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1 Introduction

The fractional power of the negative Laplacian as the self‐adjoint operator acting on  L^{2}(\mathbb{R}^{n})
is defined by the Fourier multiplier with the symbol

$\omega$_{ $\rho$}( $\xi$)=| $\xi$|^{2 $\rho$}/(2 $\rho$) (1.1)

for 1/2\leq $\rho$\leq 1 . We denote this operator by

H_{0, $\rho$}=$\omega$_{ $\rho$}(D_{x}) , (1.2)

where D_{x}=-i\nabla_{x}=-i(\partial_{x}1, \ldots, \partial_{x_{n}}) . More specifically, we can represent H_{0, $\rho$} by the Fourier

integral operator

(H_{0, $\rho$} $\phi$)(x)=(\displaystyle \mathscr{F}^{*}$\omega$_{ $\rho$}( $\xi$)\mathscr{F} $\phi$)(x)=\int_{\mathrm{R}^{2n}}e^{i(x-y)\cdot $\xi$}$\omega$_{ $\rho$}( $\xi$) $\phi$(y)dyd $\xi$/(2 $\pi$)^{n} (1.3)

for  $\phi$\in \mathscr{D}(H_{0, $\rho$})=H^{2 $\rho$}(\mathbb{R}^{n}) , which is the Sobolev space of order  2 $\rho$ . In particular, if  $\rho$=1,
then H_{0,1} is the free Schrödinger operator $\omega$_{1}(D_{x}) = -$\Delta$_{x}/2 = -\displaystyle \sum_{j=1}^{n}\partial_{x_{j}}^{2}/2 . If  $\rho$ = 1/2,
then H_{0,1/2} is the massless relativistic Schrödinger operator $\omega$_{1/2}(D_{x})=\sqrt{-$\Delta$_{x}}.

In Ishida [I2], we proved the following Enss‐type propagation estimate for e^{-itH_{0. $\rho$}} . We

denote the usual characteristic function of the set \{\cdots\} by F(\cdots) . We also denote the

smooth characteristic function  $\chi$\in C^{\infty}(\mathbb{R}^{n}) by

 $\chi$(x)=\left\{\begin{array}{l}
1 |x|\geq 2\\
0 |x|\leq 1.
\end{array}\right. (1.4)
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Theorem 1.1. Let f \in  C_{0}^{\infty}(\mathbb{R}^{n}) with supp f \subset \{ $\xi$ \in \mathbb{R}^{n} | | $\xi$| \leq  $\eta$\} for some given  $\eta$ > 0.

Choose v\in \mathbb{R}^{n} such that |v|\gg 1 . The following estimate holds for t\in \mathbb{R} and N\in \mathrm{N} :

\displaystyle \Vert $\chi$(\frac{x-(\nabla_{ $\xi$}$\omega$_{ $\rho$})(v)t}{|v|^{2 $\rho$-1}|t|/4})e^{-\mathrm{i}tH_{0, $\rho$}}f(D_{x}-v)F(|x|\leq\frac{|v|^{2 $\rho$-1}|t|}{16})\Vert\leq C_{N}(|v|^{2 $\rho$-1}|t|)^{-N} , (1. S)

where \Vert\cdot\Vert stands for the operator norm on  L^{2}(\mathbb{R}^{n}) , and the constant C_{N} >0 also depends.
on the dimension n and the shape of f.

Enss [\mathrm{E}| proved the following estimate for the free Schrödinger operator:

\displaystyle \Vert F(|x-vt|\geq\frac{|v||t|}{4})e^{-itD_{x}^{2}/2}f(D_{x}-v)F(|x|\leq\frac{|v||t|}{16})\Vert \leq C_{N}(1+|v||t|)^{-N} . (1.6)

This estimate was proved not only for spheres but more generally for measurable subsets of

