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1 Introduction

The main purpose of this article is to announce the results of [1] on the Molecular pre‐

dissociation resonances below an energy level crossing. We determine the precise positions
of resonances for a system of Schrödinger equations. In particular the imaginary parts

(widths) of the resonances are exponentially small and the indices are determined by the

Agmon distance of the minimum of potentials.
Before we consider the molecular predissociation resonances, it is instructive to recall the

relation of spectrum and resonance to classical trajectories. We consider the Hamiltonian

H=-h^{2} $\Delta$+V with a potential V and the solution (x(t),  $\xi$(t)) of the Hamilton�s equation
of its symbol H(x, $\xi$) =$\xi$^{2}+V(x) . If a potential V \in  C^{1}(\mathbb{R}^{n}) satisfies V(x) \rightarrow +\infty as

|x| \rightarrow +\infty, x(t) of any solution (x(t),  $\xi$(t)) of the Hamilton�s equation is bounded and

H has purely discrete spectrum (see, e.g., [13, Theorem XIII.16]). The corresponding

eigenfunctions do not change as time passes except for multiplication by complex numbers

with modulus 1. On the other hand, if V(x)\in C^{1}(\mathbb{R}^{n}) satisfies \partial^{ $\alpha$}V(x)=\{x\rangle^{- $\rho$-| $\alpha$|}, | $\alpha$| \leq

 1 , there are unbounded trajectories for energies E>0 and (0, \infty) is continuous spectrum.

The functions corresponding to the continuous spectrum scatters as time passes.

Resonances appear if for an interval of energy there are both bounded and unbounded

trajectries. Resonances are complex eigenvalues of the formal eigenfunctions of the Hamil‐

tonian which are not in L^{2}(\mathbb{R}^{n}) because of the growth as |x| \rightarrow\infty . A formal eigenfunc‐
tion  u corresponding to a resonance E is outgoing, that is, in one dimensional space if

\displaystyle \lim\sup_{x\rightarrow+\infty}V(x)<{\rm Re} E then

u\sim(E-V)^{1/4}e^{i\int_{a}^{X}(E-V(t))^{1/2}dt/h} as x\rightarrow+\infty,

and if \displaystyle \lim\sup_{x\rightarrow-\infty}V(x)<{\rm Re} E then

u\sim(E-V)^{1/4}e^{-i\int_{a}^{X}(E-V(t))^{1/2}dt/h} as x\rightarrow-\infty,
'
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where a\in \mathbb{R} is a constant. Note that u decays exponentially on \mathbb{R}_{ $\theta$} :=e^{i $\theta$}\mathbb{R} where  $\theta$>0

is large enough compared to {\rm Im} E . We use this property to define resonances later.

Let E be a resonance and u the corresponding eigenfunction and assume that the region

\{x:V(x)<{\rm Re} E\} is divided into a bounded region  $\Omega$ and an unbounded region If  $\chi$ is a

cutoff function on a region  $\Omega$' including  $\Omega$
, the part of  e^{-itH} $\chi$ u inside $\Omega$' decays as e^{-{\rm Im} Et}

(see Skibsted [14, 15 Thus if the imaginary part (width) of the resonance is small, the

square integrable approximation of the resonance function stays in  $\Omega$ for a long period.
In the theory of shape resonances of Schrödinger operators it is known that widths of

the resonances have exponential bounds as  C_{ $\epsilon$}e^{-2(1- $\epsilon$)S/h} where  $\epsilon$ can be taken arbitrarily

small,  h is the semiclassical parameter and S is the Agmon distance between the bounded

and unbounded regions where the potential is below the real part of the resonance (see,
e.g., [3, 6, 7

In this article we determine positions of resonances of operators related to molecular

predissociation. In particular we find that widths of the resonances have exponential
bounds as above with the Agmon distance of the minimum of the potentials.

2 The model for molecular predissociation

The study of Schrödinger equation of systems of nuclei and electrons is reduced to that

of matrices of pseudodifferential operators as follows:

P := diag(Pl, . . .

