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Muckenhoupt-Wheeden conjectures for fractional
integral operators

By

HitosHl TANAKA*

Abstract

The Muckenhoupt-Wheeden conjecture is disproved for fractional integral operator. Both
the strong (p,p) and the weak (p,p) type conjecture are proved to be false. The arguments
rely upon a property of the characteristic function of an approximating sequence of the Cantor
set. An off-diagonal case, 1 < p < ¢ < o0, is also discussed.

§1. Introduction

The purpose of this note is to disprove the joint weighted estimates for fractional
integral operators and fractional maximal operators. We mention that the results pre-
sented in this paper have been announced in [11] except the last section. We first fix
some notation.

By a weight we will always mean a non-negative measurable function on R"™. Given
a measurable set E and a weight w, w(E) = [, w(z)dz, |E| denotes the Lebesgue
measure of E and 15 denotes the characteristic function of E. Let 1 < p < oo and w be
a weight. We define the weighted Lebesgue space LP(w) to be a Banach space equipped
with the norm

o = ([ @puea)
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We always assume that the support of the weight w contains that of f. Given 1 < p < o0,

p = z% will denote the conjugate exponent number of p. Given 0 < o < n and
a measurable function f, we define the fractional integral operator I, by
f(y)
I = —— dy.
)= [ AR ay

We shall consider all cubes in R™ which have their sides parallel to the coordinate axes.
We denote by O the family of all such cubes. Given 0 < o < n and a measurable
function f, we define the fractional maximal operator M, by

Mo (@) = sup 1o(@)|QI°/" 72 1F@)) dy,

where the barred integral JCQ f(y) dy stands for the usual integral average of f over Q. If
a = 0 we drop the subscript a. So, M = M is the Hardy-Littlewood maximal operator.

Following the excellent survey [2] due to David Cruz-Uribe SFO, we review the
Muckenhoupt-Wheeden conjectures for singular integral operators. See [6] for the defi-
nition of singular integral operators.

In the late 1970’s while studying two weight norm inequalities for the Hilbert trans-
form H, Muckenhoupt and Wheeden made a series of conjectures relating this problem
to two weight norm inequalities for the maximal operator M. These conjectures were
quickly extended to the general singular integral operators. For a pair of weights (u, o)
and the exponent number 1 < p < oo, they conjectured the following:

The strong (p, p) conjecture For any singular integral operator T', the operator
T(-0) extends to a bounded linear operator from LP(o) to L?(u) if the maximal
operator satisfies two inequalities M(-0) : LP(c) — LP(u) and M(-u) : L? (u) —
LY (o).

The weak (p,p) conjecture For any singular integral operator T, the operator T'(-o)
extends to a bounded linear operator from LP (o) to LP*°(u) if the maximal operator
only satisfies the dual inequality M(-u): L? (u) — L ().

The weak (1,1) conjecture For any singular integral operator T', the following in-
equality holds:

suptu({z €R" : [Tf(z)] > 1)) < C / \f(2)| Mu(z) da.
t>0 Rn

All three conjectures were recently shown to be false. Reguera and Thiele disproved
the weak (1, 1) conjecture [9], Reguera and Scurry disproved the strong (p, p) conjecture
[8] and Cruz-Uribe, et al. disproved the weak (p,p) conjecture [5].
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Their conjectures for singular integral operators extend naturally to fractional in-
tegral operators as well though Muckenhoupt and Wheeden did not address them. Such
a generalization was first considered by Carro, et al. [1], who disproved the analog of
the Muckenhoupt weak (1,1) conjecture:

(1.1) suptu({z €R": [1of()] > 1)) < C /R 1f (@) Mau(z)ds.

In this note, using essentially the same counter-example to (1.1) above, we establish the
following theorems, which negatively answer the conjecture posed in [2].

Theorem 1.1. LetO<a<n andl < p < oo. Then, for any integer N > 1,
there exists a weight w = wy with compact support such that

1
N”Ia('w)|lLP(w)—>LP(w) >C

while
[Ma(-w)||Lrw)y—Lrw) < C and [[Ma(w)|| Lo (wy—1e (w) < C-

Here, the positive finite constant C is independent of N.

Theorem 1.2. Let0<a<n andl < p < oco. Then, for any integer N > 1,
there exists a weight w = wy with compact support such that

1
N||Ia('w)”LP(w)—>LPv°°(w) >C

while
[ Ma (W)l Lo ()= 1’ () < C-
Here, the positive finite constant C is independent of N.

An off-diagonal version of this conjecture, the case 1 < p < ¢ < 00, is true due
to Cruz-Uribe, et al. for singular integral operators [3] and Cruz-Uribe and Moen for
fractional integral operators [4] (see also the last section).

The letter C' will be used for the positive finite constants that may change from
one occurrence to another. Constants with subscripts, such as Ci, C2, do not change
in different occurrences. By A < B (B 2 A) we mean that A < ¢B with some positive
finite constant ¢ independent of appropriate quantities.

