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Abstract: We consider two-class classification for high-dimensional data.
We consider the distance-based classifier given by Aoshima and Yata
(2014). We provide an asymptotic distribution of the classifier under a
strongly spiked eigenvalue model.
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1. Introduction

Nowadays, you can see many types of high-dimensional data such as genetic microar-
rays, medical imaging, text recognition, finance, chemometrics, and so on. A common
feature of high-dimensional data is that the data dimension is extremely high, however,
the sample size is relatively low. We call such data “HDLSS” or “large p, small n”
data, where p is the data dimension and n is the sample size. In this pepar, we consider
two-class classification in HDLSS context. We aim to give an asymptotic distribution of
the distance-based classifier under a strongly spiked eigenvalue model that was proposed
by Aoshima and Yata (2017).

Suppose we have two classes m;, ¢ = 1,2, and define independent p x n; data matrices,
X; = [®i1y .0, Bin,], = 1,2, from 7, ¢ = 1,2, where @, j = 1,...,n;, are independent
and identically distributed (i.i.d.) as a p-dimensional distribution with a mean vector
and covariance matrix X; (> O). We assume n; > 3, i = 1,2. The eigen-decomposition
of X; is given by

P
Ti= HilH] = _\hyohys,
s=1

where A; = diag(A1(;), .-, Ap()) having Ay > -+ > Ay (= 0) and H; = [Rys), ..., hy()]
is an orthogonal matrix of the corresponding eigenvectors. Let X; — [g;, ..., p;] =
HiA;/ 2Z,- for ¢+ = 1,2. Then, Z; is a p X n; sphered data matrix from a distribu-
tion with the zero mean and identity covariance matrix. Let Z; = [zl(,-), e zp(z-)]T and
2j(i) = (2j10)> -+ Zjng(i)) > § =1y, for i = 1,2. Note that E(zja)2jk)) = 0 (J # 5')
and Var(z;(;)) = In,, where I,; denotes the n;-dimensional identity matrix. Also, note
that if X; is Gaussian, zj(;s are i.i.d. as the standard normal distribution, N(0,1). We
assume that the fourth moments of each variable in Z; are uniformly bounded for i = 1, 2.
Let Zoj() = Zj) — (Zj(i)a ...,Zj(i))T, ji=1..,p; i =1,2, where Zji) = ni_l ZZ’:I Zjk(i)-



We assume that P(limp o0 ||201(5|] # 0) = 1 for ¢ = 1,2, where || - || denotes the
Euclidean norm.

Let xp be an observation vector of an individual belonging to m; (¢ = 1,2). We
assume o and x;;s are independent. We estimate p; and X; by Fip, = Z;‘;l x;5/n; and
Sin; = 3341 (®ij — Fin,)(Tij — Fin,)T/(ni — 1). A typical classification rule is that one
classifies an individual into 7, if
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and into w2 otherwise. However, the inverse matrix of S;,, does not exist in the HDLSS
context (p > n;). When ¥; = X, Bickel and Levina (2004) considered the inverse
matrix defined by only diagonal elements of the pooled sample covariance matrix. Yata
and Aoshima (2012) considered using a ridge-type inverse covariance matrix derived by
the noise reduction (NR) methodology. When 1 # X9, Dudoit et al. (2002) consid-
ered using the inverse matrix defined by only diagonal elements of S;,,. Aoshima and
Yata (2011,2015a) considered substituting {tr(Sin,)/p}Ip for Sin, by using the differ-
ence of a geometric representation of HDLSS data from each w;. Aoshima and Yata
(2015b) considered quadratic classifiers in general and discussed asymptotic properties
and optimality of the classifies under high-dimensional settings. They showed that the
misclassification rates tend to zero as the dimension goes to infinity. On the other hand,
Hall et al. (2005, 2008), and Chan and Hall (2009) considered distance-based classifiers.
Aoshima and Yata (2014) gave the misclassification rate adjusted classifier for multiclass,
high-dimensional data whose misclassification rates are no more than specified thresholds
under the following condition for eigenvalues:

Mo
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Recently, Aoshima and Yata (2017) considered the “strongly spiked eigenvalue (SSE)
model” as follows:

M
l. . nf 2
poo Lgr(x2)
On the other hand, Aoshima and Yata (2017) called (1.2) the “non-strongly spiked
eigenvalue (NSSE) model”.

