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ASYMPTOTIC BEHAVIOR OF THE TRANSMISSION EIGENVALUES

GEORGI VODEV

1. DEFINITION OF THE TRANSMISSION EIGENVALUES

Let Q ¢ R?, d > 2, be a bounded, connected domain with a C* smooth boundary I' = 9.
A complex number A\ # 0 with ReA > 0 will be said to be a transmission eigenvalue if the
following problem has a non-trivial solution:
(Ver(z)V + Xny(z)) ur =0 in @,
(Vea(2)V + A?na(z)) uz =0 in  Q, )}
uy = ug, €10,uy = c20,uz on T,

where v denotes the Euclidean inner unit normal to T, ¢j,n; € C®°(Q), j = 1,2 are strictly

positive real-valued functions. The transmission eigenvalues can be viewed as the eigenvalues of
the non-symmetric operator A defined by

4 ( u1 ) _ ( —;ﬂlaVcl(x)Vul )
Ug —ﬁch(a:)Vuz
with domain
D(A) = {(u1,u2) € H : Ver () Vuy € L2(R), Vea(z)Vug € L(Q),
uy = ug, 181 = c28,u2 on T}
where H = Hy @ Ha, H; = L*(Q,n;(z)dz). Then the transmission eigenvalues are the poles of

the resolvent (A — A2)™! (if it forms a meromorphic family) and the multiplicity of a pole A is
defined by

mult(\) = rank(2ms) ! / (A2 — A)~12)dA
[A=Akl=¢
= tr(2mi) / (A2 = A)12xd).
[A=Ax|=¢

Our goal is to study the asymptotic behavior of the counting function N(r) = #{\ —trans. eig. :
[A| < 7}, r > 1. We will see that it is closely related to the localization of the transmission
eigenvalues on the complex plane.

2. THE DIRICHLET-TO-NEUMANN MAP

The Dirichlet-to-Neumann map, N;()) : HY(T') — L%(T), associated to the pair (c;,n;) is
defined by
N;(A)f = 0vujr,
where u; solves the equation

(Vej(z)V + Anj(z))uj =0 in Q,
uj=f on T.
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Denote by Gj, j = 1,2, the Dirichlet self-adjoint realization of the operator —nj'IchV on the
Hilbert space H;. It is well-known that N;()) is meromorphic with poles the eigenvalues of
+/G;. Introduce the operator

T()\) = ClNl()\) - 02N2(/\).
‘We have the following trace formula.

Lemma 1. Suppose that the inverse T(\)™! ezists as a meromorphic function. Then the resol-
vent of the operator A is meromorphic, too, and we have the formula

M(v) = My(v) + Ma(7) + tr(2mi) %E\’\)T(/\)‘ld,\ (3)

where v is a simple, positively orientied, piecewise smooth, closed curve in the complex plane,
which avoids the poles of T(A\)™ and the eigenvalues of /G1 and /Ga, M(y) is the number
of the transmission eigenvalues inside vy, and M;(vy) is the number of the eigenvalues of the

operator /G inside vy.
3. WEYL ASYMPTOTICS FOR THE COUNTING FUNCTION
The following result is proved in [9].
Theorem 1. Suppose either the condition
a@)=c(z)=1 in Q, ni(z)#ne(z), VzeTl, (isotropic case) (4)
or the condition
c1(z) # co(z), Vz €T. (anisotropic case) (5)
Suppose also that the operator T(X) is invertible in a region of the form
{AEC:R3A>1, |ImA|ZC(ReA)1"‘}, C>0,0<k<1, (6)
and satisfies there the bound
[T < ColA[Mo,  Co, My > 0.
Then we have the asymptotics

N(r) = (1 + n2)r? + O (r¥"7%), Vo<e<]1, (7N

wq being the volume of the unit ball in R%.

where

Known results. In the isotropic case when ng = 1, ny(z) > 1 on £, the asymptotic for N(r)
with a remainder term o(r?) is proved by M. Faierman [3] and by L. Robbiano [12].

Idea of the proof. It is inspired by the paper [1] where Weyl type asymptotics have
been proved for the counting function of the resonances associated to an exterior transmission
problem. We can get an asymptotic for N(r) — N(r/2) by using the trace formula (3), the Weyl
asymptotics for the counting functions of the eigenvalues of G; and G2, and the Theorems of
Caratheodory and Jensen. We use in an essential way that dimT" = d — 1.
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4. PARABOLIC EIGENVALUE-FREE REGIONS

Thus, the problem of proving Weyl asymptotics for the counting function N(r) is reduced to
that one of proving parabolic eigenvalue-free regions. The following result is proved in [14] and
concerns the isotropic case.

Theorem 2. Assume the condition
ca@)=c(z)=1 in Q, ni(z)#nz), Vzrel. (8)
Then there are no transmission eigenvalues in

{A € C:ReA>0, [Im)| > C. (Re,\+1)%+€}, Vo<e< 1.
In this case the asymptotic (7) holds with k = 1/2.

In the anisotropic case the situation is more interesting and one has to distinguish two sub-
cases. The following result is proved in [14].

