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1 Introduction

Let ©Q be a domain in R™ with n > 3 and assume 0 € Q. The classical Hardy inequality

states that the inequality
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(“ 2) |f|2 dz < / IV £|2dz (1.1)
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holds for all f € H}(Q), where the constant ("T_z)2 is best-possible. It is also well-known
that the inequality (1.1) admits no nontrivial extremizers, and this fact implies a possibility
for (1.1) to be improved by adding some remainder terms. In fact, the authors in [9] proved
that the following improved Hardy inequality
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holds for all f € H}(Q) provided that  is bounded, where the constant A in (1.2) is given
2

by A = A(n, Q) = 22wi |Q|~=, and w, and |Q] denote the Lebesgue measures of the unit
ball and Q on R", respectively, and the absolute constant zo denotes the first zero of the
Bessel function Jo(z). The constant A is optimal if © is a ball, but still the inequality (1.2)
admits no nontrivial extremizers. More generally, the authors in [9] obtained the inequality
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for f € H}(Q), where 1 < p < ;=% and A is a positive constant independent of u. Similar
improvements have been done for the Hardy inequality not only in the L2-setting but in
LP-setting with some remainder terms, see for instance [3, 7, 8, 21, 35].

Hardy type inequalities are known as useful mathematical tools in various fields such
as real analysis, functional analysis, probability and partial differential equations. In fact,
Hardy type inequalities and their improvements are applied in many contexts. For instance,
Hardy type inequalities were utilized in investigating the stability of solutions of semi-linear
elliptic and parabolic equations in [9, 11]. As for the existence and asymptotic behavior of
solutions of the heat equation involving singular potentials, see [10, 35]. Among others we




refer to [1, 5, 16, 18, 27, 31] for the concrete applications of Hardy type inequalities. We
also refer to [13, 33] for a comprehensive understanding of Hardy type inequalities.

Based on the historical remarks on the Hardy type inequalities, our purpose in this
paper is to establish the classical Hardy inequalities in the frame work of equalities which
immediately imply the Hardy inequalities by dropping the remainder terms. At the same
time, those equalities characterize the form of the vanishing remainder terms. Our method
on the basis of equalities presumably provides a simple and direct understanding of the
Hardy type inequalities as well as the nonexistence of nontrivial extremizers.

In what follows, we always assume Q = R"™ and the standard L?(R™) norm is denoted
by || - [|l2- Then the Hardy type inequalities in L?-setting that we discuss in this paper are
the following:
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where fr(z) = f(R]%) and p > 0. The inequalities (1.3), (1.5), and (1.6) are standard (see

[19] for instance), while (1.4) is rather new (see [28, 30]). In addition, as we noticed in [30],
the logarithmic Hardy inequality (1.4) has a scaling property.

We state our main theorems. We denote by &, the radial derivative defined by 9,
w V= p l 195+ The space D2(R") denotes the completion of C$°(R™) under the

Dirichlet norm ||V - [|2. Also the notation S™~! denotes the unit sphere in R* endowed with
the Lebesgue measure o.

2 Hardy type inequalities in the framework of equalities

In this section, we shall prove the Hardy type inequalities in the framework of equalities.
Our first result states as follows:

Theorem 2.1. Let n > 3. Then the equalities
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hold for all f € DV?(R™). Moreover, the second term in the right hand side of (2.1) or (2.2)
vanishes if and only if f takes the form
2
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for some function ¢ : S~ — C, which makes the left hand side of (2.1) infinite unless

Jgn-1 lp(w)Pdo(w) = 0:
12l )I

1565



We remark that as in (2.4), functions of the form (2.3) imply the nonexistence of non-
trivial extremizers for (1.3). The corresponding integral diverges at both origin and infinity.
A similar result to Theorem 2.1 can be found in [6, 15]. However, the essential ideas for
the proofs are different. Indeed, the proof in [6] is done by direct calculations with respect
to the quotient with the optimizer of a Hardy type inequality. On the other hand, we shall
prove Theorem 2.1 by applying an orthogonality argument in general Hilbert space settings.
More precisely, an equality

n—2
2 2 e
has been observed in [6, 15]. We should remark that (2.1) and (2.5) are the same for

radially symmetric functions and are not the same for nonradial functions. In fact, the
Dirichlet integral is decomposed into radial and spherical components as

(o= 2) .,

Next, we state the logarithmic Hardy type equalities in the critical weighted Sobolev
spaces.

Theorem 2.2. Let n > 2. Then the equalilies
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hold for all R > 0 and all f € L, (R™) with Wéﬁvf € L3(R"), where fr is defined

by fr(z) = f RIII)‘ Moreover, the second term in the right hand side of (2.6) or (2.7)
vanishes if and only if f — fr takes the form

f(z) = fr(z) = |log %f tp(lz—l) (2.8)

for some function ¢ : S"~1 — C, which makes the left hand side of (2.6) infinite unless
Jsn-1 lp(w)|?do(w) =0

|f — fal? _ “P(ﬁﬁ)f

||

LL(R™). (2.9)

As in (2.9), functions of the form (2.8) imply the nonexistence of nontrivial extremizers
for (1.4). The corresponding integral diverges at both origin and infinity and, in addition,
on the sphere of radius R > 0.

