
回帰構造に基づくテスト環境を考慮した二項ソフ トウェア信頼性モデルの拡張
Extended Binomial‐Type Models with Test Environment Based on Regression Structure

鳥取大学 大学院工学研究科 井上真二,山田 茂

Shinji Inoue and Shigeru Yamada

Graduate School of Engineering,
Tottori University

1 Introduction

In an actual software testing phase, it must be natural to consider that the software reliability growth

process depends on the test environment factors, such as testing coverage, the number of test‐runs, and

debugging skills, which affect the software failure occurrence or fault detection phenomenon. In the

discrete‐time domain, Shibata et al. [11] proposed a proportional hazard rate modeling approach for

extending the cumulative Bernoulli trial process model [2]. Okamura et al. [9] also proposed an extended

model by using a logistic regression approach for incorporating the effect of software metrics into p_{l},

which represents the probability that a fault is detected by the i‐th test case and the parameter in the

cumulative Bernoulli trial process model. Furthermore, Kuwa and Dohi [7] proposed seven types of

extended models by applying generalized logic regression to formulate p_{i} with software metrics in the

cumulative Bernoulli trial process model.

We extend the discrete program size‐dependent software reliability model following a discrete‐time

binomial process [4, 5]. Our extended model enables us to incorporate not only the effect of test envi‐

ronment factors but also the effect of software complexity measures into quantitative software reliability
assessment and to flexibly depict a software reliability growth curve described by fault counting data ob‐

served. More specifically, we assume that discrete software failure occurrence time distribution basically
follows a discrete Weibull distribution for flexibly describing the software failure occurrence phenomenon.
We also consider the relationship between the probability that a software failure caused by a fault is

observed per the i‐th testing period and the related test environment factors by using a generalized linear

modeling approach. Furthermore, we conduct goodness‐of‐fit comparisons of our models with the existing

corresponding model and show application examples of our model for software reliability analysis using
actual data.

2 Binomial‐Type Software Reliability Model

A discrete binomial‐type software reliability model [4] is developed based on the following basic as‐

sumptions:

(A1) Whenever a software failure is observed, the fault which caused it will be detected immediately,
and no new faults are introduced in the fault‐detection procedure.

(A2) Each software failure occurs at independently and identically distributed random times I with the

discrete probability distribution P(i)\displaystyle \equiv \mathrm{P}\mathrm{r}\{I\leq i\}=\sum_{k}^{ ι} (i=0,1,2, \cdots) ,
where p_{I}(k) and

\mathrm{P}\mathrm{r}\{A\} represent the probability mass function for I and the probability of event A
, respectively.

(A3) The initial number of faults in the software system, N_{0}(>0) ,
is a random variable, and is finite.

Now, let \{N(i), i = 0, 1, \} denote a discrete stochastic process representing the number of faults

detected up to the i‐th testing‐period. From the assumptions above, we have the probabihty mass

数理解析研究所講究録
第2044巻 2017年 46-51

46

function that m faults are detected up to the i‐th testing‐period as

\displaystyle \mathrm{P}\mathrm{r}\{N(i)=m\}=\sum_{n}\left(\begin{array}{l}
n\\
m
\end{array}\right) \{P(i)\}^{m}\{1-P(i)\}^{n-m}\mathrm{P}\mathrm{r}\{N_{0}=n\} (m=0,1,2, \cdots n) . (1)

In Eq. (1), we consider the case that the probability distribution of the initial fault content, N_{0} , follows

a binomial distribution with parameters (K, λ) which is given as

\mathrm{P}\mathrm{r}\{N_{0}=n\}= \left(\begin{array}{l}
K\\
n
\end{array}\right)λ^{n}(1- λ)^{K-n} (0< λ<1; n=0,1, \cdots , K) . (2)

Eq. (2) has the following physical assumptions:

(a) The software system consists of K lines of code (LOC) at the beginning of the testing‐phase.

(b) Each code has a fault with a constant probability λ.

(c) Each software failure caused by a fault remaining in the software system occurs independently and

randomly.

