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1 Introduction

This note is a survey of [19] and also provides the nonexistence result of nontrivial solutions

which is not contained in [19].
Throughout this note, we shall discuss the existence and nonexistence of nontr1v1al

solutions of

0 { (1-=AYu= f(z,u) in R",

u € H*(R").

Here, N > 2,0 < a < 1 and f(z,s) : R¥ x R — R is a given function. Using the Fourier
transform, we define the fractional operator (1 — A)%*u as follows:

(1= Apum &7 (@ +4rP10E) . a(6) = (FuO) = [ e ut)ie

Finally, H*(R") denotes a fractional Sobolev space. We remark that in this note we only
treat solutions of (1) which are real valued. Therefore, let H*(R") be consisted by real
valued functions, namely,

H*(RN) := {u € L*(RV,R) | [lu)? = / (4m(€)? + 1)*|al?de < oo} .
RN
Another expression of H*(RY) is
a N_ 2mN 2 o |ux)—uy)|2 .
H*®RY) = {ueL (RV,R) | ()22 ._/ /RN N g -dady < oo

This can be checked by the arguments in [15].
Next, we explain the notion of solutions of (1). In this note, we only deal with weak
solutions. A function u € H*(RY) is said to be a weak solution of (1) provided u satisfies

/RN(47r2|§|2 +1)°a(€)p(€)de — /RN f(z,u(z))p(x)dz =0 for all p € H*(RYN)

where @ denotes the complex conjugate of a. Hereafter, solutions mean weak solutions.
Recently, a lot of attentions are paid for fractional operators. When a = 1/2, the
operator (1 — A)* is related to pseudo-relativistic Schrodinger operator (m? — A)/2 —m



(m > 0). Many researchers study the equations involving these operators and show the
existence of nontrivial solutions and infinitely many solutions. For instance, we refer
to [1-3,9-14,16,17,24-26, 28] and references therein for the details.

Among them, the paper [19)] is especially motivated by two papers [17] and [25]. The
aim of [19] generalizes some results in [17,25]. In [17,19,25], the following two cases are
considered: '

() f(z,5) = £(s).
(ii) f(z,s) depends on z.

In case (i), the aim of [19] is to treat general nonlinearities. When a = 1, Berestycki
and Lions [5,6] introduce the conditions on f(s) which are almost necessary and sufficient
conditions for the existence of nontrivial solutions. For the case 0 < a < 1, we can
consider similar conditions on f(s). See (f1)—(f4) below. Under these conditions, we shall
show the existence of infinitely many solutions as well as the characterization of the least
energy value cpgs by the mountain pass value. For more precise statements, see Theorem
1.1.

On the other hand, in case (ii), the aim of [19] is to show the existence of positive
solution of (1). Here the characterization of the least energy value by the mountain pass
value obtained in case (i) is useful to get a positive solution. See Theorem 1.2 and section
2.

In addition to these results, we also prove the nonexistence result of nontrivial solutions
of (1) if f(z,s) is monotone in some direction. This is Theorem 1.3.

We first begin with case (i), namely, we consider

(1-A)% = f(u) inRY,
{ u € H*RM).
For (2), wé assume that the nonlinearity f is a Berestycki-Lions type ( [5,6]):
~ (f1) f € C(R,R) and f(s) is odd.

2

(f2) —o0 < liminf& < limsup 1) <1.
50 s s—0 S
(13)
L Ufs) _ N

=0 where 2’ :=
ls|—o0 |$]2a1 @

~ N-20
(f4) There exists an so > 0 such that

F(so) — %sg >0 where F(s) := /s f(t)dt.
0

Using (f1)—(£3), it is not difficult to see that a solution of (2) is characterized as a critical
point of

3) )= gl — [ | Flu)ds € C'(HoRM), R,

For (2), we have
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Theorem 1.1. Assume N >2,0< a <1 and (f1)-(f4).

(i) There ezist infinitely many solutions (un), of (2) satisfying I(u,) — oo and the
Pohozaev identity P(u,) = 0 where
-2 @~
Plu) =N =20 / (1+ 47°(P)° [a2de — N / Fu)de
2 RN - RN

+a / (1 + 4x?)€[?)* " [alde.
RN

(4)

Moreover, uy(z) > 0 for allz € RV,

(ii) Assume either a > 1/2 or f(s) is locally Lipschitz continuous. Then every solution
of (2) satisfies the Pohozaev identity P(u) = 0.