, P_{m} ) +hR(x, hD_{x}) ,

where R(x, hD_{x}) is a symmetric m\times m matrix of pseudodifferential operators of order less

than one, P_{j} := -h^{2} $\Delta$+V_{j}(x) and V_{j} are potentials corresponding to electronic energy

levels. This reduction scheme is called the Born‐Oppenheimer approximation and justified
in both the eigenvalue problem (see Klein‐Martinez‐Seiler‐Wang [9]) and the study of the

time‐dependent Schrödinger equations (see Martinez‐Sordoni [11]).
In Martinez [10], Nakamura [12], Baklouti [2] and Grigis‐Martinez [5], they study reso‐

nances for two electronic levels with potentials that do not intersect and obtain exponential
bound on their widths. Klein [8] studies the case of more than two intersecting potentials
some of them forming wells to confine nuclei and the others being non‐trapping. In this

case, it is shown that the widths of the resonances with real parts converging to the bot‐

tom of the potential well have the exponential bound as in the case of usual Schrödinger

operators with Agmon distance for V_{\min}=\displaystyle \min_{1\leq j\leq m}V_{j}.
In Fujiié‐Martinez‐Watanabe [4] they considered the following operator.

P= \left(\begin{array}{ll}
P_{1} & hW\\
hW^{*} & P_{2}
\end{array}\right) (1)
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Fig. 1: The graph of the two potentials on the real axis

where P_{j} = -h^{2}\triangle+V_{j}(x) , j= 1, 2x\in \mathbb{R}, W=r_{0}(x)+hr_{1}(x)\partial_{x} and W^{*} is the formal

adjoint of W . They studied the resonances with real parts in the distance of order h^{2/3}

from a crossing of two potentials. Under a condition of ellipticity on the interaction they
obtain the exact order h^{5/3} of the widths of the resonances.

3 Assumptions and the main result

We assume V_{1}(x) in (1) has a well and V_{2}(x) is lower than the energy considered for

x large enough. We also assume that V_{1} and V_{2} cross transversally (see Fig. 1). The

components governed by P_{1} and P_{2} interact due to the off‐diagonal elements hW and

hW^{*} . More precisely, we suppose the following conditions on V_{1}(x) , V_{2}(x) and r_{0}(x) ,

r_{1}(x) .

Assumption (A1) V_{1}(x) and V_{2}(x) are real‐valued analytic functions on \mathbb{R} and extend

to holomorphic functions in the complex domain,

 $\Gamma$=\{x\in \mathbb{C};|{\rm Im} x|<$\delta$_{0}\langle{\rm Re} x\rangle\},

where $\delta$_{0}>0 is a constant and \{t\rangle :=(1+|t|^{2})^{1/2}.
Assumption (A2) For j=1 , 2, V_{j} admits limits as {\rm Re} x\rightarrow\pm\infty in  $\Gamma$ and there exists a

real number  E' such that

\displaystyle \lim  V_{1}(x)>E' ; \displaystyle \lim  V_{2}(x)>E
{\rm Re} x-\infty x\vec{\in} $\Gamma$ {\rm Re} x-\infty x\vec{\in} $\Gamma$

\displaystyle \lim  V_{1}(x)>E' ; \displaystyle \lim  V_{2}(x)<E'.
{\rm Re} x+\infty x\vec{\in} $\Gamma$ {\rm Re} x+\infty x\vec{\in} $\Gamma$

Assumption (A3) There exist real numbers  a_{0}<b_{0}<0<c_{0} such that

\bullet  V_{1}>E
� and V_{2}>E' on (-\infty, a_{0}) ;

\bullet  V_{1}<E'<V_{2} on (a_{0}, b_{0}) ;
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\bullet  E'<V_{1}<V_{2} on (b_{0},0) ;

\bullet  E'<V_{2}<V_{1} on (0, c_{0}) ;

\bullet  V_{2}<E'<V_{1} on (c_{0}, +\infty) ,

Moreover, one has

V_{1}'(a_{0})<0, V_{1}'(b_{0})>0, V_{2}'(c_{0})<0, V_{1}'(0)>V_{2}'(0) .

Assumption (A4) r_{0} and r_{1} are bounded analytic functions on  $\Gamma$
,

and  r_{0}(x) and r_{1}(x)
are real when x is real. The resonances of P can be defined as eigenvalues of the operator

P acting on L^{2}(\mathbb{R}_{ $\theta$})\oplus L^{2}(\mathbb{R}_{ $\theta$}) where \mathbb{R}_{ $\theta$} is a complex distortion of \mathbb{R} that coincides with

e^{i $\theta$}\mathbb{R} for x\gg 1 . We denote by {\rm Res}(P) the set of the resonances of P.