In this paper, we consider the distance-based classifier under one of the SSE models.

}>0 fori=tor2 (1.3)

Remark 1.1. For a spiked model such as
)\s(i) = as(i)p"‘ﬂ(ﬂ (s=1,..,t) and )‘s(i) = Cs(3) (s=t;+1,..,p) (1.4)

with positive and fixed constants, ay(;s, ¢s(;)s and a,(;)s, and a positive and fixed integer
ti, note that (1.2) holds when a;y(;y < 1/2 for ¢ = 1,2. On the other hand, (1.3) holds for
the spiked model in (1.4) with a;(; > 1/2. See Yata and Aoshima (2012) for the details
of the spiked model.



2. Distance-based classifier

Aoshima and Yata (2014) considered a classification rule given by using the identity
matrix I, instead of Sy, in (1.1) as follows: One classifies an individual into m; if

tr(S1n,) . tr(Son,)
+ <0

2.1
2m 2n9 (2.1)

Tin, + Tona \ T, _
o — T (w2nz - xlnl) -

and into my otherwise. Here, —tr(S1n,)/(2n1) + tr(S2n,)/(2n2) is a bias-correction term.
They showed the asymptotic normality of the classifier and provide a sample size deter-
mination so as to control misclassification rates being no more than a prespecified value.
They further developed the classifier to multiclass classification.

Remark 2.1. Chan and Hall (2009) considered a scale adjusted distance-based classifier
as follows: One classifies an individual into m; if

i‘:llivo—ﬂcljll2 lewo—$2a|| iillwh—mull

— ny P 2n1(n1 — 1)

3030 o — gl il <0 (2:2)
o1 j=1 2n2(n2—1) )

and into w2 otherwise. We note that the classifier given by (2.1) is equivalent to the one
given by (2.2), though the description of (2.1) is much simpler than (2.2).

We denote the error of misclassifying an individual from 7 (into m2) or w9 (into 1)
by e(1) or e(2), respectively. Let A = ||u; — po||? and

Eln1 + §2n2

W(wo) = (:to - )T(§2n2 — Elnl) _ tr(slnl) + tr(S2n2)_

2nq 2n9

Aoshima and Yata (2014) considered asymptotic properties of W (zo) under the following
assumptions:

(A-i) (1= o) " Ei(py — py)

Az —0asp—oofori=1,2;

max;—1 o tr(2§)

(A-ii) — 0 as p — oo either when n; is fixed or n; — oo for ¢z =1, 2.
niA2

Then, they gave the asymptotic consistency:

Theorem 2.1 (Aoshima and Yata, 2014). Assume (A-i) and (A-ii). It holds that
as p — 00

W) (1),
A

fori=1,2. Then, the classification rule given by (2.1) has that as p — oo

op(l) whenxo€m;

e(1) =0 and e(2)—0.



Remark 2.2. Under the condition that max;—1 2{tr(X£3)}/A% — 0 as p — oo, one can
claim Theorem 2.1 either when n; is fixed or n; — oo for i =1, 2.

Aoshima and Yata (2014) also showed the asymptotic normality of (2.1). They
assume a general factor model as follows:

zi; = Liwi; + p;
forj =1,...,n;; i = 1,2, where I'; is a p X r; matrix for some r; > 0 such that I‘iI‘zT =%,
and w;j, j = 1,...,n;, are i.i.d. random vectors having F(w;;) = 0 and Var(w;;) = I,,.
As for wi; = (wij, ...,wi,.ij)T, 1= 1,2, we assume that
(A-iii) The fourth moments of each variable in w;; are uniformly bounded, E(w;wi;) =
1 and E(wigjwisjwitjwiy;) = 0 for all g # s, ¢, u.

If m; is Np(p;, X;), (A-iii) naturally follows. Also, Aoshima and Yata (2014) assume the

following assumption for 3;, (i =1,2).

tr(X;3;)
tr(E?)

Here, f(p) € (0,00) as p — oo denotes that liminfy o f(p) > 0 and limsup,,_,,, f(p) <
oo for a function f(-). Let

(A-iv) € (0,00) as p — oo for 4, 5,0 = 1,2.

() L E(ED) | f: tr(22)

¢ n; ng 2n¢ (ni — l)

i=1

for i(# j) =1, 2. Let
Nmin = min{ni, na}.