(iii) Define cyp, cLes and Sies by

owp = inf max I{y(t)), T':={yeC({,1], H*RY)) | 4(0) =0, I(¥(1)) <0},

cips = inf {I(u) | u #0, I'(u) =0, P(u) =0},
Spps == {u € H*RM) |u#0, I'(u) =0, P(u) =0, I(u) = CLES } -
Then, Sies # O and cvp = cLgs > 0 hold. Furthermore, if I'(v) = 0 and P(v) =0,

then the path defined by v,(0) = 0 and 7v,(t) = v(z/(Tt)) satisfies v, € T for
sufficiently large T > 0 and

max I(%(t)) = I(0).

o<t

When 0 < @ < 1/2, it seems not known whether or not every (weak) solution satisfies
the Pohozaev identity. At this moment, we know that the Pohozaev identity is satisfied

when a (weak) solution is of class C* with bounded derivatives. See [19, Proposition 3.6]

(cf. [17,26)).

Next, we consider case (ii). Here, we assume that f(z, s) in (1) satisfies the following:

(F1) f(z,s) = -V(z)s+g(z,s) where V € C(R",R), g € C(RY xR, R) and g(z,—5) =
—g(z, s) for every (z,s) € RV x R.

(F2)

—1< inf V(z) and lim sup J
z€RN 80 zeRN

(F3)

lim su -
|s]—o0 zeRI;I |S|2ﬂ_1
(F4) There exist Vo, > —1 and goo(s) € C(R,R) such that as 2| — oo, V(z) = Vi and
9(Z,8) = goo(s) in LZ(RYN) where go(s) is locally Lipschitz continuous provided
0 < @ < 1/2. Moreover, 0 < F(z,s) — Fy(s) holds for all z € R" and s € R where
F(:L', 5) = .];)8 f(xat)dt> foo('s) = Vs + goo(s) and Foo(s) = fos foo(t)dt'
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(F5) There exist 4 > 2 and s; > 0 such that

0 < uG(z,s) < g(x,s)s for each (z,5) € RN x R\ {0}, i%fﬁ G(z,s1) >0
zE€

where G(z, s) := [ g(z,t)dt.
Then we have the following result:

Theorem 1.2. Assume N > 2,0 < a <1 and (F1)-(F5). Then (1) admits a positive
solution.

Finally, we state the nonexistence result of nontrivial solutions of (1) when f(z,s) is
monotone in some direction:

Theorem 1.3. Let 2< N, 0 < a < 1 and f € C'(RY x R, R) satisfy
(5) |f(z,s)| < C(Is| +|s|>>71) for every (z,s) € RN x R.

Assume that for every t > 0, there exists a C, > 0 such that

(6) S‘Ct’ |va;f(x> 8)' < Ctlsl for all (1"’5) € RN x [_t7 t]'

‘g—ﬁu, )

Suppose also that there exists an e € RN with |e| = 1 such that
) e Vyf(z,8)>0>e- fo(x, —s) for all (z,s) € R x (0,00).
Then (1) has no nontrivial solution.

Remark 1.4. A typical example satisfying (5)~(7) is f(z, s) = —V(z)s +a(z)|s|P~'s where
1 < p < 2%, and V(z) and a(z) are smooth with —VV(z) - e > 0, Va(z) - e > 0 for some
e € RY with |e| = 1.

Here we state comparison with the previous results. The equation (2) is studied in the
papers [1,9,17,28]. In these papers, the nonlinearity f(s) has the form of f(s) = |s[?~!s or
f(s) = (1—p)s+|s[P~'s where 1 < p < 2%, —1 and p > 0, and the existence of least energy
solution and infinitely many solutions are obtained. Here, we treat general nonlinearities
including the above ones, hence, Theorem 1.1 improves these results. We remark that if
we replace the operator (1 — A)* by the fractional Laplacian (—A)®, a similar result to
Theorem 1.1 is obtained in [4, 8].

Next, we turn to (1), namely, f(z,s) depends on z. In [17,25,26], the existence
of nontrivial solution is proved. It can be checked that Theorem 1.2 generalizes some
results in [17,25]. On the other hand, in [26], the author deals with a different type of
nonlinearities. In fact, the nonlinearity in [26] involves a sublinear term, namely, |u[P~1u
where 0 < p < 1, and the existence of nontrivial solution is proved.

This note is organized as follows. In section 2, we give ideas of proofs of Theorems 1.1
and 1.2. Section 3 is devoted to the proof of Theorem 1.3.
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2 Ideas of proofs of Theorems 1.1 and 1.2

To prove Theorems 1.1 and 1.2, we try to find critical points of I(u) defined in (3) and
J(u) below, respectively:

® J(u) = %Ilulli + %/ V(z)u*dz — G(z,u(z))dz
8 RN RN
=i~ [ Flaude € O1(HRY),R)

A main difficulty to prove Theorem 1.1 is to find bounded Palais—Smale sequences. To
overcome this difficulty, we borrow the argument from [18] and introduce the following
functional:

1(0,u) == I(u(-/€®)) € C*(R x H*(RM),R).