3 Caffarelli-Kohn-Nirenberg type inequalities in the frame-

work of equalities

In this section, we shall prove the Caffarelli-Kohn-Nirenberg type inequalities in the frame-
work of equalities. We first recall the Caffarelli-Kohn-Nirenberg inequality :Let n € N,
1<p<oo,r>0, -}+%>0. Then

lllz|%ullr < Clllz]*Vulllp
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holds for all u € C§°(R™) if and only if 0 < o —¢ < 1 and 14+ 2= 21) + 0‘;1 Especially,
taking p = r, we obtain the following:Let n € N, 1 < p < oo, + a=2 1 > 0. Then there

holds

2l ullp < Clllz|*Vulll, 3.1)
for all u € C§°(R™). We already proved the equality version of (3.1) with « =0 and p =2
as follows :

Let n > 3. Then there holds

(%5 2) ol = foyul -

for all u € C§°(R™), where d,u(z) := fa1 - Vu(z) for z € R™ \ {0}. Firstly, we extend the
result of (3.2) for general «, which corresponds to the equality version of (3.1) with p = 2
as stated in Theorem 3.1 (i). Furthermore, we shall establish the equality version of the
Caffarelli-Kohn-Nirenberg type inequality of the logarithmic form by applying Theorem 3.1
(i) as stated in Theorem 3.1 (ii).

n—2 |2

aru + mu

(3.2)

2

Theorem 3.1. (i) Let n € N and oo > 25%. Then there holds

n=2+2\° _242 2
(n 2+ ‘”) 11>~ = Nzl Brull3 — ||l *Bru + ”—2—+—“|x|a—1u (3.3)
2
for allu € Cg°(R™).
(i) Letn € N, 1 < v < 3 and R > 0. Then there holds
y—1)\2 R\ "% R\ 2
- - 2 —2 R
2 2
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for all u € C§°(R™), where ugp(zx) := u(R]%r) for z € R™\ {0}.
Proof. (i) It is enough to show

2
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Indeed, by integration by parts, we see

{o o}
el = [ toP2ua = [ rten=s [ jugr) s
R» 0 §n-1

= __2 00 204+n—2 S —
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where we used 2a +n — 2 > 0.

(ii) First, we establish
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for all u € C§°(R™).

By using polar coordinates, we have

st (B e - ()] 2

Changing variables t = t(r) := Rexp(—r_%) for r € (0, 00), we see

/Sn 1] |u(tw) — u( )l"’{ (f)]_v a, /Sn 1/ (t(r)w) — w(Rw)|*r™ 7 drdw
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=5 o L beelo)e) =Rl > oo = o [ el

dw,
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where |z]> denotes the two-dimensional Euclidean norm and f,(z) := u(t(]z|2)w) — u(Rw)
for w € 8" ! and = € R2. Then applying (3.3) for the function f,, with the dimension 2
and a = _5—”_’1_ > 0, we obtain

m(y—1)2 / [ ( )} 7 dr
_— uU—u ].0 _—
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where 8, f,, denotes the two-dimensional radial derivative, i.e., 9 r fu, () := [ wlz - Vafu(z)

for z € R?\ {0} and V5 := (81, 82). By a direct computation, we see for € R? \ {0},
R -1 1 4
O, fur(m) = ;aru(t(lwb)w) exp(—lzly Vel ™

and then by changing variables r = r(t) := [log(£)] ™" for t € (0, R),

fo
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Similarly, we see

Ko y-1, o |?
/:Snil '1?'2 62,rfw+ 2 I:I:IQ fuw Lz(Rz)dw
R L 3. 1 2
:/an/ ‘—&u(t(lith)w)exp(_lﬂz")|33|2 TRy 27 |I|1r 1( (t(|z]2)w) — w(Rw))| drdw
2
e [ [ [Eautm ettt 4 1L ) i v

1568



159

2 2y
[log (i—:i) ] t dtdw

s (5 |)]ﬁ“ (38)
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Plugging (3.7) and (3.8) into (3.6), we obtain (3.5).

o
Y JBR(0)

In the same way as above by replacing the change of variables by r = r(¢) := [log (%)]
for t € (R,00) and t = ¢(r) := Rexp(r"%) for r € (0, 00), we obtain

(352 [, e e (B = 0 i ()] e
sz b ()] e ()] s oo

for all u € C§°(R™). Finally, adding the both sides of the equalities (3.5) and (3.9) yields
(3.4). O

Remark 3.2. (i) We easily see that the integrals in (3.5) diverge for some function in
C§°(R™) when v <1 ory > 3. On the other hand, the integrals converge for any function
in C§°(R™) when 1 < v < 3. Indeed, by using the estimates log(R) > E £t for0 <t <R,
and |u(Rw) — uw(tw)| < |[Vullow(R —t) forw e S* ! and 0 <t < R, we see

/Bam fu = el [l"g (I I)} K S—T = /s / () — u(Ra) P [log (It—*)] Ty
/Sn 1/ [u(tw) — u(Rw)[? {log( )}‘7 gléd"”'/Sn_l /; () () [log (%)}—7 at

: [ R\|77dt -1 2 [ 2—y
< 4wp_1]lulls A log n 7T 2R wp ||Vl R (R—-1t)*7"dt < 40
z

since 1 <y < 3. Also we have

2—y R R 2—y
/ | B2 [log ( )] |z~ de < wn_1||Vu||§°/ [log (—)} tdi < +o0
Br(0) || 0 t

since v < 3.

(ii) By restricting the functions into C$°(Bgr(0)), we can remove the condition v < 3.
Precisely, the integrals in (3.5) converge for any function in C§°(Bgr(0)) and the inequality
(3.5) holds in C§°(Bgr(0)) for all v > 1.
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