§2. Proof of Theorems

In what follows we shall prove Theorems 1.1 and 1.2. We need three lemmas to
this end.
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Lemma 2.1 ([12, Theorem B] also [2, Theorem 5.1]). Given 0 < a < n, 1 <
p < g < oo and a pair of weights (u, o), the following are equivalent:

(1) A pair of weights (u,0) satisfies the testing condition

1/q
sup (@) | Mettao)@)ute) @) <o

(2) For every f € L?(0),

([ mmeras) <o ([ e )’

Moreover, the least possible C; and Cy are equivalent.

Lemma 2.2 ([13, Theorem 1] also [2, Theorem 5.2]). Given 0 < a < n, 1 <
p < q < oo and a pair of weights (u,o), the following are equivalent:

(1) The testing condition

s o(0) /7 ( /Q I (190)(2)%u(z) dac) "o

and the dual testing condition

1/p’
u(Q)~ Ve w)(z)P o(z) da
sup (@) ([ gV ot i) <

hold;

(2) For all f € LP(0),

(L tror@imuc dm)l/q <a ([ 1@powa) "

Moreover, the least possible C1 and Co are equivalent.

Lemma 2.3 ([14, Theorem] also [7, Theorem 1.8]). Giwen0<a <n,1<p<
g < oo and a pair of weights (u, o), the following are equivalent:

(1) A pair of weights (u, o) satisfies the dual testing condition

, , 1/p
sup u(@) 7 ( [ L(gu@) o)ds) <o
QEQ Q
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(2) For all f € LP(0),

1/p
suptu({e € " : [l fo) )] > )9 < (/ If(w)lpa(x)dw> .

Rn
Moreover, the least possible C1 and Cy are equivalent.

Thanks to Lemmas 2.1-2.3, Theorems 1.1 and 1.2 can be proved once the following

proposition is verified.

Proposition 2.4. Given 0 < a < n, then for any integer N > 1 there exists
a weight w = wy with compact support such that

1 » 1/p
(2.1) Slég (w(—Qj‘/QIa(le)(x) w(zx) da:) ZN
while

1 1/p
(2.2) S‘é% (m/c;Ma(le)(:c)pw(x) da:) <1

holds for all p > 0.

Proof. We follow the argument in [10]. Let 0 < § < 1 be the solution to the
equation

2 a/n
2.3 — 1-4)=1.
(23 () a-9
Fix a positive large integer N > 1. Set k = 125. Let the closed cube
Eo = QO,I = [0, RN]n.

Delete from Qo1 all but the 2™ closed corner cubes Q1 ;, of side kN~1 to obtain

gn
E = U Q1,5-
j=1

Continue in this way N steps: at the k stage, 0 < k < N, replacing each cube of Ej;_;
by the 2™ closed corner cubes Qy,;, of side £V %, to obtain

2nk

E, = U Qk,j-

j=1
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Thus, Ex contains 2™ closed unit cubes. We have the following:

IE—l"-rﬂ’“ﬂ:(1—5)”(1"-’“) forall k=0,1,...,Nand j=1,2,...,2"%

(2.4)
|Qk.il
and, by the use of the equation (2.3),

|a/n IEN n Qk,jl
(2'5) le,Jl ( IQk,j|

We now let w(z) = 1g, (z) and we shall verify (2.1) and (2.2).
We take the N + 1 cubes Py = Qo,1, P1 € {Q1,;}, ..., Pv € {Qn,;} so that

)=1forallk:O,l,...,Nandj=1,2,...,2"k.

PyD> P, D---D Py.

It follows from (2.5) that

(2.6) |By|/m (W) —lforall k=0,1,...,N.
k

Proofof (2.1). In general, for non-negative measurable function f, we have by Fubini’s

theorem that

I,.f(x / / / y) dy ds
( ) R~ |$ |n a |o—y|o— ">s

by a changing of valuables s — t*™"

=(n-a) /Ooo </m—y|<tf(y) dy) e dt
—c /0 B, g (ﬁ ne dy> dt

t’
where B(z,t) stands for the ball of radius ¢ around z € R™.
This formula and (2.6) enable us that, for all z € Py, (recalling w = 1p,w)

s

Iyw(z) = I[1pw](z) = C/°° | B(z, t)|°‘/" (][( ) 1p, (y)w(y) dy) di

N 'I’LK‘,)m+l
> Bz, )|/ f
z /\/—K)m I ‘ B(zx,t)

)

N (y/mR)m it
2 [ Pl (f w(y) dy> u
m=1 PN—m

(Vnr)™

_ / SRR
- t

nKk

> N.