These assumptions are useful to apply a binomial distribution to the probability mass function of the

initial fault content in the software system, and to incorporate the effect of the program size into software

reliability assessment [6]. The program size is one of the important metrics of software complexity which

influences the software reliability growth process in the testing‐phase.

Substituting Eq. (2) into Eq. (1), we can derive the probability mass function of the number of faults

detected up to the i‐th testing‐period as

Pr{N(の =m\displaystyle \}=\sum_{n=m}^{K}\left(\begin{array}{l}
n\\
m
\end{array}\right) {P(の \} m{1 —P(の \}
n一 \left(\begin{array}{l}
K\\
n
\end{array}\right) λ^{n}(1- λ)^{K-n}

= \left(\begin{array}{l}
K\\
m
\end{array}\right) \displaystyle \{ λ P(i)\}^{m}\sum_{n=m}^{K}\left(\begin{array}{l}
K-m\\
n-m
\end{array}\right) \{ λ(1-\mathrm{P}(の)\}^{n-m}(1- λ)^{K-n}

= \left(\begin{array}{l}
K\\
m
\end{array}\right) \{ λ P(i)\}^{m}\{1- λ P(i)\}^{K-m} (m=0,1,2, \cdots K) . (3)

From Eq. (3), several types of discrete software reliability model with the effect of program size can be

developed by giving suitable probability distributions for the software failure‐occurrence times, respec‐

tively.

3 Extension of Our Model

We need to give a suitable probability mass function in Eq. (3), P(i) ,
that represents the software

failure occurrence time distribution in order to develop a specific model from based on our modeling
framework in Eq. (3). For flexible discrete software reliability growth modeling, we apply a discrete

Weibull distribution [8] to the software failure occurrence time distribution. The probability distribution

function of the discrete Weibull distribution is given as

P(i)=1-(1-p_{l})^{i^{ γ}} , (4)

where p_{l} (0<p_{\dot{l}} < 1) represents the probability that a software failure caused by a fault is observed per

the i‐th testing period, and γ denotes the shape parameter. The probability p_{ ι} depends on the testing

period due to the maturity of testing skill, changing fault target, existence of fault prone modules, and

so forth.

47

In this research, we assume that p_{ ι} depends on the test environment factors at the i‐th testing period.
And we consider the fohowing three types of functions for p_{l} : logistic, probit and complementary log‐

log functions. In the logistic regression approach, the relationship between p_{ ι} and the test environment

factors can be given by

p_{ ι}=\displaystyle \frac{1}{1+\exp[- $\alpha \beta$_{i}^{\mathrm{T}}]} . (5)

In Eq. (5), β_{i} = (1, β_{1, ι}, β_{2,i}, \cdots , β_{n,i}) represents the n kinds of test environment factors at the i‐th

testing period, α= (α_{0}, α_{1}, \cdots , α_{n}) is the coefficient vector, and A^{\mathrm{T}} the transposed matrix of matrix A.

In the probit regression approach, the relationship is given by

p_{\mathrm{z}}= Φ($\alpha \beta$_{i}^{\mathrm{T}})) (6)

where Φ denotes the standard normal distribution. And, Φ^{-1}(p_{\mathrm{t}}) = $\alpha \beta$_{i}^{\mathrm{T}} . Furthermore, the comple‐

mentary log‐log regression approach, p_{l} is given by

p_{\mathrm{i}}=1-\exp[-\exp\{ $\alpha \beta$_{i}^{\mathrm{T}}\}] , (7)

where there exists the following relationship: \log\{-\log(1-p_{i})\}= $\alpha \beta$_{i}^{\mathrm{T}} . It is worth mentioning that the

behaviors of the logistic, probit and complementary log‐log functions are mostly same around p_{i} =0.5.

On the other hand, the behaviors of these functions are different each other around p_{l}=1 and p_{ ι}=0.