Here we remark that the norm ||ul|2 is not homogeneous with respect to the scaling as
already observed in [1,25]. More precisely, one can check that

o1z @
s = [ (1 anl) aceprae
RN [
On the other hand, for the operator (—A)® or equivalently the quantity defined by
= [ iR
RN
one has

[u(-/€")] = €N [ul}

In spite of these differences, the functional (6, u) still plays a role to find bounded Palais-
Smale sequences and we refer to [19, Proposition 3.1]. In addition, since I is based on the
scaling, I is related to the Pohozaev identity: (see (4) for the definition of P(u))

— 2«

i (0,u) = N .

llull2 + a /R ; (1+ 47r2|§|2)"“ [@(&)|*d¢ — N - F(u)dz = P(u).

Thus, if (0, ) is a critical point of I, then u is a solution of (2) and satisfies the Pohozaev
identity.

In order to find infinitely many critical points ((0,u,))2, of I, we work on the space
of radially symmetric functions

HXRY) := {uv € H*(R") | u is radially symmetric}
since the embedding H*(RN) c LP(RV) (2 < p < 2% is compact (see [21]). From (f4)
and the argument in [6] (see also [18]), for every n > 1, there exists a v, € C(D,, H*(R"))
(Dy, = {z € R" | |z| < 1}) such that

Yn(—0) = —yn(0) for all o € Dy, max I(yn(0)) < 0.



120

Using (,)2,, we define the minimax values for I and I by

cn = inf maxI(y(0)), &n:= ;enff,. max I(7(0)),

Lo = {7 € C(Dn, HX(RY)) | 7(~0) = —¥(0), ¥ =" on 8Dy},
Ly = {3(0) = (8(0),7(0)) € C(Dn, R x H(RY)) | y €T,
6(—o) =0(c), 6 =0 o0n 0D, }
Then we can show the following:

Proposition 2.1. (i) For eachn, ¢, = ¢, holds. In addition, ¢, — 0o as n — oco.

(i) There is a sequence (u,)2>, C H*(RN) such that I(0,u,) = ¢, and 8pI(0,u,) =
0= 8,1(0,uy)-

(iii) For each u € H*(RM) with I'(u) = 0 and P(u) = 0, the path v,(t) := u(-/t) :
(0,00) — H*(RN) satisfies
Yu(t) = 0 strongly in H*(RY) ast—0, I(y,(t)— —oco ast— oo,
I(7u(t)) < I(7u(1)) = I(u) for every t # 1.

(iv) For n =1, we have u;(x) > 0 in RN and ¢; = cLes = cump-
For the detail, we refer to [19, section 3].

Next, we discuss the idea of proof of Theorem 1.2. A main difficulty here is a lack of
compactness of Sobolev’s embedding H*(R") C LP(R") for 2 < p < 2%. To overcome this
difficulty, we use the concentration compactness lemma ( [20,22,23]) and the comparison
of the mountain pass values. When we compare the mountain pass values, the existence
of optimal paths in Theorem 1.2 plays a role.

Firstly, under (F1)-(F5), one can check that J has the mountain pass geometry and
the mountain pass value is well-defined:

— } — a N _
0 <dwp := inf max J(7(t)), T:={y€C(0 1], H*RY))[(0) =0, J(+(1)) <0}.
Hence, we find that there exists a Palais-Smale sequence (u,)%,; at the level dyp, that

is, J(u,) = dup and J'(u,) — 0 strongly in (H*(RN))*.
Secondly, the sequence (u,)%2; is bounded in H*(R") due to (F5). In fact, set

[|u||? ::/ (1+4n2€)%)" |ﬂ(§)|2d§+/ V(z)udz.
RN RN
By (F2), we observe that || - || is equivalent to || - ||o. Moreover, by (F5), we have
pdyp + o(1)|[unll > pd (un) — J' (tun)un

_ (¥ _ 2 _ > ®_ 2
= (5= 1) Il + [ 060, ~ 0G0, un)de > (5 =1) lua,

which implies that (u,)3, is bounded in H*(RY).
Then we describe the behavior of (u,)32:



Proposition 2.2. There ezist k > 0, uop € H*(RY), w; € H*RY) and (y;n)2, C RY
with j =1,...,k such that u, — uy weakly in H*(RY) and
(1) |yjml = 00, |¥j1m — Yjanl = 00 if §1 # Ja.
(if) If k> 1, then w; Z 0 is a critical point of
1 1 Jd
Jo(w) = Lfufz + L / Viulde — / G (u)dz = SJu]l? — / Fo(u)de.
2 2 'R.N RN 2 RN

