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ABSTRACT. In this announcement paper, we discuss upcoming results on families of immersed curves  $\gamma$ :

(-1,1)\times[0, T)\rightarrow \mathbb{R}^{2} with free boundary supported on parallel lines \{$\eta$_{1}, $\eta$_{2}\} : \mathbb{R}\rightarrow \mathbb{R}^{2} evolving by the curve

diffusion flow and the curve straightening flow. The evolving curves are orthogonal to the boundary and

satisfy a no‐flux condition.

1. INTRODUCTION

Fourth‐order extrinsic curvature flow have recently enjoyed considerable attention in the literature. Two

model flows are the surface diffusion flow, where points move with velocity $\Delta$^{\perp}\vec{H}
,

and the Willmore flow,
where points move with velocity $\Delta$^{\perp}\vec{H}+\vec{H}|A^{O}|^{2} . These curvature flow are one‐parameter families of surfaces

immersed in \mathbb{R}^{3} via immersions f :  $\Sigma$ \mathrm{x} [0, T) \rightarrow \mathbb{R}^{3} , with \vec{H} the mean curvature vector, $\Delta$^{\perp} the Laplacian
on the normal bundle along f , and A^{o} the tracefr‐ee second fundamental form.

Surface diffusion flow, proposed by Mullins [48] in 1956, arises as a model for several phenomena [10, 61].
As such it has received and continues to receive intense attention from the applied mathematics community.
Global analysis for the surface diffusion flow is restricted at the moment to special situations, and although
the theory of singularities for the flow has received some attention [67, 68] it is far from well‐understood. The

surface diffusion flow is variational, being the H^{-1}‐gradient flow for the area functional. The Willmore flow

is also variational, being the steepest descent L^{2}‐gradient flow for the Willmore functional. The Willmore

functional is, up to normalisation, the integral of the mean curvature \vec{H} squared. A prototypical bending
energy, it has been argued that the Willmore functional was considered first by Sophie Germain in the

early 19th century. The Willmore functional drew significant interest from Blaschke [5, 6, 7] and his school,
including Thomsen and Schadow, who first presented the Euler‐Lagrange operator. Their interest in the

Willmore functional stems from its invariance under the Möbius group of \mathbb{R}^{3} (so long as inversions are not

centred on the surface, see [3, 4, 12, 33] for example for a precise formula). This invariance lies at the

heart of many of its applications, both to physics and back to mathematics itself, for example in embedding
problems. The appeal of the functional is so universal that the Willmore conjecture [71], asserting that the

global minimiser among surfaces in \mathbb{R}^{3} with genus one is achieved by the Clifford torus (and closed conformal

images thereof), generated significant attention (a selection is [11, 39, 54, 57]), before being recently solved

in a brealthrough work [44]. The Willmore flow was first studied by Kuwert and Schätzle [34, 35, 36] who

set up a general framework that is by now a standard methodology used to understand large varieties of

higher‐order curvature flow. Applications and modifications of this framework exist for the surface diffusion

flow [68, 64], the geometric triharmonic heat flow [46], and polyharmonic flows [52].
Although in some special cases maximum‐principle style results hold, more typical is a kind of �almost�

maximum principle, and an �eventual� positivity, see [17, 23, 26, 27] for the parabohc and [28] and for

the elliptic settings respectively). Many of the tools and techniques used in the analysis of second‐order

curvature flow can not be applied to the study of fourth and higher‐order curvature flow. In addition to

the development of new techniques, it is a natural focus of research effort to determine the extent to which

modifications of known techniques apply to various fourth‐order curvature flow in different scenarios. This

is where the results announced in this paper fit into the picture. We treat the one‐dimensional case for the

surface diffusion and Willmore flows with free boundary, called the curve diffusion flow and elastic flow (or
curve lengthening/straightening flow) respectively.