L, ()u(v) dy) 2
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This yields
L I,(1 P d v >N
(o [, amerut) i)~ 2
which proves (2.1).
Proof of (2.2). We denote by Q(z,t) the cube of side 2t around = € R™. It follows
that, for all z € Py,

Maw(z) S @)%+ sup @z, s™)|/" f w(y) dy,
N Q(z,x™)

m=1,...

where we have used that, since w < 1, My (1g(z,xw)(z) < (2x)%. By (2.6) we have that

wly) dy < 2°|Q(z, £™)|/"1 / w(y) dy

PN—m

Qe f

z, k™

< [Py ][ w(y) dy S 1.

PN—m

These imply M,w(z) <1 for all z € Py. Invoking the concentration of the density, we

further see that M,w is bounded on R™. Thus, for any cube Q € Q,
1 1/p 1 1/p
—_ Malwa:pwxdx> S(——/Mawxpwa;dz) <1,
(57 [, Metu)@ruto) 7 [, MewlePua)

which proves (2.2). The proof of the proposition is now complete. O

Remark.  One can construct a positive weight w such that

(2.7) e (w)ll Lo () L (w) = 00
while
(2,8) ”Ma("IU)”LP(w)_)LP(w) 5 1 and ”Ma('w)”LP'(w)—)LP’ (w) 5 L.

Indeed, in the proof of Proposition 2.4, for N = 1,2,..., we can select the set EFnx C
[0, x™]™ such that the weight wy = 1g,, satisfies the following:

coN < I,(wn)(z) for all z € Ey,
My(wn)(z) < Cp for all z € R?,

where ¢y and Cy are universal constants. Fix a unit vector w € S,,_1 and let

Fy=xkNVw+ Eyand F = U Fw.
N

Then we see that

M,(1Fr)(z) = sup My(1p,)(z) < Cp for all z € R,
N
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since their supports are sufficiently torn apart. Define the weight w(z) = 1p(z) +
exp(—|z|?). Then we have that

coN < Iyw(z) for all z € Fy,
Myw(z) < 2Cy for all z € R™.

These entail that, for u > 0,

st (s [, 0w o) az)

JRAPRERE dw)l/u

1
> sup (_
QEQ,QCF w(Q)
=Oo,

while My (w) € L*®°(R™) and hence

sup (@ /Q Ma(low)(z) w(z) dx)l/u <1

Thus, (2.7) and (2.8) follow by Lemmas 2.1 and 2.2.

§ 3. Discussion of an off-diagonal case

In this section, following [2], we prove that an off-diagonal version of Muckenhoupt-
Wheeden conjecture is true for fractional integral operators. For this, we need more a
lemma.

Lemma 3.1 ([7, Theorem 1.11]). GivenO0<a<n,1<p< g < oo and a pair
of weights (u, o), the following are equivalent:

(1) A pair of weights (u,0) satisfies the dual global testing condition

o 1/’
SuPzeRn,r>0U(B(l’aT))_l/q, (/n </|_ < max{T,Ty(y—) 2| dy) o) dz)

Scly

where B(z,r) is a ball with center x and radius r;

(2) For all f € LP(0),

i 1/p
sup u(fz € R : [Tn(fo)(&)] > 7 < C (/ If(:v)lpa(rv)dm) |

Rn
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Moreover, the least possible C1 and Ca are equivalent.

Proposition 3.2. Let0 < a < n, 1 < p < q < oo and (u,0) be a pair of
weights. The operator I,(-0) is bounded from LP(o) to L@ (u) if the mazimal operator
satisfies the dual inequality M(-u) : LY (u) — L (o).

Proof. We merely check the condition posed in Lemma 3.1 (1). Fix a ball B =
B(z,r) and z € R™. Then we have that

/ u(y) < CMa(15u)(2).
|

z—y|<r ma.x{r, |y - zl}nAa
Since the maximal operator satisfies the dual inequality M(-u) : L9 (u) — L¥ (o), we
see that

’ 1/p

u(y) dy) o(z)dz

]R” Ia: yl<r ma,x{r, Iy - Zl}n—a

1/p' ,
<o([ MpEr o) < cuE,
Which means the condition (1) in Lemma 3.1. O

Proposition 3.3. Let 0 < a <n, 1 <p < qg< oo and (u,0) be a pair of
weights. The operator I,(-0) is bounded from LP(c) to L%(u) if the mazimal operator
satisfies two inequalities M (-c) : LP(0) — L9(u) and M(-u) : LY (u) — L¥ (o).

Proof. if the maximal operator satisfies M(-u) : L (u) — L? (o), then, by Propo-
sition 3.2 and Lemma 2.3, a pair of weights (u, o) satisfies the dual testing condition

QeQ

sup u(Q) V¢ (/Q I (1gu)(z)? o(x) do:) 1/P' <C.

Similarly, if the maximal operator satisfies M(-0) : LP(0) — L9%(u), then a pair of
weights (u, o) satisfies the testing condition

sup o(Q)~ /P (/Q Io.(1go)(z)u(z) dz)l/q <C.

QeQ

Thus, by Lemma 2.2, the operator I,(-o) is bounded from L?(0) to L4(u). O
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