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1 Introduction

The main purpose of this article is to announce the results of [1] on the Molecular pre-
dissociation resonances below an energy level crossing. We determine the precise positions
of resonances for a system of Schrédinger equations. In particular the imaginary parts
(widths) of the resonances are exponentially small and the indices are determined be the
Agmon distance of the minimum of potentials.

Before we consider the molecular predissociation resonances, it is instructive to recall the
relation of spectrum and resonance to classical trajectories. We consider the Hamiltonian
H = —h®A+V with a potential V and the solution (z(t),(t)) of the Hamilton’s equation
of its symbol H(z,&) = €2+ V(z). If a potential V € C*(R™) satisfies V(z) — +o0 as
|z| = +oo, z(t) of any solution (z(t),£(t)) of the Hamilton’s equation is bounded and
H has purely discrete spectrum (see, e.g., [13, Theorem XIII.16]). The corresponding
eigenfunctions do not change as time passes except for multiplication by complex numbers
with modulus 1. On the other hand, if V'(z) € C*(R") satisfies °V (z) = (z) 71, |a| <
1, there are unbounded trajectories for energies E > 0 and (0, 00) is continuous spectrum.
The functions corresponding to the continuous spectrum scatters as time passes.

Resonances appear if for an interval of energy there are both bounded and unbounded
trajectries. Resonances are complex eigenvalues of the formal eigenfunctions of the Hamil-
tonian which are not in L2(R™) because of the growth as |z| — co. A formal eigenfunc-
tion u corresponding to a resonance E is outgoing, that is, in one dimensional space if
limsup,_, . V(z) < Re E then

U~ (B — V)4 SE-VE 2dt/h og 4y 4 oo,
and if limsup,_, . V(z) < Re E then

i P (- 1/2
U~ (E _ V)1/4e i fT(E-V(8))/2dt/h as £ — —00,
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where a € R is a constant. Note that u decays exponentially on Ry := R where § > 0
is large enough compared to Im E. We use this property to define resonances later.

Let E be a resonance and u the corresponding eigenfunction and assume that the region
{z : V(z) < Re F} is divided into a bounded region §2 and an unbounded region If x is a
cutoff function on a region € including ©, the part of e~ xu inside Q' decays as e~ ™ F*
(see Skibsted [14, 15]). Thus if the imaginary part (width) of the resonance is small, the
square integrable approximation of the resonance function stays in € for a long period.

In the theory of shape resonances of Schrodinger operators it is known that widths of
the resonances have exponential bounds as C.e~21~95/" where ¢ can be taken arbitrarily
small, h is the semiclassical parameter and S is the Agmon distance between the bounded
and unbounded regions where the potential is below the real part of the resonance (see,
e.g., [3, 6, 7)).

In this article we determine positions of resonances of operators related to molecular
predissociation. In particular we find that widths of the resonances have exponential
bounds as above with the Agmon distance of the minimum of the potentials.

2 The model for molecular predissociation

The study of Schrodinger equation of systems of nuclei and electrons is reduced to that
of matrices of pseudodifferential operators as follows:

P :=diag(P,...,Pn) + hR(z,hD,),

where R(z, hD,) is a symmetric m X m matrix of pseudodifferential operators of order less
than one, P; := —h?A + V;(z) and V; are potentials corresponding to electronic energy
levels. This reduction scheme is called the Born—-Oppenheimer approximation and justified
in both the eigenvalue problem (see Klein-Martinez-Seiler-Wang [9]) and the study of the
time-dependent Schrédinger equations (see Martinez-Sordoni [11]):

In Martinez [10], Nakamura [12], Baklouti [2] and Grigis-Martinez [5], they study reso-
nances for two electronic levels with potentials that do not intersect and obtain exponential
bound on their widths. Klein [8] studies the case of more than two intersecting potentials
some of them forming wells to confine nuclei and the others being non-trapping. In this
case, it is shown that the widths of the resonances with real parts converging to the bot-
tom of the potential well have the exponential bound as in the case of usual Schrédinger
operators with Agmon distance for Viin = mini<j<m Vj.

In Fujiié-Martinez-Watanabe [4] they considered the following operator.

P AW
P= 1
<hW* P, ) ’ M)
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Fig. 1: The graph of the two potentials on the real axis

where P; = —h%A + V;(2),j = 1,2 2 € R, W = ro(z) + hri(z)8, and W* is the formal
adjoint of W. They studied the resonances with real parts in the distance of order h%3
from a crossing of two potentials. Under a condition of ellipticity on the interaction they
obtain the exact order h%3 of the widths of the resonances.