(iii) If k =0, then |[un — uolla = 0. On the other hand, if k > 1, then
k
=0, dyp = lim J(un) = J(uo) + D Joo(wy).

j=1

k
Un = o = »_ w;(- = Yin)
j=1

a

We remark that if ug # 0, then g is a nontrivial solution of (1) since u, — up weakly
in H*(RY). Therefore, hereafter we assume uy = 0. For simplicity, we strengthen (F4)
slightly and assume that

()] F(z,s) < Fo(s) for every (z,s) € RV x (R {0}).

We shall derive a contradiction in order to deduce that the case uy = 0 never happens.
Since dyp > 0 holds, Proposition 2.2 (iii) yields k > 1. Next, we remark that Theorem
1.1 can be applied for J,,. Moreover, by the regularity of g, when 0 < a < 1/2, for any

solution of _
(1= A)*v + Voot = goo(v) in RN, v e H*(RV),

the Pohozaev identity holds. In particular, we obtain
(10) 0 < doomp < Joowj) foralll <j<k
where do, mp is the mountain pass value of J:
_doo,MP = «/lel}‘fw Qax Joo(7(1)),
L = {7 € C(0, 1, H*R) [ 1(0) = 0, Ju(x(1) < 0}
Since J(u) < Jo(u) holds for every u € H*(RY) thanks to (9) (or (F4)), one sees that
dvp < deomp-
Combining this inequality with (10) and Proposition 2.2 (iii), we deduce that
(11) . k=1, dup = demp = Joo(wr).

Now we utilize the path v, in Proposition 2.1 (iii). By J(u) < J(u), we obtain v,, € T
and let to > 0 be a maximum point of the finction ¢ — J(7,,(¢)). Then it follows from
(9) that '

dyp < 'ggf J(Vur (t)) = J(Yun (t0)) < Joo(Vun (t0)) < %?tx Joo(Vn (1)) = Joo(wi) = doo,MP-

However, this contradicts (11). Thus the case uy = 0 never happens and we get a nontrivial
solution of (1).
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3 Proof of Theorem 1.3

In this section, we prove Theorem 1.3. We first prepare some lemmas. Denote by
S(R¥,R) and (Z(RY,R))* the Schwartz class consisting of real valued functions and
its dual space, respectively. Next, we introduce the function G4 (z) by

1 1 ® 2 . cdt
a2/t =t/ (am) (20— N) /2 4
Goa(@) := @n)eT(a) / € € t

Using G, for 1 < p < 0o, set
L= Gaa* P(RY) = {Grax g | g € LP(R")}.

Lemma 3.1. (i) Let h € LP(RY) with 1 < p < 0o and u € (F(R",R))* be a solution
of ' '

(12) : (1-A)*u=h inR".
Then u= Gy *xh € Z5,.
-(ii) &5, C W2P(RN) where

WEP(RY) := {u € P(RY) | [ullysaury = / /R o ;lxgggfdxdy < oo}
fo<pB<l, .
worRY) = {u, Vu € P(RY) ’ Voo <00} 1<B<2
(iii) For any B € R, the map f > Gog * f : HP(RN) — HP?2(RN) is isomorphism.
Proof. Tt is known (see, for instance, [27]) that
Gaal€) = (476 +1)7% | Gaallzs = 1.

Therefore, taking the Fourier transform of (12), we obtain u = G2, *h and (i) holds.
For assertions (ii) and (iii), see [27]. O

The next lemma is a variant of Brézis-Kato [7]:
Lemma 3.2. Assume that u € H*(RY) is a solution of
1-A)u—-a(z)u=0 inRN
- where a(z) satisfies |
la(z)] < Co(1 + A(z)) for a.e. z € RN, A e LN/CIRN),

Then u € LP(RYN) for allp € [2,00).
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For a proof of Lemma 3.2, we refer to [19, Proposition 3.5].
Using Lemmas 3.1 and 3.2, we obtain the following regularity results of solutions of
(1) with f € C(RY x R,R).

Proposition 3.3. Let f(z,s) € C(RN x R, R) satisfy (5) and u € H*(RY) be a solution
of (1). Then u € CE(RY) for every B € (0,2a) where

CERY) :={ue C(RY)NL®RN) sup M<oo if <1,
" z,yeRN a4y |‘T - le
- Cr(RY) := {u e C*(RM) | u,Vu € L®(R"M)},
CERY) = {ueCLRM) | Vue CF'RM)}if 1< B <2
Proof. Let u € H*(R™) be a solution of (1) and set
f@u@) |
o(z) = (@) if u(zx) # 0,
0 if u(z) =0,

A(z) := |u(x)|1e/ V-2,

By (5) and u € H*(RY) C L% (RY), there exists a Cp > 0 such that A € LY/(2*)(RN)
and
la(z)| < Co (1 + A()).