The examples of the potentials satisfying the assumptions are − \displaystyle \frac{2}{x^{2}+1} = i (\displaystyle \frac{1}{x-i}-\frac{1}{x+i})
and \displaystyle \mathrm{t}\mathrm{m}\mathrm{h}(-x)=\frac{e^{-x}-\mathrm{e}^{x}}{e^{-x}+e^{x}} translated appropriately.

We consider the resonances with real parts close to E' above and imaginary parts of

order \mathcal{O}(h) . For d>0 small enough, we set I := [E'-d, E'+d] . We fix C_{0} arbitrarily

large, and we study the resonances of P lying in the set

D_{I} :=\{E\in \mathbb{C};{\rm Re} E\in I, -C_{0}h<{\rm Im} E<0\}.

For E\in D_{I}, V_{1}(x)=E has only two solutions and we denote the solution with the smaller

real part and the larger one by a=a(E) and b=b(E) respectively. We also denote the

unique solution of V_{2}(x)=E for E\in \mathcal{D}_{I} by c=c(E) . For E\in D_{I} we define the action,

\displaystyle \mathcal{A}(E) :=\int_{(E)}^{b(E)}\sqrt{E-V_{1}(t)}dt.
Then our result is the following.

Theorem 3.1 Under Assumptions (Al)\rightarrow(A4) , for h>0 small enough, one has,

{\rm Res}(P)\cap D_{I}=\{E_{k}(h);k\in \mathbb{Z}\}\cap D_{I}

where E_{k}(h)s are complex numbers that satisfy,

{\rm Re} E_{k}(h)=e_{k}(h)+\mathcal{O}(h^{3/2})

{\rm Im} E_{k}(h)=-\displaystyle \frac{h^{2} $\pi$}{4}\mathcal{A}'(e_{k}(h))^{-1}e^{-2S(e_{k})/h}(V_{1}(0)-e_{k}(h))^{-1/2}(V_{1}'(0)-V_{2}'(0))^{-1}
. (r_{0}(0)+r_{1}(0)\sqrt{V_{1}(0)-e_{k}(h)})^{2}+\mathcal{O}(h^{5/2}e^{-2S(\mathrm{e}_{k})/h}) ,

uniformly as h\rightarrow 0_{+} where

e_{k}=e_{k}(h):=\displaystyle \mathcal{A}^{-1}((k+\frac{1}{2}) $\pi$ h) ,

S(e_{k})=\displaystyle \int_{b(\mathrm{e})}^{0_{k}}\sqrt{V_{1}(t)-e_{k}}dt+\int_{0}^{c(e)}k\sqrt{V_{2}(t)}‐ekdt.
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4 Outline of the proof of the main theorem

The proof of the theorem is based on the construction of the solutions to the system

as in Fujiie‐Martinez‐WatanaUe [4]. We introduce a function f\in C^{\infty}(\mathbb{R}_{+}, \mathbb{R}_{+}) such that

f(x)=x for x large enough and f(x)=0 for x\in[0, x_{\infty}] for x_{\infty}>0 large enough. In the

sequel we will use the following notation:

I_{b}:=[b, 0] ; I_{c}:=[0, c] ;

I_{L}:=(-\infty, b] ; I_{R}^{ $\theta$}:=F_{ $\theta$}([c, +\infty

for real  b and c where F_{ $\theta$}(x) :=x+i $\theta$ f(x) . For complex b and c
,

we denote by the same

notation appropriate curves in the complex plane connecting the end points.
The procedure of the proof is as follows. First, for E\in D_{I} we construct the solutions to

the system on I_{b}, I_{\mathrm{c}}, I_{L} and I_{R}^{ $\theta$} using the solutions to (P_{j}-E)u=0, j=1 ,
2 constructed

by Yafaev�s construction. Next we consider the connection of the solutions at 0 and

change the basis of the solutions so that the transition matrix at 0 will be simple. We

also consider the connection of the solutions at b and c . Finally, we obtain the condition on

E that the decaying solutions on I_{L} and I_{R}^{ $\theta$} are linearly dependent. We call this condition

the quantization condition.