In order to differentiate easily between these three flows, we label them as follows:

(CD) Curve diffusion flow
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(E) Elastic flow

The main announced results, Theorem 1.2 for (CD) and Theorem 1.4 for (E), consider the question of

geometric stability, where closeness to an equilibrium is measured explicitly in terms of a geometric quantity.
We also present some conjectures and a question on a suitable adaptation of Proposition 1.5 from [64]. This

directly addresses for (CD) the question of preservation‐ of positivity raised above by measuring the total

amount of time during which a global solution may remain not strictly graphical. The evolving families of

curves we study have free boundary, supported on parallei lines in the plane (see Figure 2).
Second‐order curvature flow with free boundary have been considered since the 90\mathrm{s} [53 , 58, 59, 60] and

continues to receive significant research attention (for a sample of the growing literature, see [9, 18, 32, 37,
42, 43, 47, 62, 63, 65, 69, 70]). Fourth‐order curvature flow with various boundary conditions have received

some recent attention, with work particularly relevant to this paper in [14, 15, 16, 24, 25, 40, 41, 49, 51].
In [24, 25] stability results are proved for curves evolving by (CD) that are graphical and nearby equilibria
(with closeness measured in terms of height and \Vert k_{s}\Vert_{2}^{2} ) evolving in bounded domains with free boundary.
Although our setting is fundamentally parametric and therefore distinct, our results here, for the curve

diffusion flow, can be thought of as naturally complementing these. The evolving curves considered in this

paper are supported on straight lines, so the analogue of �domain� from [24, 25] is always unbounded. We

consider immersed curves, with possibly self‐intersecting image. Intersections in the image may result from

the curve touching itself, or from the curve intersecting one of the straight supporting lines. This allows

global results for perturbations of arcs of multiply‐covered circles for instance. Considering curves supported
on parallel lines allows for results on unbounded, cocompact initial data as well. As the supporting curves

are parallel, repeated reflection produces an entire curve.

Stability for the elastic flow is a classically difficult problem. The flow (E) is the steepest descent L^{2}-

gradient flow for the elastic energy:

E( $\gamma$)=\displaystyle \int_{ $\gamma$}k^{2}ds,
where  $\gamma$ : [−1, 1]\rightarrow \mathbb{R}^{2} is a smooth immersed plane curve, k its scalar curvature and ds the arclength element.

This energy is not scale‐invariant, and can be decreased by enlarging the curve through homothety. Circles

and curves with constant curvature are not equilibria; they are expanders.
There exist infinitely many straight line segments in that are stationary under the flow. Despite this it

seems difficult to imagine that the flow (E) without a constraint would be stable, especially without imposing
an additional symmetry condition, as glued in arcs of circles would still prefer to expand under the flow.

In fact, if the distance between the parallel lines |e| is zero, then circles expand. By slowly separating the

two lines (continuously increasing |e| for example) and using a continuous dependence on data result in

appropriate spaces, there seems to exist many non‐compact trajectories for the flow. With this in mind,
stability of the straight line under (E) seems unlikely. Nevertheless we do achieve stability for (E) without

needing to resort to a length constraint. This argument requires an initial condition.

Let us formally introduce the evolution equations. Suppose  $\gamma$ : [−1, 1]\rightarrow \mathbb{R}^{2}, $\eta$_{i} : \mathbb{R}\rightarrow \mathbb{R}^{2} (i= 1, 2) are

regular smooth immersed plane curves such that  $\gamma$ meets  $\eta$_{i} perpendicylarly with zero flux at its endpoints;
that is,

(1)  $\gamma$(-1)\in$\eta$_{1}(\mathbb{R}) ,  $\gamma$(1)\in$\eta$_{2}(\mathbb{R}) , \{ $\nu,\ \nu$_{$\eta$_{i}})(\pm 1)=0, k_{s}(\pm 1)=0.
Above we have used \mathrm{v} to denote a unit normal vector field on  $\gamma$, s is the Euclidean arc‐length parameter, and

k=\langle $\kappa$,  $\nu$\rangle=($\gamma$_{ss},  $\nu$) . We choose \mathrm{v} by setting \mathrm{v}=($\tau$_{2}, -$\tau$_{1}) where  $\tau$=$\gamma$_{s} is the tangent vector with direction

induced by the given parametrisation. We calĩ $\eta$_{i} supporting curves for the flow.

