C[G*<’] are

Y11Y13Y5 Y1.Y5
(D12,12D13,34)0X; = a2azasYa 2, Dig1a0Xi = aag(YyoYa+—2 k2ol “LIT1y
Ya2 Y3
Yi1Y13Y5
Diz3 0 X; = ajag(Yi oYa 3 + 212223 | Yis¥e, 3), Djy30X;=a1Ys3,
’ ’ il Y2,2 )/'2 1 El ”

l/v:lIY:l:3)72l}/’23)
Yso

which coincide with the total sums of monomials in Demazure crystals B(As)e,

B(Al +A2)3352, B(A2 +A3)3132, B(A3)e, B(Al)e and B(Al +Ag +A3)32 respec-

tively. Thus, a correspondence —a; — B(A;)sgsys5, @ — B(As)e (2 =1,2,3),

a1 + a2 = B(A1 + Ag)sys,, a2 + a3 = B(A2 + A3)sys,, and a1 + a2 + az —

B(A; + Az + Ag);, yields the alternative parametrization of all cluster variables

in C[G®<"] by the set of almost positive roots, which differs from the one in (5]
In the next section, we generalize this example.

Di33,1340X; = a1a2a3Y21, Di2130X; = a1a2(Y1,2Y21Y2 35+
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4 Cluster variables in C[G®] and crystal base

4.1 Main theorem

In this section, we shall describe all the cluster variables in C[G®® | as monomial
realizations of Demazure crystals. Let G = SL,43(C) (r > 3), and ¢ € W be
the following Coxeter element:

8284 --878183---Sp—1 if r is even,
c=
8284 ---Sp_18183--- 8y if 7 is odd,

and i be the following reduced word of c2:

{ 2,4,---,r1,3,---,r=1,2,4,--- ,r,1,3,--- ;7 —1) if ris even,
2,4,---,r—1,1,3,--- ,7,2,4,--- ,7r—1,1,3,--- ,7) if r is odd.

Along the above i, we set the variables Y € (C*)?" as

(},1,23 },'.l,41 R} Yi,'f‘) y'l,la Y?l,37 o ,},].,r—lv
Y22,Y24,-- , Y2, Y21,Y23,- -+ ,Y2,_1) if ris even,
Y1,2,Y14, -, Y10-1, Y11, Y13, , Yir,
Y22,Y24,--+,Yay_1,Y21,Y23, -+ ,Ya,) if ris odd.

Y =

Let jx be the k-th number of i from the right. For example, if r is even, then
Ji=r=1,j2=7-3,---, jr =2. Recall that the minors D1 3,... ji},s, -8, {1,2, i}
are initial cluster variables in C[G®’]. Let = be the set of the non-frozen cluster
variables in C[G*<"], and we consider the monomial realization associated with
the sequence (jr, jr—1,--* ,J1) (see 2.3).

Theorem 4.1. (1) D12, ji}s), -85, {1,2, - s} © Xi is the total sum of the
monomial realization of Demazure crystal B(Aj,)s,, s, With coefficients

1, where the map X; : H x (Cx)#(®) —; G**’ is the one in Theorem 3.9.

(2) For each non-initial cluster variable £ in C[G®’], there uniquely exist
p>0,w,w; €W, X = Z';=aAj (1<a<b<r)and A\; € Pt such that
A—Ai € @serZ>pas and € o X is the total sum of monomials in Demazure

crystals in the form
P
B(\)w ® D B(Ai)uw,-
=1

Then, let {5 denote this non-initial cluster variable £. In particular, the
map ®>_; = E,
b
— 0 = Do, i} g, 8, {1,200 ik b ZO‘J’ S >IN

j=a
is a bijection between the set ®>_; of almost positive roots and E.

Remark 4.2. The correspondence between ®>_; and the set E of cluster vari-
ables in this theorem is different from the one of [5].



4.2 Examples

Example 4.3. Let us consider the case G = SL4(C) and ¢ = s38153 € W. As
have seen in Example 3.10, all the cluster variables in C[G<"] are described as
Demazure crystals

B(Ai)383132’ B(Ai)e (Z =12, 3)’
B(Al + A2)sssm B(A2 + A3)S182s B(Al + Az + A3)82'

Example 4.4. Let us consider the case G = SL5(C) and ¢ = s2848183 € W.
All the cluster variables in C[G®<’] are described as Demazure crystals

B(Ai)83818432a B(Az)e (Z = 1) 2’ 3’ 4))

B(Ay + A2)szs,y B(A2 4 A3)sysyy, B(As + Ag)sy,
B(A1 4+ Az + A3)s,, B(Az+ As+ Ag)syses, @ B(A1 + Az)s,,
B(A1 + A2 + A3 + Ad)sys, @ B(2A1 + Az)e.
Thus the correspondence
—Qy B(Ai)838184329 Q, = B(Ai)e ("' =12, 3’4)1
a1 + ag — B(Al + Ag)3332, ag + az —> B(A2 + A3)3132,
ag + ayq > B(As + A4)34, o) +ag +az — B(A1 + As + A3)32,
az t+az+as— B(A2 + Az + A4)3134S2 @ B(Al + A3)s1a
a1 oz + a3+ ag— B(A1 +As+ A3+ A4)32s4 (<) B(2A1 + A3)e

gives a parametrization of the cluster variables in C[G®’] by the set of almost
positive roots.
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