We assume the following assumption:

e ﬂ2)T:;i(#l — )

=o0(1) asp—> 0o and Ny — oo for i =1, 2.

Then, they have the following result.
Theorem 2.2 (Aoshima and Yata, 2014). Assume (1.2). Assume also (A-iii) to

(A-v). Then, we have that as p — 00 and Nyin — 00
W(zo) — (—1)'A/2
Vi

where ‘S ” denotes the convergence in distribution and N (0, 1) denotes a random variable
distributed as the standard normal distribution.

= N(0,1) when xog € m; fori=1,2, (2.3)

Remark 2.3. From Theorem 2.2, for the classification rule by (2.1), it holds that as
p — 00 and nyip — 00

e(i) = q>( -4

2.k

) +0(1) when xg € m; fori=1,2 (2.4)



under the assumptions in Theorem 2.2, where ®(-) denotes the cumulative distribution
function of the standard normal distribution.
3. Asymptotic distribution under a SSE model

In this section, we provide the asymptotic distribution of (2.1) under a SSE model.
Now, we consider the following assumptions for each m;, 7 =1, 2.

tr(XF) — A2,
(B-i (—2)2—1(1) =0(1) asp— oo
A1
P oo A A B{(22 0y — (2% — 1
(B-if) Er,822 7(1)\s(i) 7{1()\2’6(1) X sk(i) )} —o(1) asp — oo either when ; is
)

fixed or n; — o0;
(B-iii) Z1k(i) k=1,..,n;iid. as N(0,1).

Note that (B-i) is one of the SSE models. By using the NR method, Aj;)s are estimated
by ‘
N = Xy — tr(Sin,) — 2a—1 As()
3@ = i) mi—1—j

G=1,..,n—2), (3.1)

where :\j(i) is the jth sample eigenvalue for ¢ = 1,2. Note that S\j(i) > 0 w.p.1 for
j=1,..,n; —2. Yata and Aoshima (2012, 2013, 2016) showed that 5\1-(1-) has several
consistency properties when p — oo and n; — co. On the other hand, when p — oo
while n;s are fixed, Ishii et al. (2016) gave the following results.

Theorem 3.1 (Ishii et al. 2016). Under (B-i) and (B-ii), it holds that as p — oo

:\1(5) B { ||z01(i)||2/(ni —1)+o0p(1) when n; is fized,

A1) 1+ 0p(1) when n; — 00

fori=1,2. Under (B-i) to (B-iii), it holds that as p — oo when n; is fized

X,
-2 532 | fori=1,2.
A1)

Now, we consider the following assumptions.

A
(B-iv) T =1+0(1) and hfjjy ki) = 1+0(1) asp - oo.
Ai2)

=o(n,l) asp— 0o and nmin — oo for i = 1,2.

(By) 1= H2) i1 — o)
A1(1)



Note that (B-iv) means that the two class share their first eigenspace. One can check
the validity of (B-iv) by using a test procedure given by Ishii et al. (2016).

Now, we consider the asymptotic distribution of (2.1) under the SSE model, (B-i).
Let zp13) = hf(i) (xo — 1;) //\}{3 when xo € m; for ¢ = 1,2. Then, we have the following
result.

Lemma 3.1. Assume (B-i), (B-iv) and (B-v). Then, we have that as p — oo and
Nmin — 00
W(zo) — (-1)'A/2
A1)
when xg € m; fori=1,2.

= 2016)(Z1(2) — Z11)) + Op(nx;il1{2)

From Lemma 3.1 we have the following result.
Theorem 3.2. Assume (B-i), (B-iti) to (B-v). Then, we have that as p — oo and
Nmin —> OO
W(zo) — (—1)!A/2
A1(1)
when xy € w; fori=1,2,

:U1XU2

where u, = (nl_1 +ny 1=1/2 and U;s are mutually independent random variables dis-
tributed as N(0,1).

Remark 3.1. From Theorem 3.2, for the classification rule by (2.1), it holds that as
P — 00 and Npin — 00

e(i) = P{U1U2 < —%%1(1)} +0(1) when g € m; for i =1,2 (3.2)

under the assumptions in Theorem 3.2. One can estimate A by
A= |[Z1ny — E2722”2 - tr(slm)/nl — tr(S2n,) /n2.