4.1 Construction of the solutions

Let x_{0} be a point between a and b . By Yafaev�s construction (see Yafaev [16] and

appendix in Fujiie‐Martinez‐Watanabe [4]) we obtain the solutions u_{1,R}^{\pm}(x) and u_{1,L}^{\pm}(x) to

(P_{1}-E)u=0 on the right and left of x_{0} such that

u_{1,R}^{\pm}(x)\displaystyle \sim(1+\mathcal{O}(h))\frac{h^{1/6}}{\sqrt{ $\pi$}}(V_{1}(x)-E)^{-1/4}e^{\pm\int_{b(E)}^{X}\sqrt{V_{1}(t)-E}dt/h}, (x\rightarrow+\infty) ,

and

u_{1,L}^{\pm}(x)\displaystyle \sim(1+\mathcal{O}(h))\frac{h^{1/6}}{\sqrt{ $\pi$}}(V_{1}(x)-E)^{-1/4}e^{\mp\int_{a(E)}^{x}\sqrt{V_{1}(t)-E}dt/h}, (x\rightarrow-\infty) .

We also obtain the solutions u_{2,L}^{\pm}(x) to (P_{2}-E)u=0 such that

u_{2,L}^{\pm}(x)\displaystyle \sim(1+\mathcal{O}(h))\frac{h^{1/6}}{\sqrt{ $\pi$}}(V_{2}(x)-E)^{-1/4}e^{\mp\int_{\mathrm{c}(E)}^{x}\sqrt{V_{2}(t)-E}dt/h}, (x\rightarrow-\infty) ;

e^{\mp i\frac{ $\pi$}{4}}(\displaystyle \frac{1}{2}a_{2}^{-}u_{2,L}^{-}\pm ia_{2}^{+}u_{2,L}^{+}(x))
\displaystyle \sim(1+\mathcal{O}(h))\frac{h^{1/6}}{\sqrt{ $\pi$}}(E-V_{2}(x))^{-1/4}e^{\mp i\int_{c(E)}^{x}\sqrt{E-V_{2}(t)}dt/h}, (x\rightarrow+\infty) .
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We define u_{2,R}^{\pm} as

u_{2,R}^{\pm} :=e^{\mp i\frac{ $\pi$}{4}}(\displaystyle \frac{1}{2}a_{2}^{-}u_{2,L}^{-}\pm ia_{2}^{+}u_{2,L}^{+}) .

To see the growth and decay from the points b and c , we define the solutions u_{j,b}^{\pm} on I_{L},

u_{j,c}^{\pm} on I_{R}^{ $\theta$}, v_{j,b}^{\pm} on I_{b} and v_{j,c}^{\pm} on I_{\mathrm{c}} as follows:

u_{1,b}^{\pm}:=u_{1,L}^{\pm}, u_{2,b}^{+}:=e^{-S_{2}/h}u_{2,L}^{+}, u_{2,b}^{-}:=e^{S_{2}/h}u_{2,L}^{-},
u_{2,c}^{\pm}:=u_{2,R}^{\pm}, u_{1,\mathrm{c}}^{+}:=e^{-S_{1}/h}u_{1,R}^{+}, u_{1,c}^{-}:=e^{S_{1}/h}u_{1,R}^{-},
v_{1,b}^{\pm}:=u_{1,R}^{\pm}, v_{2,b}^{+}:=e^{S_{2}/h}u_{2,L}^{-}, v_{2,b}^{-}:=e^{-S_{2}/h}u_{2,L}^{+},
v_{2,c}^{\pm}:=u_{2,L}^{\pm}, v_{1,c}^{+}:=e^{S_{1}/h}u_{1,R}^{-}, v_{1,c}^{-}:=e^{-s_{1}/h}u_{1,R}^{+},

where S_{1}:=\displaystyle \int_{b}^{c}\sqrt{V_{1}(t)}‐Edt, S_{2} :=\displaystyle \int_{b}^{c}\sqrt{V_{2}(t)}‐Edt.

For E\in D_{I} we can define a fundamental solutions,

K_{1},{}_{b}C(I_{b})\rightarrow C^{2}(I_{b})

of P_{1}-E and

K_{2,b}:C(I_{b})\rightarrow C^{2}(I_{b})
of P_{2}-E on I_{b} by setting for v\in C(I_{b}) ,

K_{1,b}[v](x) :=\displaystyle \frac{1}{h^{2}\mathcal{W}[v_{1,b}^{-},v_{1,b}^{+}]}(v_{1,b}^{-}(x)\int_{b}^{x}v_{1,b}^{+}(t)v(t)dt+v_{1,b}^{+}(x)\int_{x}^{0}v_{1,b}^{-}(t)v(t)dt) ,