3 Assumptions and the main result

We assume Vi(z) in (1) has a well and V3(z) is lower than the energy considered for
x large enough. We also assume that V; and V;, cross transversally (see Fig. 1). The
components governed by P; and P, interact due to the off-diagonal elements AW and
hW*. More precisely, we suppose the following conditions on V;i(z), Va(z) and ro(x),
ri(z).

Assumption (A1) Vi(z) and V,(z) are real-valued analytic functions on R and extend
to holomorphic functions in the complex domain,

I'={z € C;|Imz| < §p(Rez)},

where &y > 0 is a constant and (¢) := (1 + [¢[?)¥/2.
Assumption (A2) For j = 1,2, V; admits limits as Rez — Zoo in I and there exists a
real number E’ such that

lim Vi(z) > E'; lim V(z) > E';
Rez——oc0

Rez——o00

zel zel

lim Vi(z) > E'; lim V,(z) < E'.
Rez—+o00 Rez—+o0

zel’ zel

Assumption (A3) There exist real numbers ay < by < 0 < ¢y such that
e Vi>FE and V3 > E' on (—00,a0);

e Vi < E' < V; on (ag, by);
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o E' < Vi <V on (by,0);
e E' < Vo < V; on (0,c);
eV < E' < V; on (co, +00),
Moreover, one has
Vi(ao) <0, V{(bo) >0, V(co) < 0, V{(0) > V3(0).

Assumption (A4) ry and r; are bounded analytic functions on I, and 7o(z) and r1(z)
are real when z is real. The resonances of P can be defined as eigenvalues of the operator
P acting on L?(Rg) & L*(Rs) where Ry is a complex distortion of R that coincides with
€®R for x > 1. We denote by Res(P) the set of the resonances of P.

The examples of the potentials satisfying the assumptions are —=25 =i (5 — ;%)

and tanh(—x) = ¢35 translated appropriately.

We consider the resonances with real parts close to E’ above and imaginary parts of
order O(h). For d > 0 small enough, we set I := [E' — d, E' + d]. We fix C; arbitrarily
large, and we study the resonances of P lying in the set

Dy = {EG C;ReFE €1, —Coh<ImE<0}.

For E € Dy, Vi(z) = F has only two solutions and we denote the solution with the smaller
real part and the larger one by a = a(E) and b = b(E) respectively. We also denote the
unique solution of Va(x) = E for F € Dy by ¢ = c(E). For E € D; we define the action,

A(E) = / VE-i@)dt.
Then our result is the following.
Theorem 3.1 Under Assumptions (A1)-(A4), for h > 0 small enough, one has,
Res(P)ND; = {Ex(h);k € Z} N Dy
where Ex(h)’s are complex numbers that satisfy,

Re Ex(h) = ex(h) + O(h*?)

Im Ex(h) = — %A’(ek(h))-le-”(ek)/h(vl(0) _ 6;;(h))'1/2(V1’(O) —V2(0))™!
- (r0(0) + 71(0)/Vi(0) — ex(h))? + O(h®/2e=25(x)/hy,

uniformly as h — 0, where

er = ek( ) .A_l((k'i' )ﬂ'h),

0 4:(::;c
S(ex) = / V() = exdt + / Vol —exdt.
b(ex) 0
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4 Outline of the proof of the main theorem

The proof of the theorem is based on the construction of the solutions to the system
as in Fujiie-Martinez-Watanabe [4]. We introduce a function f € C*°(Ry, R, ) such that
f(z) = z for x large enough and f(z) = 0 for = € [0, Zo) for z > 0 large enough. In the
sequel we will use the following notation:

I, :=[b,0]; I.:=[0,¢];
I, = (—OO, b] ; II% = FO([C’ -i-OO)),

for real b and ¢ where Fy(z) := z + i0f(z). For complex b and ¢, we denote by the same
notation appropriate curves in the complex plane connecting the end points.