The length of  $\gamma$ is

 L( $\gamma$)=\displaystyle \int_{-1}^{1}|$\gamma$_{\mathrm{u}}| du.

Another important quantity, in addition to the elastic energy E introduced earlier, is

(2) A( $\gamma$)=-\displaystyle \frac{1}{2}\int_{-1}^{1}\{ $\gamma$, \mathrm{v}\rangle |$\gamma$_{\mathrm{u}}|du,
which is the usual notion of area for closed plane curves. Here, A corresponds to the area of the star‐shaped
domain (with multiplicity) traced out by rays connecting the position vector  $\gamma$ and the origin.
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Consider a oneparameter family of immersed curves  $\gamma$ : [−1, 1] \times [0, T) \rightarrow \mathbb{R}^{2} satisfying the boundary
conditions (1) and have normal speed given by F , that is

\partial_{\mathcal{E}f}=-F\mathrm{v}.
The flows are:

(CD): normal velocity equal to -\mathrm{g}\mathrm{r}\mathrm{a}\mathrm{d}_{H-1}(L( $\gamma$)) , that is,

F=k_{ss} ;

(E): normal velocity equal to -\mathrm{g}\mathrm{r}\mathrm{a}\mathrm{d}_{L^{2}}(E( $\gamma$)) , that is,

F=k_{ss}+\displaystyle \frac{1}{2}k^{3} ;

The (free) boundary value problem that we wish to consider for these flows is the following:

(\mathrm{C}\mathrm{D}/\mathrm{E}) \left\{\begin{array}{ll}
(\partial_{t} $\gamma$)(u, t)=-(F $\nu$)(u, t) & \mathrm{f}\mathrm{o}\mathrm{r} \mathrm{a}\mathrm{l}\mathrm{l} (u, t)\in(-1,1)\times(0, T)\\
 $\gamma$(-1, t)\in$\eta$_{1}(\mathbb{R}) ;  $\gamma$(1,t)\in$\eta$_{2}(\mathbb{R}) & \mathrm{f}\mathrm{o}\mathrm{r} \mathrm{a}\mathrm{l}\mathrm{l} t\in \times[0,T)\\
( $\nu,\ \nu$_{$\eta$_{1}})(-1, t)=\{ $\nu$, \mathrm{v}_{$\eta$_{2}}\}(1, t)=0 & \mathrm{f}\mathrm{o}\mathrm{r} \mathrm{a}\mathrm{l}\mathrm{l} t\in \times[0,T)\\
k_{s}(-1, t)=k_{s}(1, t)=0 & \mathrm{f}\mathrm{o}\mathrm{r} \mathrm{a}\mathrm{l}\mathrm{l} t\in \times[0,T).
\end{array}\right.
Note that we do not prescribe the tangential movement in (\mathrm{C}\mathrm{D}/\mathrm{E}) . In the closed case, tangential move‐

ments leave the image invariant and correspond to reparametrisations in the domain. For the boundary case,

this is no longer true and tangential movements typically correspond to stretching the image (if not periodic
for example). We therefore have no freedom in choosing a tangential movement that will simplify analysis,
as it will typically be forced upon us by the existence theory. Nevertheless tangential motion, as in the closed

case, plays almost no role in the (global) analysis as all quantities that arise from the commutator relations

(see [66, Lemma 2.1]) depend only on the normal component of the velocity.
The curve diffusion flow is the steepest descent gradient flow for length in H^{-1} . Since the velocity is a

potential, signed enclosed area A in the case of closed curves is constant along the flow. This shows that

the isoperimetric ratio is a scale‐invariant monotone quantity for the flow, and this fact can be useful for

analysis of solutions to the flow (see [64] for example). In the case of the boundary problems considered

here, this is no longer true. Here it is difficult to find a useful notion of enclosed area. Indeed, this is a

fundamental obstacle to smooth compactness, and can only be overcome in the case when the flow is already
in its preferred topological class, that is, when we assume that  $\omega$=0 (see Remark 4 and Figure 3).