K_{2,b}[v](x) :=\displaystyle \frac{1}{h^{2}\mathcal{W}[v_{2,b}^{-},v_{2,b}^{+}]}(v_{2,b}^{-}(x)\int_{b}^{x}v_{2,b}^{+}(t)v(t)dt+v_{2,b}^{+}(x)\int_{x}^{0}v_{2,b}^{-}(t)v(t)dt) ,

where \mathcal{W}[v_{1,b}^{-}, v_{1,b}^{+}] is the Wronskian of v_{1,b}^{-} and v_{1,b}^{+} and so on. Then we have (P_{1}-E)K_{1,b}=
1 and (P_{2}-E)K_{2,b} = 1 . Even if we replace the first term and the second one in the

parenthesis on the right‐hand side by -v_{1,b}^{-}(x)\displaystyle \int_{x}^{0}v_{1,b}^{+}(t)v(t)dt and -v_{1,b}^{+}(x)\displaystyle \int_{b}^{x}v_{1,b}^{-}(t)v(t)dt
respectively, the operator is still a fundamental solution. We denote them by K_{1,b}'' and

K_{1,b}' respectively.

Noting

Pu=Eu\Leftrightarrow\left\{\begin{array}{l}
(P_{1}-E)u_{1}=-hWu_{2}\\
(P_{2}-E)u_{2}=-hW^{*}u_{1}
\end{array}\right.
we set u_{2}=-hK_{2,b}W^{*}u_{1}, . Then we have

(P_{1}-E)u_{1}=h^{2}WK_{2,b}W^{*}u_{1},

and solutions are given by

u_{1}=v_{1,b}^{\pm}+h^{2}K_{1,b}WK_{2,b}W^{*}u_{1}.

156



Thus by the successive approximation we obtain solutions

w_{1,b}^{\pm}:= (^{+hK_{1,b}W\sum_{j\geq 0}M_{b}^{j}(hK_{2,b}W^{*}v_{1,b}^{\pm})}-\displaystyle \sum_{j\geq 0^{M_{b}^{j}(hK_{2,b}W^{*}v_{1,b}^{\pm})}}^{v_{1,b}^{\pm}}) ,

on I_{b} where M_{b} := h^{2}K_{2,b}W^{*}K_{1,b}W . We can see by some estimates for fundamental

solutions that the series in the solutions converge. We can see also that the leading term

is {}^{t}(v_{1,b}^{\pm}, 0) and the order of the remaining terms with respect to h are that of v_{1,b}^{\pm} times h^{1/2}.

We can construct solutions w_{2,b}^{\pm} in the similar way, but we need to use the fundamental

solutions K_{1,b}' and K_{1,b}'' instead of K_{1,b} so that the leading terms will be {}^{t}(0, v_{2,b}^{\pm}) .

In the same way we can construct solutions w_{j,\mathrm{c}}^{\pm} on I_{c} with leading terms {}^{t}(v_{1,c}^{\pm}, 0) and

{}^{t}(0, v_{2,c}^{\pm}) . On the intervals I_{L} and I_{R}^{ $\theta$} we consider only decaying solutions. In the similar

way as on I_{b} and I_{\mathrm{c}} we construct solutions w_{1,L}, w_{2,L}, w_{1,R} and w_{2,R} with leading terms

{}^{t}(u_{1,b}^{-}, 0) , {}^{t}(0, u_{2,b}^{-}) , {}^{t}(u_{1,c}^{-}, 0) and {}^{t}(0, u_{2,c}^{-}) respectively. Then the solutions w_{j,L} and w_{j,R}

satisfy,

w_{j,L}\in L^{2}(I_{L})\oplus L^{2}(I_{L}) ; w_{j,R}\in L^{2}(I_{R}^{ $\theta$})\oplus L^{2}(I_{R}^{ $\theta$}) .