4 Software Reliability Assessment Measures

Software reliability assessment measures are well‐known metrics for quantitative software reliability
assessment. We can derive software reliability assessment measures under the basic assumptions of the

software failure occurrence phenomenon in Eq. (1). The expectation of the number of detected faults,

\mathrm{E}[N(i)] , is derived as

\displaystyle \mathrm{E}[N(i)]=\sum_{z=0}^{n}z\sum_{n}\left(\begin{array}{l}
n\\
z
\end{array}\right) \{P(i)\}^{z}\{1-P(i)\}^{n-z}Pr\{N_{0}=n\}

=\mathrm{E}[N_{0}]P(i) . (8)

Its variance, \mathrm{V}\mathrm{a}\mathrm{r}[N(i)] ,
is also derived as

\mathrm{V}\mathrm{a}\mathrm{r}[N(i)]=\mathrm{E}[N(i)^{2}]-(\mathrm{E}[N(i)])^{2}
=\mathrm{V}\mathrm{a}\mathrm{r}[N_{0}]\{P(i)\}^{2}+\mathrm{E}[N_{0}]P(i)\{1-P(i)\} . (9)

A discrete software reliability function is defined as the probability that a software failure does not occur

in the time interval (i, i+h] (i, h=0,1,2, \cdots) given that the testing or the operation has continued to the

i‐th testing period. Then, the discrete software reliability function, R(i, h) , under the basic assumption
in Eq. (1) is derived as

R (i) h) =\displaystyle \sum_{k}\mathrm{P}\mathrm{r}\{N(i+h)=k|N(i)=k\}\mathrm{P}\mathrm{r}\{N(i)=k\}

=\displaystyle \sum_{k} [\{P(i)\}^{k}\{1-P(i+h)\} 一ん
. \displaystyle \sum_{n}\left(\begin{array}{l}
n\\
k
\end{array}\right) \{1-P(i+h)\}^{n}\cdot \mathrm{P}\mathrm{r}\{N_{0}=n\}]. (10)

More specifically, we can derive the discrete software reliability function in the case that the initial fault

content fohows the binomial distribution in Eq. (2) as

R(i, h)=[1- λ\{P(i+h)-P(i)\}]^{K} (11)

48

Furthermore, discrete instantaneous and cumulative mean time between software failures (MTBFs),
MTBF_{I} (i) and MTBFc(i), are also derived as

MTBF_{I}(i)=1/(\mathrm{E}[N(i+1)]-\mathrm{E}[N(i)]) , (12)

MTBFc(i) =i/\mathrm{E}[N(i)] , (13)

respectively.

5 Parameter Estimation Method

We compare the performance of our models for software reliability assessment with the existing corre‐

sponding model, which does not consider the effect of test environment factors, by using two data sets

collected from actual software testing phases. The data sets are respectively called DS1 and DS2. The

details of the data are shown as follows:

DS1 : (t_{\mathrm{t}}, y_{\mathrm{i}}, c_{\mathrm{t}}) (i=1,2, \cdots

, 22; t22 =22
, y22 =212) c_{22}=0.9198) where t_{x} is measured on the basis of

weeks and program size K=1.630\times 10^{5} (LOC) [3],

DS2 : (t_{\mathrm{z}}, y_{l}, c_{l})(i=1,2, \cdots , 24; t_{24}=24, y_{24}=296, c_{24}=0.9095) where t_{i} is measured on the basis of

weeks and program size K=1.972\times 10^{5} (LOC) [3],

where y_{l} represents the number of faults detected up to t_{i} and c_{i} is the CO testing‐coverage attained up

to t_{l} . In this model comparison we treat the CO testing coverage as the test environment factors affecting
the software failure occurrence or fault detection phenomenon. Thus, we assume β_{i} \equiv c_{l} . Regarding
the actual data, DS1 shows an exponential software reliability growth curve and DS2 shows an \mathrm{S}‐shaped
curve. The existing corresponding model assumes that the software failure occurrence time distribution

fohows P(i)=1-(1-p)^{x^{ γ}}(i=0,1,2, \cdots) in Eq. (3), where p represents the probability that a software

failure caused by a fault is observed per one testing period and γ is the shape parameter of the discrete

Weibuh distribution.