The estimator was given by Aoshima and Yata (2011). Then, we can estimate (3.2) by
A and Al(z)

Appendix

Proof of Lemma 3.1. We assume x( € 71 without loss of generality. It holds that

i =l - 5 3757 5 TG,y
s=1 k;ék’ n’(n 1)
(o — 1) (F1n, — 1) = My 211y 211y + Z As(1)201(s)Zs(1) (A.2)

§=2



where 29 — p, = H lAi/ 2(201(1), ...,zm(p))T. By using Chebyshev’s inequality, for any
7 > 0, under (B-i) and (B-iv), we have that as p — 0o and nyp — oo

P )\2
s(z)zsk(z)zsk'(z) > -1/2 23—1 s(4) .
E{l Z Z ni(n; — 1) l TMmin )\1(1)} - 7'2)\1(1)(ni -1) =0

s=1 k£K!
22—2 As(l)

p
E{l SZZ;Asszsmzsml 2 Tn;lilr{2’\1(1)} S0 X

— 0,

so that from (A.1) and (A.2)

_ tr(Sin. - .
[ in; — 1l — __(n.m,) = op(n’miII{Q)‘l(l)) fori=1,2;
(1
(o — p1) " (B1n, — 1) = Mi1)2o1(1)Z11) + Op(n;ilf/\l(l))- (A.3)

Let Bst = (As1)M(2))/2hiyyy hy(z) for all s,¢. Then, we write that

(@o — 1) (T, — o) = Z BstZ0s(1) Zt(2)
8,t>1

P P
=B11201(1)Z1(2) + Z Bs120s(1)Z1(2) + Zﬂltzm(l)zt(z)
8=2 t=2

P
+ Z Bstzos(1)Z¢(2)- (A.4)

8,t>2

Let X =Y 0 5 /\s(i)hs(i)hz(i) for ¢ = 1, 2. Here, we have that

3 ? o84 _ MebinTihie) _ Mgl
B{( X ey ) = Zelon - 0RO < =2,

p N2 /\1(1)}3{(1)22*}51(1) A1(1)A2(2)
E{ ( Zﬂltzm(l)zt(z)) } = na s ng
t=2

tr(El*Eg*) tr(z%*)tr(zg*)

E { ( 822 BstZos(1) Et(2))2} = na s ny

Then, by using Chebyshev’s inequality, for any 7 > 0, under (B-i) and (B-iv), we have
that as p — 00 and npin — 0©

¢ _ A\
P( Zﬁ81z°821(2)| > Tnmilr{2)‘1(1)> < % =0
s=2 1(1)
¢ _ A
P( Zﬁltz‘)lzt@)l > Tnmilx{2)‘1(1)) < % 0;
=2 1(1)
- - tr(33,)tr(23,)
P ( > 5Mos2t(2)l > Tnmjl,fzx\l(n) < 2

8,t>2 1(1)



Then, from (A.4) we have that
(20 — )T (Fom, — o) = Br1z01Z1(2) + Op()‘l(l)n;_ilr{2)
= \(1)%01Z1(2) + 0p(Aa(1) il 2)- (A.5)
Also, under (B-iv) and (B-v), we have that as p — oo and nmin — 00

Nomin (41 — o) "1 (1 — o) 50
M) ’

P(I(I‘q - I‘z)T(wo - Il'1)l > 7'";,:,{2)\1(1)) <

(1 — pa) TS0 (pty — py) o

P(l(”1 — )" (Tam, — N2)| > Tnx:li11{2)‘l(1)> <

TN ’
so that
(11 — 2)T (@0 — 1) = 0p(na! *Ay();
(11 = 112)T (Fany — 2) = 0p(nigil " Aay) (A.6)
Note that
2
I it 2 E(Sing)
Wiwo)+8/2=3 3 (1) {Iin, — pl? — =2
2 Py
+ 3 (1) (@o — 1) in, — b12)
=1

— (11 — )T (@0 — ) + (1 — 12)" (Tomy — o). (A.7)

Then, by combining (A.3), (A.5) and (A.6) with (A.7), under (B-i), (B-iv) and (B-v), it
holds that as p — oo and nyin — 0©
W(xzo) + A / 2

A1(2)

= 201(1)(Z1(2) — Z1(1)) + Op(Npi

For the case when xy € w3, we have the result similarly. Thus the proof is completed.

Proof of Theorem 3.2. By using Lemma 3.1, the result is obtained straightforwardly.
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