4.2 Connection of the solutions

To calculate the condition that the decaying solutions on the left and right intervals are

linearly dependent, we need to consider the connection at 0, b and c . As for the connection

at 0 ,
we define the 4\times 4 transition matrix T as follows:

\left(\begin{array}{l}
w_{1,b}^{+}\\
w_{1,b}^{-}\\
w_{2,b}^{+}\\
w_{2,b}^{-}
\end{array}\right) =T\left(\begin{array}{l}
w_{1,c}^{+}\\
w_{1,c}^{-}\\
w_{2,c}^{+}\\
w_{2,\mathrm{c}}^{-}
\end{array}\right)
For the calculation of the quantization condition, we replace the basis w_{j,b}^{\pm} and w_{j,c}^{\pm} with

the new ones \tilde{w}_{j,b}^{\pm} and \tilde{w}_{j,c}^{\pm} so that the matrix \tilde{T} defined by

\left(\begin{array}{l}
\tilde{w}_{1,b}^{+}\\
\tilde{w}_{1,b}^{-}\\
\tilde{w}_{2,b}^{+}\\
w_{2,b}^{--}
\end{array}\right) =\tilde{T}\left(\begin{array}{l}
\tilde{w}_{1,c}^{+}\\
\tilde{w}_{1,c}^{-}\\
\tilde{w}_{2,c}^{+}\\
\tilde{w}_{2,c}^{-}
\end{array}\right) ,

will have the following form;

\tilde{T}= \left(\begin{array}{llll}
0 & \tilde{t}_{12} & 0 & \tilde{t}_{14}\\
\overline{t}_{21} & 0 & \tilde{t}_{23} & 0\\
0 & \tilde{t}_{32} & 0 & \tilde{t}_{34}\\
\tilde{t}_{41} & 0 & \tilde{t}_{43} & 0
\end{array}\right) (2)
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The asymptotic behavior of \tilde{w}_{j,b}^{\pm} and \tilde{w}_{j,c}^{\pm} are same as those of w_{j,b}^{\pm} and w_{j,c}^{\pm} respectively.

Next, we calculate the coefficients of w_{j,b}^{-\pm} (resp., \tilde{w}_{j,c}^{\pm} ) in the representation of w_{1,L} and

w_{2,L} (resp., w_{1,R} and w_{2,R} ) as linear conbinations of \tilde{w}_{\mathrm{j},b}^{\pm} (resp., \tilde{w}_{j,c}^{\pm} ). We can write as

folows:

w_{1,L}=D_{L}^{-1}(a_{1}^{+}\tilde{w}_{1,b}^{+}+a_{1}^{-}\tilde{w}_{1,b}^{-}+a_{2}^{+}\tilde{w}_{2,b}^{+}+a_{2}^{-}\tilde{w}_{2,b}^{-}) ,

w_{2,L}=D_{L}^{-1}(b_{1}^{+}w_{1,b}^{-+}+b_{1}^{-}\tilde{w}_{1,b}^{-}+b_{2}^{+}\tilde{w}_{2,b}^{+}+b_{2}^{-}\tilde{w}_{2,b}^{-}) ,

(3)
w_{1,R}=D_{R}^{-1}(c_{1}^{+}\tilde{w}_{1,c}^{+}+c_{1}^{-}\tilde{w}_{1,c}^{-}+c_{2}^{+}\tilde{w}_{2,\mathrm{c}}^{+}+c_{2}^{-}\tilde{w}_{2,c}^{-}) ,

w_{2,R}=D_{R}^{-1}(d_{1}^{+}\tilde{w}_{1,c}^{+}+d_{1}^{-}\tilde{w}_{1,c}^{-}+d_{2}^{+}\tilde{w}_{2,\mathrm{c}}^{+}+d_{2}^{-}w_{2,c}^{--}) ,

where D_{L} and D_{R} are Wronskians

D_{L}=\mathcal{W}[\tilde{w}_{1,b}^{+}, \tilde{w}_{1,b}^{-}, \tilde{w}_{2,b}^{+}, \tilde{w}_{2,b}^{-}],
D_{R}=\mathcal{W}[\overline{w}_{1,c}^{+},\overline{w}_{1,c}^{-}, \tilde{w}_{2,\mathrm{c}}^{+}, \tilde{w}_{2,c}^{-}].

4.3 Quantization condition

The condition for E\in D_{I} to be a resonance is that the some linear combination of the

decaying solutions w_{1,L} and w_{2,L} and that of w_{1,R} and w_{2,R} are linearly dependent, that

is, w_{1,L}, w_{2,L}, w_{1,R} and w_{2,R} are linearly dependent. This condition can be written as,

\mathcal{W}_{0}(E)=\mathcal{W}[w_{1,L}, w_{2,L}, w_{1,R}, w_{2,R}]=0 . (4)