Moreover, u is a solution of (1 — A)®u — a(z)u = 0 in RY. Applying Lemma 3.2,
we have u € LP(RN) for all 2 < p < oo. Hence, using (5) again, we observe that
f(z,u(z)) € LP(RN) for any 2 < p < co. Thus, by Lemma 3.1, one sees u = Gaoxh € L5,
where h(z) := f(z,u(z)). Recalling Z2, C W2*?(R"), Sobolev’s embedding yields
u € CE(RY) for all 0 < B < 20 Thus we complete the proof. 0

Now, we prove Theorem 1.3.

Proof of Theorem 1.8. We argue indirectly and suppose that u is a nontrivial solution of
(1). By Proposition 3.3, we have u € CF (R™) for any 8 € (0, 2).

Next we shall prove Vu € H*(RY). To this end, we first claim that u € Hf(RN)
with 8 € (0,1) implies f(z,u(z)) € HP(RY). In fact, let u € H?(R") and decompose
|f(z, u(z)) — f(y, u(y))| as follows: - '

£ (@, u(z)) — fy, ww))| < |F(z, w(x)) - fy, u(@)| + | f(y, w(z)) — [y, u(y))].
We estimate the first term. By u € L®(RY), it follows from (5) and (6) that

|f (2, u(@)) — f(u(@)| < Clu@)l|lz —y| if |z ~y| <1,
|f(z, u(z)) — f(y, u(z))| < Clu(z)] if |z —y[ > 1.
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Hence, by 8 € (0,1), we see-
[ [ Vou) = ot
RN JRN

|z — y[N+28

/RN (A,—qq A ,|>1) = ug?l INS-Qﬁ (z))de

u(z)[? / |u(z)[® )
<C dz / ———dy + ———d
RN . ( ly—z|<1 I.’I? - le—2+2ﬂ v ly—z|>1 |.’E - y|N+2'B Y

<CllullZz < co.

Similarly, for the second term, since the inequality
|f (v, u(@)) = f(y,u())| < Clu(z) —u(y)| for each z,y € RY
holds due to u € L*(R") and (6), the fact v € H#(R") implies

|f(y, u(z)) = f(y,uly) )I2 ' / / — u(y)|?
<
./RN /RN |z — y|N+2’3 dody < C RN JRN |x-y|N+2’3 oy W

[u]Wﬂ'z(RN) < 0.

Thus, we have f(z,u(z)) € H?(RN) provided u € H?(RV).

Since u € H*(R") and u = Gy * f(z,u(z)), we observe from Lemma 3.1 that u €
H3*(RYN). This yields f(z,u(z)) € H*R") and u = Gaa * f(z,u(z)) € H**RN).
Iterating this argument, we get u € H#(RY) for all 0 < B < 1, hence, u € HP+2*(RN)
for each 0 < B < 1. Therefore, we have Vu € H*(RV). .

Now, we derive a contradiction. Since I'(z) =0 and e - Vu € H*(R"), we have
(13)

0 = I'(u)[e - Vu(z)]

= [ (@ mlePyae - (2nig)a@ - [ f@ule Vulz)ds
RN RN
——2mi [ @+ 4mlePla©FE edg— [ e V. (Flau) - e (VaF) (o, wi
RN RN
Since it follows from (6) that
[P (@, 5)] + [VaF(z,9)] < Clsf? for s € [[ullz=, ull=]

by Vu € L2(R"), we have F(z,u(z)), Vz(F(z,u(z))) € L'(RY). From
/ / |F(ro,u(ro))|dedr < oo,
o JoB.(0)
we may find a sequence (R,)32, such that

R, — oo, |F(Rpo,u(Ry0))|do — 0.
0BR,(0)
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Using. the divergence theorem, we infer that

n—>00 B (0) n—o0 aBRn (0)

Rn

Vi (F(z,u))dz = lim Vo (F(z,u))dz .= — lim F(z, u(x))]i—'da =0.
RN

Thus, taking the real part in (13), we get
0= / e (VoF)(z,u)dz.
RN .

However, from (7) and the fact that  is nontrivial, it follows that gy e-(VoF)(z,u)dz > 0
and this is a contradiction. Thus (1) has no nontrivial solution and we complete the
proof. _ O
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