For quantitative comparisons in terms of fitting performance to the actual data, we use mean square

errors (abbreviated as MSE) [10], which is calculated as

MSE =\displaystyle \frac{1}{N}\sum_{k=1}^{N}[y_{k} —Ê[N(tk)]2. (14)

The MSE represents the mean square errors of the number of detected faults between the estimated and

actual values for all of the observed data points. Table 1 shows the results of model comparisons based

on the MSE. From Table 1, we can say our models keep high fitting performance to the actual data even

though the actual data shows an exponential or \mathrm{S}‐shaped software reliability growth curve. Furthermore,
we conducted a goodness‐of‐comparison based on the Akaike information criterion (AIC) [1] because a

smaller MSE is not sufficient to conclude that our approach is better than the existing corresponding
model and the degree of freedom of our models became higher. The AIC is calculated as

AIC =-2\mathrm{M}\mathrm{L}\mathrm{L}+2 ϕ , (15)

where MLL represents the maximum \log likelihood and ϕ indicates the number of parameter. We judged
that a model indicating smaller AIC fits better to the actual data. Table 1 also shows the results of model

comparisons based on the MLL and AIC. From the results of model comparisons based on the AIC in

Table 1, it can be said that our models possess better fitting performance even in the case considering
the degree of freedom of our models.

We show examples of the application of software rehability analysis based on our model by using the

actual data set DS2. Especially, we show the numerical examples in case that p_{i} follows the probit

49

Table 1 : Results of model comparisons based on the MSE and AIC.

\overline{\overline{\mathrm{D}\mathrm{S}\mathrm{l}\mathrm{l}\mathrm{o}\mathrm{g}\mathrm{i}\mathrm{s}\mathrm{t}\mathrm{i}\mathrm{c}27.308-2240.314488.62}}\mathrm{M}\mathrm{S}\mathrm{E}\mathrm{M}\mathrm{L}\mathrm{L}\mathrm{A}\mathrm{I}\mathrm{C}
probit 26. 958 -2240.27 4499.534

complementaly log-\log 31. 105 -2240.70 4489.40

\displaystyle \frac{\mathrm{E}\mathrm{x}\mathrm{i}\mathrm{s}\mathrm{t}\mathrm{i}\mathrm{n}\mathrm{g}28.256-2251.594509.17}{\mathrm{D}\mathrm{S}21\mathrm{o}\mathrm{g}\mathrm{i}\mathrm{s}\mathrm{t}\mathrm{i}\mathrm{c}33.954-3052.136112.26}
\underline{\frac{\mathrm{p}\mathrm{r}\mathrm{o}\mathrm{b}\mathrm{i}\mathrm{t}}{\mathrm{c}\mathrm{o}\mathrm{m}\mathrm{p}\mathrm{l}\mathrm{e}\mathrm{m}\mathrm{e}\mathrm{n}\mathrm{t}\mathrm{a}\mathrm{r}\mathrm{y}}}log‐log 397133347534..151 -3054.97-3052.13-305207 6112.146112276115.94Existing model

\infty\infty 0

\infty \mathrm{o}\mathrm{o}

 ϖ 0\tilde{\mathrm{o}} $\omega \omega$\tilde{\mathrm{o}} 目

\sim\equiv\vee\overline{\mathrm{o}} ϖ w \infty \mathrm{o}\mathrm{o}

 D\supset \mathrm{E}\subset Φ\leftarrow \underline{\mathrm{m}\circ}

\tilde{\frac{ ω\geq Φ}{\supset \mathrm{E}}} \underline{\mathrm{o}\circ}
\mathrm{o}\supset

@

 10 12 14 \uparrow 6 18 20 22 24

Testing time (number of weeks)

Fig 1 : Estimated expected number of faults detected, Ê[N(i)], and the 95% confidence limits for DS2.

regression approach. We obtain the parameter estimates by the method of maximum likelihood as

\hat{ λ}=1.5167\times 10^{-3}) \hat{ α}_{0}=-2.2289, \hat{ α}_{1} =3.9569\times 10^{-1}
,

and \hat{ γ}=1.5755 , where \hat{ λ}, \hat{ α}_{0}, \hat{ α}_{1} , and \hat{ γ} are the

parameter estimates of λ, α_{0}, α_{1} , and γ , respectively. Then, the expected number of initial faults can be

estimated as K\times\hat{ λ}\simeq 29\mathrm{S} because K=1.972\times 10^{5} (LOC) in DS2. Figure 1 depicts the estimated time‐

dependent behavior of the expected number of faults detected, Ê[N(i)], and its 95% confidence limits.