Local existence for (\mathrm{C}\mathrm{D}/\mathrm{E}) can be proved by using the standard procedure of solving the flow in the class

of graphs over the initial data, as in [58]. As we consider a Neumann problem, we may use a local adapted
coordinate system similar to Stahl [58] which does not require a tangential component in the velocity of the

flow. This can be continued until the solution leaves this class, at which point there is either some loss of

regularity in C^{4, $\alpha$}
,

or the solution is simply no longer graphical over its initial state. The latter problem
is a technicality, and can be resolved by writing the flow in a new coordinate system, as a graph over the

solution at a later time. Now if there are uniform C^{2, $\alpha$} ‐estimates, it is possible to use a standard contraction

map argument to continue the solution. To the best of our knowledge the first to observe that only C^{2, $\alpha$} is

required were Ito‐Kohsaka, with the map  $\Phi$ constructed in [31, Proof of Theorem 3.1]. There they are working
with (CD) however the additional term added by (E) does not cause any additional difficulty. Therefore by
iterating the above procedure we find that the maximal time of existence is either infinity, or the  C^{2, $\alpha$} norm

has blown up. In this paper, the most natural norms to control a‐priori are L^{2} in arc‐length derivatives of

curvature. The standard Sobolev inequality allows us to control the C^{2, $\alpha$} norm by the length of the position
vector | $\gamma$| and the L^{2}‐norm of the first derivative of curvature. Note that it is not (without additional

arguments) enough to bound only the length of the evolving curves. The statement below is specialised to

our current situation, where the supporting curves are straight lines. We note that it is far from optimal.

Theorem 1.1 (Local existence). Let $\eta$_{i} : \mathbb{R}\rightarrow \mathbb{R}^{2} (i = 1, 2) be straight lines. Suppose $\gamma$_{0} : \mathbb{R}\rightarrow \mathbb{R}^{2} ?s a

regular smooth curve satisfying the boundary conditions (1). Then there exists a maximal  T\in (0, \infty ] and a

unique one‐parameter family of regular immersed curves  $\gamma$ : (-1,1)\times[0,T ) \rightarrow \mathbb{R}^{2} satisfying  $\gamma$(u, 0)=$\gamma$_{0}(u)
and (\mathrm{C}\mathrm{D}/\mathrm{E}) . Fbrthermore, if T<\infty_{f} then there does not exist a constant C such that

(3) \Vert $\gamma$\Vert_{\infty}+\Vert k_{s}\Vert_{2}\leq C

for all t\in[0, T).
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FIGURE 1. The curve diffusion flow with free boundary becoming singular in finite time.

The evolution is homothetic.

Remark 1. If the flow is not supported on straight lines, then we require compatibility conditions to produce
a solution. If the compatibility conditions are violated by the initial data, then we are still typically able

to produce a flow, however convergence as t\searrow 0 will be limited by the degree to which the compatibility
conditions are satisfied. One interesting investigation into this for the surface diffusion flow is [2], where the

degree of incompatibility is finely studied in the context of the original motivation from Mullins [48].