Theorem 3. Assume the condition
(c1(z) — e2(2))(c1(z)na(z) — c2(z)na(z)) <0, VreT. 9)
Then there are no transmission eigenvalues in the union of the sets
{,\ec:ogRe,\s 1, Re,\ch(|Im,\|+1)-N}, YN > 1,
and .
{,\ € C:ReA> 1, [Im)| > C. (Re,\)i‘ff}, Vo<e< 1.

In this case the asymptotic (7) holds with k = 1/2.
Assume the condition

(c1(z) = c2(@))(cr(@)ma(7) — ca(x)n2(2)) >0, Vz €T, (10)
Then there are no transmission eigenvalues in
{,\ €C:ReA>0, [ImA| > C(Re,\+1)%}.

In this case the asymptotic (7) holds with k = 2/5. Moreover, if in addition to (10) we assume
either the condition

ni(z) , na(x)
ca(z) 7 cz)’ vz el (11)

or the condition

m(z) = na(2) Vz el (12)
a(z)  efz)’ ’
then there are no transmission eigenvalues in

{Ae C:ReA >0, [Im)| ZC’E(Rez\+1)%+€}, Vo<e<1.

Remark. One can show that under the condition (9) there are infinitely many transmission
eigenvalues in

{,\ €C:0<ReA < Oy (ImA| + 1)‘”}
and that their counting function, N~ (r), satisfies an asymptotic of the form

N=(r) = or* + 0(r%72).
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Known results. In the isotropic case when ¢; = c2 = 1, ng = 1, ni(z) > 1 on Q, it was
proved by M. Hitrik, K. Krupchyk, P. Ola and L. Paivéarinta [4] that there are no transmission
eigenvalues in

{rec:Rerz0,mx > C(ReA+1)F].

To prove the above theorems we make our problem semi-classical by putting k = |Re 2|12
z = h2X2 = +1 +ilmz, if |[Re)X?| > [Im)2[, and h = [ImX2|"Y/2) 2z = h2A2 = Rez +1, if
[ReA?| < |lm A?|. Clearly, h ~ |A|~!. The proof of Theorems 2 and 3 is based on the following
semi-classical properties of the Dirichlet-to-Neumann map Nj(z, h) = —ihN;(}) (see [14]).

Theorem 4. For every 0 < e < 1, 0 <-h < 1, |[Im z| > h1/2~¢, the Dirichlet-to-Neumann map
Nj(z,h) is an h — ¥ DO of class OPS} P ((T) with a principal symbol

pi(z, &) = \/—ro(z,g) +m;(z)z with Imp; >0,

where m; denotes the restriction on T' of the function nj/c;, and rq is the principal symbol of
the Laplace-Beltrami operator —Ar, I being considered as a Riemannian manifold equipped with
the Riemannian metric induced by the Fuclidean one.

Recall that a € S¥(I'), 0 < § < 1/2, if a € C®°(T"T) satisfies the bounds

0200 a(a,€)| < Cash~$(HHED (g)-181

It is well-known that for A — ¥ DOs with such symbols there is a very nice calculus (e.g. see

(2D)-

Thus getting eigenvalue-free regions is reduced to inverting the operator
T(z,h) = c1N1(z,h) — caNa(z, h)

with a principal symbol

&(z)(colz)ro(x, &) — 2) (13)
cp1+ c2p2

C1p1 — C2p2 =

where ¢ and ¢y are the restrictions on I' of the functions

cd—c2

cing —cong and ————
ciny — C2n2

respectively. In the isotropic case we have ¢y = 0 on I', while in the anisotropic case we have
co(z) # 0, Vz € T. Under the condition (9) we have cp(z) < 0, Vz € I', while under the
condition (10) we have co(z) >0, Vz €T

The parametrix of Nj(z,h) is bad when Re z = 1 near the glancing region

Ej = {(.’E,E) €TT: 7‘0('1:1 f) - mj(w) = 0}

Therefore, to improve the above results one has to improve the parametrix construction in the
glancing region. Indeed, a better parametrix has been constructed in [15] for strictly concave
domains valid for |Im z| > h'~¢, which led to some improvements in this case.
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5. OPTIMAL EIGENVALUE-FREE REGIONS
We can improve the above eigenvalue-free regions if £ N Xy = §. More precisely, we have the
following (see [16]).

Theorem 5. Assume either the condition (8) or the condition (9). Then there are no trans-

mission eigenvalues in
{Ae€C:ReA>1, [Im)\ >C>0}. (14)

In this case the asymptotic (7) holds with k = 1.

Tthe eigenvalue-free region (14) has been previously proved in [10] in the case of a ball and
constant coefficients. It is shown by Leung and Colton [6] that in the isotropic case when € is
a ball and the refraction indices n; and ny constants, the eigenvalue-free region (14) is optimal.
In the anisotropic case we also have the following (see [16]).

Theorem 6. Assume the conditions (10) and (11). Then there are no transmission eigenvalues
n
{A€C:ReX>0,|ImA| > Clog(ReA+2)}, C>0. (15)

In this case the asymptotic (7) holds with k = 1.