The procedure of the proof is as follows. First, for E € Dy we construct the solutions to
the system on I, I, I;, and I¥ using the solutions to (P; — E)u =0, j = 1,2 constructed
by Yafaev’s construction. Next we consider the connection of the solutions at 0 and
change the basis of the solutions so that the transition matrix at 0 will be simple. We
also consider the connection of the solutions at b and c. Finally, we obtain the condition on
E that the decaying solutions on Iy, and I% are linearly dependent. We call this condition
the quantization condition. '

4.1 Construction of the solutions

Let xp be a point between a and b. By Yafaev’s construction (see Yafaev [16] and
appendix in Fujiie-Martinez-Watanabe [4]) we obtain the solutions uf r(z) and uf () to
(P, — E)u = 0 on the right and left of zo such that
h1/6

—= (Vi(@) = B) et oy VORI, (2 +oo),

ui (2) ~ (1 + O(h))
and
1/6 .
uig(z) ~ (1+ 0(h)>hﬁ(v1(x) — B)VaeT fam VOB (55 _o0).
We also obtain the solutions u2i 1.(z) to (P2 — E)u = 0 such that
h1/8 ? o \/Va(®)—Edt/h
w5(a) ~ (1+ O(R) = (Vale) = B) 4T fim VIOZEUR, (g —oo);

P S
™ (gazupp T iafu (2))
hl/G
)ﬁ

~ (14 O(h) == (E — Va(x)) V4eT im VEROUR (g too).
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We define v, as
2,R

o owirl oo ks
Upp =€t (2‘12 uyp Eiaguiy).

To see the growth and decay from the points b and ¢, we define the solutions u;.fb on Iy,

+ 9 ,* + .
uj, on Ip, viy on I, and v}, on I as follows:

+ ._ % + o =S2/h, + - o Sa/h, —
Uypp o= Up gy Ugp =€ Uy Ugp = €7 Uy s

+ .+ + . ,~S1/h,,+ - . S1/hy—
Uge = Ug Ry Uy =€ U gy Urc =€ " "Up
+ ._ .+ + . ,S2/h, — - . ,=S2/h, +
Vip = Upg, Vgp =€ MUy, Vpp =€ Uz 1,
+ . % + . S/ h,,— — . ,=S1/h,+
Vae ' =Upp, Vi =€ U py V=€ U1,Rs

where S := [ /Vi(t) — Edt, Sy := [, /Va(t) — Edt.

For E € D; we can define a fundamental solutions,
K1,bC(Ib) — 02(.{5)

of P, — F and
Kay: CI) = CX(Iy)

of P, — E on I, by setting for v € C(),

x 0
Kulol(z) = m (u;b(z) /b uty (Ou(t)dt + v, (z) / v;b(t)v(t)dt),
Kopo](z) = m (Ugb(x) /b ‘ v}y (Du()dt + vy () / v;b(t)v(t)dt),

where Wlvy,, v{,] is the Wronskian of v}, and v}, and so on. Then we have (P,—E)Ki =
1 and (P — E)K,; = 1. Even if we replace the first term and the second one in the
parenthesis on the right-hand side by —v7,() [, : vy (Hu(t)dt and ~viy(z) J, vy, (t)v(t)dt
respectively, the operator is still a fundamental solution. We denote them by K7, and

Kj , respectively.

Noting
P, — E)u; = -hW
Pu=FEu& (P Ju 42 ,
(Pz - E)uz = —hW*ul
we set uy = —hK,,W*uy,. Then we have

(.P1 - E)ul = h2WK2,bW*U1,
and solutions are given by

ur = v, + KKy WKy Wy,
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Thus by the successive approximation we obtain solutions

Wt = ’Ul » + hK; bWZ >0 M” (hKa W™} b)
b -2 M} (hKy W vl,b) ’

on I, where M, := h?K,,W*K;,W. We can see by some estimates for fundamental
solutions that the series in the solutions converge. We can see also that the leading term
is *(vi5,, 0) and the order of the remaining terms with respect to h are that of vy, times A'/2.
We can construct solutions wrf,, in the similar way, but we need to use the fundamental
solutions K], and K7, instead of K1 so that the leading terms will be *(0, vj; 5)-

In the same way we can construct solutions w - on I, with leading terms (vfc, 0) and
¢, vf’c). On the intervals Iy, and I% we cons1der only decaying solutions. In the similar
way as on I, and I, we construct solutions wy 1, we,r, wy,r and wy g With leading terms
Huiy 0), *(0,uz), *(ui,,0) and *(0,uy,) respectively. Then the solutions wj,r, and wjr
satisfy,

wj,, € L2(I) ® L*(IL) ; w;r € L2(I%) ® L2(I%).