1.1. Curve diffusion flow. In light of condition (3), global existence follows if we are able to uniformly
bound the length of the position vector and the L^{2}‐norm of the derivative of curvature. The curve diffusion

flow is the H^{-1} gradient flow of the length \mathrm{f}\mathrm{i}\mathrm{m}\mathrm{c}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}\mathrm{a}1_{\rangle} with L'=-\Vert k_{s}\Vert_{2}^{2} . The length is uniformly controlled

\mathrm{a}‐priori but this does not yield immediately an estimate for \Vert $\gamma$\Vert_{\infty} . It does make \Vert k_{s}\Vert_{2}^{2} a natural energy for the

flow, with an a‐priori uniform estimate in L^{1}([0, T)) depending only on the length of the initial data. Despite
this, there are shrinking self‐similar solutions to the evolution equation (see Figure 1, which relies upon the

lemniscate described in [20]) that are clearly singular in finite‐time. Additionally, there is a conjecture due

to Giga that implies finite‐time singularities can occur from initially embedded data. For the situation with

free boundary considered here, we expect that there exist a greater variety of such singularities.
Therefore global existence is not expected to hold generically. It is natural to hope however that in a

‐suitable neighbourhood of minimisers for the energy, global existence and convergence to a minimiser holds.

The only global minimisers are straight lines perpendicular to the supporting lines. Our main theorem

confirms that these equilibria are stable, with neighbourhood given by the oscillation of curvature.

First let us define:

\bullet Set  e to be any vector such that all minimisers of length are translates of e.

\bullet The constant  $\omega$ and the average curvature are defined by

\displaystyle \int_{ $\gamma$ t=0}kds=2 $\omega \pi$,
\displaystyle \overline{k}( $\gamma$)=\frac{1}{L}\int_{ $\gamma$}kds.

Note that  $\omega$ is not typically an integer (see [66, Lemma 2.5]).
\bullet The oscillation of curvature and the isoperimetric ratio are defined as

 K_{o\mathrm{s}\mathrm{c}}( $\gamma$)=L\displaystyle \int_{ $\gamma$}(k-\overline{k})^{2}ds,
and

I( $\gamma$)=\displaystyle \frac{L^{2}( $\gamma$)}{4 $\omega \pi$ A( $\gamma$)}
Theorem 1.2. Let  $\gamma$ : (-1,1) \times [0, T ) \rightarrow \mathbb{R}^{2} be a solution to (CD) . Suppose $\gamma$_{0} satisfies

(4) K_{osc}($\gamma$_{0})=L($\gamma$_{0})\displaystyle \Vert k\Vert_{2}^{2}($\gamma$_{0})<\frac{ $\pi$}{10}
Then  $\omega$=0 , the flow exists globally  T=\infty , and  $\gamma$ t) converges exponentially fast to a translate of  e in the

C^{\infty} topology.
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FIGURE 2. Sample initial data. This initial data has winding number 1.

Remark 2. The hypothesis of Theorem 1.2 implies that  $\omega$=0 . To see this, we calculate at initial time

(2 $\omega \pi$)^{2}= ( \displaystyle \int_{ $\gamma$} kds)2 \displaystyle \leq L\int_{ $\gamma$}k^{2}ds<\frac{ $\pi$}{10}
S0

$\omega$^{2}< \underline{ $\pi$}\underline{1}< \underline{1}
10 4$\pi$^{2} 4

The boundary condition implies that  $\omega$ is an integer multiple of \displaystyle \frac{1}{2} , and so must be zero. As  $\omega$ is constant

along the flow (see [66, Lemma 2.5]), it remains zero for all time.

Remark 3. Identifying which translate the solution converges to is a difficult open problem, similar to the

problem of identifying the location of the final point singularity that planar curve shortening flow approaches
(see [8]).

For closed curves, if the oscillation of curvature is initially small, then the flow exists for all time and

converges exponentially fast to a standard circle. This is the main result of [64]. Also in [64] is an estimate

of the waiting time: as the limit is a circle and convergence is smooth, there exists a  $\tau$* such that k>0 for

all t> $\tau$* , that is, the flow is eventually convex. This is interesting in light of [29], that shows convexity is

in general lost under the flow.

This is a symptom of the failure of the maximum principle for fourth‐order differential operators. Another

such symptom was identified by Elliott and Maier‐Paape [21], that graphicality is typically lost in finite time.