The 100 γ% confidence limits for Ê[N(i)] are derived as \hat{\mathrm{E}}[N(i)]\pm K_{ γ}\sqrt{\overline{\mathrm{V}\mathrm{a}\mathrm{r}}[N(i)]} , where K_{ γ} indicates the

100(1+ γ)/2 percent point of the standard normal distribution [12].

6 Conclusion

We proposed an extended binomial‐type software reliability model with the effect of the testing‐
environmental factors on the software reliability growth process. Especially, the discrete software failure‐

occurrence time distribution follows the discrete Weibull distribution basically. Further, we discussed a

parameter estimation method of our model, and conducted comparisons of the performance of our model

with that of existing corresponding model in terms of MSE. In future studies, we need to check the

performance of our model with existing models [7, 9, 11] by using a lot of software fault‐counting data

50

with software metrics.

Acknowledgement

This research was supported in part by the Grant‐in‐Aid for Scientific Research (C), Grant No.

16\mathrm{K}00098 , from the Ministry of Education, Culture, Sports, Science and Technology of Japan.

References

[1] H. Akaike, �A new look at the statistical model identification IEEE Trans. Autom. Control, Vol.

AC‐19, pp. 716‐723 (1974)

[2] T. Dohi, K. Yasui and S. Osaki, �Software reliability assessment models based on cumulative Bernoulli

trial processes Math. Comput. Modelling, Vol. 38, pp. 1177‐1184, 2003.

[3] T. Fujiwara and S. Yamada, �A new testing‐path coverage measure — testing‐domain metrics based

on a software reliability growth model —,� Proc. 13th IEEE International Symposium on Software

Reliability Engineering (ISSRE�02), pp. 71‐75, 2002.

[4] S. Inoue and S. Yamada, �Generalized discrete software reliability modeling with effect of program

size,� IEEE Trans. Syst. Man Cybern. — Part A : Syst. Hum., Vol. 37, No. 2, pp. 170‐179, 2007.

[5] S. Inoue and S. Yamada, �Discrete program‐size dependent software reliability assessment: modeling,

estimation, and goodness‐of‐fit comparisons,� IEICE Trans. Fundam. Electron. Commun. Comput.

Sci., Vol. E90‐A) No. 12, pp. 2891‐2902, 2007.

[6] M. Kimura, S. Yamada, H. Tanaka and S. Osaki, �Software reliability measurement with prior‐

information on initial fault content,� Trans. Inf. Process. Soc. Jpn.) Vol. 34, No. 7, pp. 1601‐1609,

1993.

[7] D. Kuwa and T. Dohi, �Generalized logit‐based software reliability modeling with metrics data Pro‐

ceedings of the 37th Annual International Computer Software and Applications Conference (COMP‐
SAC 2013), pp. 246‐255, IEEE CPS, 2013.

[8] T. Nakagawa and S. Osaki, �The discrete Weibuh distribution IEEE Trans. Reliab., Vol. R‐24, No.

5, pp. 300−301, 1975.

[9] H. Okamura, Y. Etani and T. Dohi, �A multi‐factor software reliability model based on logistic re‐

gression,� Proceedings of the 21st IEEE International Symposium on Software Reliability Engineering

(ISSRE�10), pp. 31‐40, IEEE CPS, 2010.

[10] H. Pham, Software Reliability, Springer‐Verlag, Singapore, 2000.

[11] K. Shibata, K. Rinsaka and T. Dohi, �Metrics‐Uased software reliability models using non‐

homogeneous Poisson processes,� Proceedings of The 17th International Symposium on Software Re‐

liability Engineering (ISSRE�06), pp. 52‐61, IEEE CPS, 2006.

[12] S. Yamada, Software Reliability Modeling — Fundamentals and Applications —, Springer‐Verlag,

Tokyo, 2013.

51