4.2 Connection of the solutions

To calculate the condition that the decaying solutions on the left and right intervals are
linearly dependent, we need to consider the connection at 0, b and c. As for the connection
at 0, we define the 4 X 4 transition matrix T as follows:

+ +
wl,b wl,c
Wip | —p | Yie
wt wt

2,b 2,c
Wap w2,c

For the calculation of the quantization condition, we replace the basis w?, G and w . with
the new ones w7 7 and w 50 that the matrix 7' defined by

@i{:b wf‘

w]:b — rj‘v wl c

ﬁ};:b ,'I)-L’tc ’

Wy, Wa e

will have the following form;
0 t 0 tu
j-', — t21 0 t23 0 (2)

0 t32 0 i3
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The asymptotic behavior of ¥ i and w - are same as those of w, i and w respectlvely
Next, we calculate the coefﬁ01ents of w¥ b (Tesp., @ ) in the representatlon of wy 1, and

wyr, (resp., wy,p and wa ) as linear conbmatlons of i b (vesp., W}, pE). We can write as
folows:

wy,p = Dp'(afwify + ay By, + a3 sy + ay ),

wy,r, = D' (b @y, + by, + b3 g, + by Wg), 3)

wi,r = DR} (cfdf, + s, + f 0, + c; W3,,),

wy,r = D' (d f’fhc'*’dl‘@l_c‘*‘d'zwzc + dyiiy ),

where Dy and Dg are Wronskians

— e
Dy = W[wl,b7w1,b7w2,b7w2,b],

— Wit = it o
Dg = W[wl,c)wl,c>w2,c’w2,c]'

4.3 Quantization condition

The condition for F € D; to be a resonance is that the some linear combination of the
decaying solutions wy 7, and wy;, and that of wy g and wy g are linearly dependent, that
is, w11, wa 1, w1 g and wy g are linearly dependent. This condition can be written as,

Wo(E) = Wlwy 1, Wa,1, w1,r, Wa,r] = 0. (4)

We substitute the right-hand side of (3) for w; 1, w;r in (4) and develop the Wronskian
as a sum of terms of the form C(h)W[w, ws, w3, wy] where C(h) is a constant, w;, w, and
ws, wy are chosen from wfb, (j=1,2) and wj -, (7 = 1,2) respectively. Then the leading
term is (afb3 — b ay)(cfd — df ¢ )Wt @3, @y, 43,]. Moreover, if only one of the
wj, (j =1,...,4) is chosen from wj; or w; , then by the form of T in (2) we can see that

Wlwy, wa, w3, w4] = 0. Thus we have.

D%D%WO( ) ( b+ - bl a3 )( 1+d-2*- - di'-c-{)w[@itb?@;:ba @Ic?@;;c]

+ (a3 — byag)(cf dy — df ¢ )Wy, W3y, WY, Wy ] (5)
+ O(Gmax{A1—Bx—Az+Bz, —A1+B1+A2—Bz})’

where

A= / * SV = Edi/h, B, = / * i@ —Edt/h,
b 0

Ay = / V@ = Edt/h, By = / * Ve = Fdi/h
0 b
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Since we can calculate the coefficients and Wronskians in (5), we can rewrite (5) as,

cos ﬁ(hﬂ + f(E, h) = hF(E, h). (6)

where f(E,h) and F(E,h) are analytic for E € Dy, f(E, h) is real for real E and

F(B,h) =O(n'/?),
7 (. A(E)

F(E,h) =— 2 \sit T) e~ 2424y (0) — B)Y/2

- ({(0) = 3(0)) 7 (ro(0) + 1(0)v/14(0) — B + O(h!/2e72417242),

Using the Rouché’s theorem we can see that for sufficiently large C} > 0 and sufficiently
small h > 0, cos.A(2)/h + f(z,h) = 0 has a unique solution &(h) in B(ex; Cyh%?) for
er € I and conversely, all the roots in D; are of this type. Considering the variation of
cos A(2)/h, we can also see that &(h) € R. Applying the Rouché’s theorem again, we
conclude that for sufficiently large Cf > 0 and sufficiently small » > 0, (6) has a unique
solution Ej(h) in

B(ék; Cé’h2€_2A1_2A2),

Substituting Ej into (6) by an easy calculation we obtain the explicit expression of
Im F), as in Theorem 3.1.
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