In our situation here, a natural �graph direction� exists: the rotation of e by \displaystyle \frac{ $\pi$}{2} . Let us denote this rotated

vector by f . Indeed, analogously to the situation in [64], there exists a waiting time T^{*} such that for all

t> $\tau$* , we have

f[ $\gamma$](x,t):=\{ $\nu$(x) , f)>0 , for all  x\in (-1, 1) .

That is, the flow is eventually graphical. This leads us to the natural question:

Question. Let  $\gamma$ : (-1,1) \times [0, \infty ) \rightarrow \mathbb{R}^{2} be a solution to (CD) satisfying the assumptions of Theorem 1.2.

Does there exist a C=C( $\gamma$(\cdot, 0)) depending only on the initial data such that

\mathcal{L}\{t\in [0, \infty) : f[ $\gamma$](\cdot, t)\not\simeq 0\}\leq C( $\gamma$(\cdot, 0))
and for every  $\epsilon$>0 there exists a flow $\gamma$_{ $\epsilon$} such that

\mathcal{L}\{t\in[0, \infty) :f[ $\gamma$] t)\not\simeq 0\} >C($\gamma$_{ $\epsilon$} 0))- $\epsilon$ ?

In the above we have used \mathcal{L} to denote Lebesgue measure.

Remark 4. Finite‐time singularities for the curve diffusion flow with closed data remain difficult to penetrate.
Although there are natural Lyapunov functionals for the flow, these do not seem to yield classification results

for blowups of singularities. Indeed, it is still unknown if solutions in symmetric perturbation classes near

non‐trivial shrinkers (such as the figure-8 solution discussed in [20]) converge modulo rescaling to the shrinker.

As mentioned, we can also understand this self‐similar solution in the free boundary setting (see Figure 1).
It seems likely that the free boundary setting will be useful when studying perturbations of the figure-8.

In the free boundary setting, finite‐time singularities are more common, and global analysis of the flow

can be quite problematic even in a small data regime. For example, the exterior problem, where the flow

is supported on parallel lines but with winding number  $\omega$ \neq  0 (see Figure 3) is in a class of curves whose

members all have non‐constant curvature. There is no equilibrium in that setting satisfying the boundary
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(a)  $\omega$=1 (b)  $\omega$=\displaystyle \frac{1}{2} ;

FIGURE 3. Sample initial data for the exterior problem.

conditions. Nevertheless, by adjusting the aperture width |e| ,
it is simple to see that one may make the

oscillation of curvature arbitrarily small.

There is an interesting technical point here. Some of the estimates used to prove Theorem 1.2 are close

to optimal: using initial smallness of the oscillation of curvature, we may use the method of proof from

[66, Proposition 3.18] to find that curvature is well‐controlled in L^{2} if we can control the length difference

L($\gamma$_{t})-L($\gamma$_{0}) . If the supporting lines are skew, this follows by using an isoperimetric‐type argument. For

parallel lines this doesn�t work. If  $\omega$ = 0 then the problematic term is absent, however for  $\omega$ \neq  0 ,
the

term needs to be estimated. An easy condition controlling this term is that L($\gamma$_{0}) = |e|+ $\delta$ , where |e| is

the length of the straight line connecting each of the parallel lines. If it were possible to choose  $\delta$ < K_{0},
where K_{0} is larger than the initial oscillation of curvature and smaller than K^{*} from [66, Proposition 3.18],
then a stability result would follow. These requirements are in competition with one another: although the

oscillation of curvature is scale‐invariant, decreasing 6 beyond a certain critical level necessitates an increase

in the oscillation of curvature. Indeed, the fact that there is no equilibrium in the class of curves satisfying
the boundary conditions for  $\omega$\neq 0 proves that it is not possible to make this choice. As a corollary of this,
we conclude the following lower bound for the oscillation of curvature in the exterior problem.