\mathbb{R}^{n} (see Proposition 2.10 in Enss [E]). Before considering Theorem 1.1 further, we discuss the

meaning of the estimate (1.6). From the perspective of classical mechanics, D_{x} represents
the momentum or, in particular, the velocity of the particle when the mass is equal to 1. On

the left‐hand side of (1.6), D_{x} is localized to the neighborhood of v by the cut‐off function

f . Therefore, along the time evolution of the propagator e^{-itD1/2} ,
the position of the particle

behaves according to

x\sim D_{x}t\sim vt . (1.7)

Because the behavior of the sphere is the same, the center of the sphere moves toward vt

from the origin:

\displaystyle \{x\in \mathbb{R}^{n}| |x|\leq\frac{|v||t|}{16}\}\sim\{x\in \mathbb{R}^{n}| |x-vt|\leq\frac{|v||t|}{16}\} . (1.8)

We can understand the meaning of the estimate (1.6) from these observations. The behavior

of the sphere (1.8) makes the characteristic functions on both sides of (1.6) disjoint. Thus,
this gives rise to the decay associated with time and velocity. Theorem 1.1 is the fractional

Laplacian version of (1.6). Noting that (\nabla_{ $\xi$}$\omega$_{ $\rho$})(v)=|v|^{2 $\rho$-2}v , the case where  $\rho$=1 in (1.5) is

essentially equivalent to (1.6). Conversely, when  $\rho$=1/2 in (1.5), the decay on the right‐hand
side does not involve |v| . However, this does not conflict with the physical meaning. In the

case where  $\rho$= 1/2 , the system is relativistic. In this system, the particle does not have a

mass, and its velocity is the light velocity, which is normalized to 1. Therefore, the decay
cannot include the velocity v.

Spectral analysis for the relativistic Schrödinger operator was initiated by Weder [Wedl],
following which Umeda [Ul, U2] studied the resolvent estimate and mapping properties
associated with the Sobolev spaces. Wei [Wei] also studied the generalized eigenfunctions.
Weder [Wed2] also analyzed the spectral properties of the fractional Laplacian for the massive

case, and Watanabe [Wa] investigated the Kato‐smoothness. Giere [G] investigated the

scattering theory and proved the asymptotic completeness of the wave operators in the case

of short‐range perturbations. Recently, Kitada [Kl, K2] constructed the long‐range theory.
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2 Inverse Scattering
In this section, we assume that the space dimension satisfies n \geq  2 . As an application of

Theorem 1.1, we consider a multidimensional inverse scattering. The high‐velocity limit of

the scattering operator uniquely determines the interaction potentials that satisfy the short‐

range condition below by using the Enss‐Weder time‐dependent method (Enss‐Weder [EW]).

Assumption 2.1. V\in C^{1}(\mathbb{R}^{n}) is real‐valued and satisfies, for  $\gamma$>1,

|\partial_{x}^{ $\beta$}V(x)|\leq C_{ $\beta$}\{x)^{- $\gamma$-| $\beta$|}, | $\beta$|\leq 1 , (2.1)

where the bracket of x has the usual definition \{x\rangle=\sqrt{1+|x|^{2}}.
For the full Hamiltonian H_{ $\rho$}=H_{0, $\rho$}+V , where V belongs to the class above, the existence

of the wave operators

W_{ $\rho$}^{\pm}=\displaystyle \mathrm{s}-\lim_{t\rightarrow\pm\infty}e^{itH_{ $\rho$}}e^{-itH_{0, $\rho$}} (2.2)

and their asymptotic completeness have already been proved. Thus, we can define the scat‐

tering operator S_{ $\rho$}=S_{ $\rho$}(V) by
S_{ $\rho$}=(W_{ $\rho$}^{+})^{*}W_{ $\rho$}^{-} . (2.3)

Under these situations, we obtained the following uniqueness theorem in Ishida [I2].

Theorem 2.2. Let V_{1} and V_{2} be interaction potentials that satisfy Assumption 2.1. If

S_{ $\rho$}(V_{1})=S_{ $\rho$}(V_{2})) then V_{1}=V_{2} holds for 1/2< $\rho$\leq 1.