Define the cut-off function x9 € C§°(T*T) by

X3(,€) = ¢ ((ro(e,€) — m;())67?)

where 0 < § < 1 is a small parameter independent of h and z, and ¢ € C°(R), 0 < ¢ < 1,
o(t) = 1for |t| <1, ¢(t) = 0 for || > 2, is also independent of h and z. Theorems 5 and 6 follow
from the following (see [16]).

Theorem 7. Let Rez =1 and let 0 < € < 1 be arbitrary. Then, for every 0 < § K 1 there are
constants Cs > 1 and 0 < hy(e, ) < 1 such that we have

0
1N (2, ) = Opn (031 = X§) + ko) | oy pa oy S CF (16)
for Csh < |Imz| < h¢, 0 < h < hy(e,d), where C > 0 is a constant independent of h, z and §,
and b; € SQ(T') is independent of h, z and the function n;.
Here H ,1 (T') denotes the Sobolev space equipped with the semi-classical norm.

6. THE DEGENERATE ISOTROPIC CASE

We will consider the case when
az)=c(z)=1 in Q, n(z)=n(z), Vzel.
We have the following (see [17]).
Theorem 8. Assume that there is an integer j > 1 such that
O (n1(z) —n2(z)) =0, Vzel, 0<s<j-—-1, (17)

and )
& (n1(z) —n2(x)) #0, Vzel. (18)
Then there are no transmission eigenvalues in

{,\ € C:ReA>0, [ImA| > C (ReA+ 1)1—@-},

where k; = 2(3j + 2)71. In this case the asymptotic (7) holds with k = k;.

It has been previously proved by Lakshtanov and Vainberg [5] that under the conditions (17)
and (18) there are no transmission eigenvalues in |argA| > ¢, |A| > C. > 1, VO<e < 1.
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7. OPEN PROBLEMS

Conjecture 1. For an arbitrary domain 2, the counting function of the transmission eigenval-
ues satisfies the Weyl asymptotics

N(7) = (11 + m)r¢ + O(r¢71). (19)
REFERENCES
[1] F. Carposo, G. Porov AND G. VODEV, Asymptotics of the ber of re ces in the tr

problem, Commun. Partial Diff.. Equations 26 (2001), 1811-1859.

[2] M. DiMAsSI AND J. SIOSTRAND, Spectral asymptotics in semi-classical limit, London Mathematical Society,
Lecture Notes Series, 268, Cambridge University Press, 1999.

[3] M. FAIERMAN, The interior transmission problem: spectral theory, SIAM J. Math. Anal. 46 (1) (2014), 803-
819.

66

[4] M. HITRIK K. KRUPCHYK, P. OLA AND L. PAIVARINTA, The interior transmission problem and bounds of

tran n eigenvalues, Math. Res. Lett. 18 (2011), 279-293.

[5] E. LAKSHTANOV AND B VAINBERG, Application of elliptic theory to the isotropic interior transmission eigen-
value problem, Inverse Problems 29 (2013), 104003

[6] Y.-J. LEUNG AND D. CorroN, Complez tran ion eig lues for spherically stratified media, Inverse
Problems 28 (2012), 075005.

[7] H. PHAM AND P. STEFANOV, Weyl asymptotics of the transmission eigenvalues for a constant indez of refrac-
tion, Inverse problems and imaging 8(3) (2014), 795-810.

[8] V. PETKOV, Location of eigenvalues for the wave equation with dissipative boundary conditions, Inverse Prob-
lems and imaging 10(4) (2016), 1111-1139.

[9] V. PETKOV AND G. VODEV, Asymptotics of the number of the interior transmission eigenvalues, J. Spectral
Theory 7(1) (2017), to appear.

[10] V. PETKOV AND G. VODEV, Localization of the interior transmission eig lues for a ball, Inverse Problems
and imaging, 11(2) (2017), to appear.

[11] L. ROBBIANO, Spectral analysis of interior transmission eigenvalues, Inverse Problems 29 (2013), 104001.

[12] L. RoBBIANO, Counting function for interior transmission eigenvalues, Mathematical Control and Related
Fields 6(1) (2016), 167-183.

[13] J. SYLVESTER, Transmission eigenvalues in one dimension, Inverse Problems 29 (2013), 104009.

[14] G. VobEV, Transmission eigenvalue-free regions, Comm. Math. Phys. 336 (2015), 1141-1166.

[15] G. VoDEV, Transmission eigenvalues for strictly concave domains, Math. Ann. 366 (2016), 301-336.

[16] G. VopEYV, Hzgh -frequency approzimation of the interior Dirichlet-to-Neumann map and applications to the
transmissi lues, preprint 2017.

[17] G. VobEy, Pambolzc transmission eig lue-free regions in the degenerate isotropic case, preprint 2017.

UNIVERSITE DE NANTES, LABORATOIRE DE MATHEMATIQUES JEAN LERAY, 2 RUE DE LA HOUSSINIERE, BP
92208, 44322 NANTES CEDEX 03, FRANCE
E-mail address: Georgi.VodevQuniv-nantes.fr