Corollary 1.3. Let  $\gamma$ : (-1,1)\rightarrow \mathbb{R}^{2} be an immersed curve satisfying the boundary conditions of the exterior

problem: $\eta$_{i} : \mathbb{R} \rightarrow \mathbb{R}^{2} are parallel straight lines) the origin lies in the interior of $\eta$_{i^{1}},  $\gamma$ meets  $\eta$_{i} at right
angles, with k_{s}(\pm 1) = 0_{f} and at least one of the tangent vectors at the boundary $\tau$_{i} points away from the

interior of $\eta$_{i}.
Then

K_{os\mathrm{c}}( $\gamma$)+8$\pi$^{2}\displaystyle \log(\frac{L( $\gamma$)}{|e|}) \geq \frac{12$\pi$^{2}$\omega$^{2}+ $\pi$-2 $\omega \pi$\sqrt{6 $\pi$(6 $\pi \omega$^{2}+1)}}{3}
Concerning the global behaviour of this flow, we make the following conjecture.

Conjecture. Let $\gamma$_{0} : (-1,1)\rightarrow \mathbb{R}^{2} be an immersed curve satisfying the boundary conditions of the exterior

problem, as in Corollary 1.3. The curve diffusion flow with free boundary  $\gamma$ : (-1,1) \times [0, T ) \rightarrow \mathbb{R}^{2} with $\gamma$_{0}

as initial data exists for at most finite time, and  $\gamma$ t) approaches a multiply‐covered straight line in the  C^{0}

topology and not in C^{k} for any  k\geq  1.

1.2, Elastic flow. We finish by announcing a surprising global result on the vanilla elastic flow. As noted

earlier, despite \Vert k\Vert_{2}^{2} being uniformly bounded and non‐increasing along an elastic flow, compactness is not

expected in general due to the norm \Vert $\gamma$\Vert_{\infty} typically growing without bound. In order to obtain compactness,
a restriction on length is usually imposed.

This makes global results on the vanilla elastic flow quite rare. For the flow supported on parallel lines,
we are able to obtain a result of this kind, if the initial oscillation of curvature is not bigger than  $\pi$ . This

can be thought of as a stability result for straight lines, as the boundary condition can, via reflection, be

understood as imposing a cocompactness condition on the flow.

Theorem 1.4. Let  $\gamma$ : (-1,1) \times [0, T ) \rightarrow \mathbb{R}^{2} be a solution to (E) given by Theorem \mathrm{L}1 . Assume that

(5) L($\gamma$_{0})\displaystyle \int_{$\gamma$^{k^{2}d_{\mathcal{S}}}\mathrm{t}=0}\leq $\pi$.
1_{\mathrm{T}\mathrm{h}\mathrm{e}} interior is the region between the two parallel lines.
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Then the flow exists globally T= \infty and  $\gamma$ t) converges exponentially fast to a translate of  e in the C^{\infty}

topology.

Remark 5. As with (CD), it is unknown how to determine, from the initial data, which straight line the flow

will converge to.

Sharpness of the given condition is unknown, however, we do not expect it to be sharp. Based on the

winding number calculation in [66, Lemma 3.2] and numerical evidence, we make the following conjecture.

Conjecture. Theorem 1.4 holds with (5) replaced by

(6) L($\gamma$_{0})\displaystyle \int_{ $\gamma$}k^{2}ds_{\mathrm{t}=0}\leq$\pi$^{2}
The argument for including equality in (6) above is as follows. It is possible to construct, for any  $\delta$>0, \mathrm{a}

curve satisfying the boundary conditions with

 $\omega$=\displaystyle \frac{1}{2} and K_{os\mathrm{c}}=$\pi$^{2}+ $\delta$.

Clearly such curves can not smoothly converge to a straight line; in fact, numerical evidence suggests that

(unlike (CD) flow) such curves expand indefinitely and do not display‐ any compactness property. In particular \rangle

length is no longer controlled a‐priori.
However the limit as  $\delta$\searrow 0 has  $\omega$=0 and this does not seem to be avoidable. This is why we conjecture

that the sharp energy level that allows compactness and smooth convergence is $\pi$^{2} , with $\pi$^{2} included.
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