We note that  $\rho$ = 1/2 is excluded in this theorem. As mentioned before, in the case

where  $\rho$=1/2 , the system is relativistic and the hght velocity is always equal to 1, that is,

|v| \equiv  1 . The Enss‐Weder time‐dependent method is also called the high‐velocity method.

As indicated by this name, deriving the uniqueness of the interaction potentials requires the

limit of |v| . Thus, this method does not combine well with relativistic phenomena (see also

Jung [J]).
In Enss‐Weder [EW], it was demonstrated that the estimate (1.6) was very useful for

inverse scattering and the Enss‐Weder time‐dependent method was developed. Since then,
the uniqueness of the interaction potentials for various quantum systems has been studied

by many authors (Weder [Wed3], Jung [J], Nicoleau [Nl, N2, N3], Adachi‐Maehara [AM],
Adachi‐Kamada‐KazunxToratani [AKKT], Valencia‐Weder [VW], Adachi‐Fhjiwara‐Ishida
[AFI] and Ishida [I1]). This paper is motivated by these results. In particular, Enss‐Weder

[EW] first proved the uniqueness of the potentials in the case where  $\rho$=1 by applying (1.6).
On the other hand, Jung [J] treated the case of  $\rho$=1/2 using a slightly different approach. Of

course, we cannot consider the limit of the velocity in this case. However, roughly speaking,
Jung [J] translated the high‐velocity limit into a high energy‐limit and, without using an

estimate of the type (1.5), obtained the uniqueness of the potentials. Thus, Theorem 2.2

represents an interpolation between the results of Enss‐Weder [EW] and Jung [J].
To apply the Enss‐Weder time‐dependent method, the following Radon transformation‐

type reconstruction formula is crucial.

134



Theorem 2.3. Let v\in \mathbb{R}^{n} be given and let \hat{v}=v/|v| . Suppose that  $\eta$>0_{2} and that $\Phi$_{0}, $\Psi$_{0}\in
 L^{2}(\mathbb{R}^{n}) such that \mathscr{F}$\Phi$_{0} , ỹ $\Psi$_{0} \in  C_{0}^{\infty}(\mathbb{R}^{n}) with supp \mathscr{F}$\Phi$_{0}, supp \ovalbox{\tt\small REJECT} $\Psi$ 0\subset \{ $\xi$ \in \mathbb{R}^{n} | | $\xi$| \leq  $\eta$\}.
Let $\Phi$_{v}=e^{iv\cdot x}$\Phi$_{0}, $\Psi$_{v}=e^{iv\cdot x}$\Psi$_{0} . Then

|v|^{2 $\rho$-1}(i(S_{ $\rho$}-1)$\Phi$_{v}, $\Psi$_{v})=\displaystyle \int_{-\infty}^{\infty}(V(x+\hat{v}t)$\Phi$_{0}, $\Psi$_{0})dt+O(|v|^{\max\{1-2 $\rho$+ $\epsilon$,-1/(2+ $\gamma$)\}}) (2.4)

holds as |v| \rightarrow\infty for any  0 < $\epsilon$< 2 $\rho$-1 and any V that satisfies Assumption 2.1, where

) is the scalar product of L^{2}(\mathbb{R}^{n}) .

We emphasize that the error exponent in (2.4) is -1/(2+ $\gamma$) when  $\rho$=1 , because  $\epsilon$>0

can be chosen arbitrarily. The corresponding order obtained by Enss‐Weder [EW] is o(1- $\gamma$)
for 1 <  $\gamma$ < 2 (see Theorem 2.4 in Enss‐Weder [EW]). Note that  1- $\gamma$ > -1/(2+ $\gamma$) is

equivalent to  $\gamma$ < (\sqrt{13}- 1)/2 . Therefore, in the case where 1 <  $\gamma$ < (\sqrt{13}-1)/2 , our

exponent -1/(2+ $\gamma$) is better than the correspondence obtained by Enss‐Weder [EW].
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