We substitute the right‐hand side of (3) for w_{j,L}, w_{j,R} in (4) and develop the Wronskian

as a sum of terms of the form C(h)\mathcal{W}[w_{1}, w_{2}, w_{3}, w_{4}] where C(h) is a constant, w_{1}, w_{2} and

w_{3}, w_{4} are chosen from w_{j,b}^{\pm}, (j=1,2) and w_{j,c}^{\pm}, (j=1,2) respectively. Then the leading
term is (a_{1}^{+}b_{2}^{+}-b_{1}^{+}a_{2}^{+})(c_{1}^{+}d_{2}^{+}-d_{1}^{+}c_{2}^{+})\mathcal{W}[\tilde{w}_{1,b}^{+}, \tilde{w}_{2,b}^{+}, \tilde{w}_{1,\mathrm{c}}^{+}, \tilde{w}_{2,c}^{+}] . Moreover, if only one of the

w_{j}, (j=1, \ldots , 4) is chosen ffom w_{j,b}^{-} or w_{j,c}^{-} , then by the form of \tilde{T} in (2) we can see that

\mathcal{W}[w_{1}, w_{2}, w_{3}, w_{4}]=0 . Thus we have.

D_{L}^{2}D_{R}^{2}\mathcal{W}_{0}(E)=(a_{1}^{+}b_{2}^{+}-b_{1}^{+}a_{2}^{+})(c_{1}^{+}d_{2}^{+}-d_{1}^{+}c_{2}^{+})\mathcal{W}[\tilde{w}_{1,b}^{+}, \tilde{w}_{2,b}^{+}, \tilde{w}_{1,c}^{+}, \tilde{w}_{2,c}^{+}]
+(a_{1}^{-}b_{2}^{+}-b_{1}^{-}a_{2}^{+})(c_{1}^{+}d_{2}^{-}-d_{1}^{+}c_{2}^{-})\mathcal{W}[\tilde{w}_{1,b}^{-},\tilde{w}_{2,b}^{+},\tilde{w}_{1,c}^{+}, \tilde{w}_{2,c}^{-}] (5)

+\mathcal{O}(e^{ $\iota$ \mathrm{n}\mathrm{a}\mathrm{x}\{A_{1}-B_{1}-A_{2}+B_{2},-A_{1}+B_{1}+A_{2}-B_{2}\}}) ,

where

A_{1}:=\displaystyle \int_{b}^{0}\sqrt{V_{1}(t)-E}dt/h, B_{1}=\int_{0}^{c}\sqrt{V_{1}(t)-E}dt/h,
A_{2}:=\displaystyle \int_{0}^{c}\sqrt{V_{2}(t)-E}dt/h, B_{2}=\int_{b}^{0}\sqrt{V_{2}(t)-E}dt/h.
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Since we can calculate the coefficients and Wronskians in (5), we can rewrite (5) as,

\displaystyle \cos\frac{\mathcal{A}(E)}{h}+f(E, h)=hF(E, h) . (6)

where f(E, h) and F(E, h) are analytic for E\in \mathcal{D}_{I}, f(E, h) is real for real E and

f(E, h)=\mathcal{O}(h^{1/2}) ,

F(E, h)=-\displaystyle \frac{ $\pi$}{4i}(\sin\frac{A(E)}{h})e^{-2A_{1}-2A_{2}}(V_{1}(0)-E)^{-1/2}
(V_{1}'(0)-V_{2}'(0))^{-1}(r_{0}(0)+r_{1}(0)\sqrt{V_{1}(0)-E})^{2}+\mathcal{O}(h^{1/2}e^{-2A_{1}-2A_{2}}) .

Using the Rouché�s theorem we can see that for sufficiently large C_{0}'>0 and sufficiently
small h > 0, \cos A(z)/h+f(z, h) = 0 has a unique solution ẽk(h) in B(e_{k};C_{0}'h^{3/2}) for

e_{k} \in\ovalbox{\tt\small REJECT} and conversely, all the roots in \mathcal{D}_{I} are of this type. Considering the variation of

\cos \mathcal{A}(z)/h ,
we can also see that ẽk(h) \in \mathbb{R} . Applying the Rouché�s theorem again, we

conclude that for sufficiently large C\'{O}'>0 and sufficiently small h>0 , (6) has a unique
solution E_{k}(h) in

B ( ẽk; C_{0}''h^{2}e^{-2A_{1}-2A_{2}}) ,

Substituting E_{k} into (6) by an easy calculation we obtain the explicit expression of

{\rm Im} E_{k} as in Theorem 3.1.
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