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1 Introduction

This is a résumé that covers the main results in the article Fundamental domains of arithmetic
quotients of reductive groups over number fields (with appendiz by Takao Watanabe) [7]. The paper
mainly focuses on the determination and construction of fundamental domains associated to certain
arithmetic quotients of reductive algebraic groups over an algebraic number field k.

Definition. Let T be a locally compact Hausdorff space and I' a discrete group with a properly discon-
tinuous action on 7. A subset Q of T satisfying

(i) T=Ta-,
(i) °NyQ~ =0 forall yeT\ {e}

is called a fundamental domain of T with respect to T or just a fundamental domain of I'\T'
(T/T in the case of a right action). Here 0°,Q~ denote the interior and closure of £ in T respectively.

In particular we study arithmetic quotients of GL,, and the results of which are used to construct
fundamental domains for P,,, the cone of positive definite Humbert forms over k, with respect to arithmetic
subgroups of GLy, (k).

For the first part of the paper we consider a general connected reductive isotropic algebraic group G
over k and investigate fundamental domains of the quotients G(k)\G(A)* and I';\G/(kso )! with a.nthmetlc
subgroups I'1,...,I'n, of G(k) (ng: the class number of G).

The results here are an extension of Watanabe’s results in [9]. A maximal k-parabolic subgroup of G,
Q, is taken and we define the Ryshkov domain of G associated to @, Rg. This was introduced in [9] for the
purpose of constructing a fundamental domain for G(k)\G(A)! well-matched with the Hermite function
of @, mg. Watanabe also considered the case when G is of class number 1, and obtained a fundamental
domain for G(ke) with respect to Go = G(k) N Ga oo (this coincides with I';). Here however, we will
consider algebraic groups of any general class number ng.

The second topic of interest in this paper is the special case when G is the general linear group GL,
defined over k. It is well known that the class number of G in this case is equal to h, the class number
of k. The I'; in this case are the subgroups of GL, (k) stabilizing certain O-lattices in k™.

In the final section we proceed onto P, the space of positive definite Humbert forms over ko, with
the usual identification P, = [], Pn(ks) where P,(k,) denotes the set of n by n positive-definite real
symmetric/complex Hermitian matrices depending on whether o is a real/imaginary, the product taken
over all infinite places o of k.

When k = Q, P, is just the cone of positive-definite real symmetric matrices, and fundamental
domains for P,/GLy(Z) in this case have been historically constructed by Korkin and Zolotarev [6],
Minkowski [8] and later on Grenier [4]. For P, over a general number field, in [5] Humbert has previously
provided a fundamental domain constructed with respect to the particular group GL,(O). As GL,(O)
coincides with one of the I'; we study in this paper, the question can be raised about fundamental domains
for P, with respect to each of the groups I'; when ng > 1.

As such we proceed in the final sections to provide a general way of constructing fundamental domains
for P,/T'; given any number field. The method of construction follows and generalizes the example given
by Watanabe in [9] for the specific case k = Q. As already noted in [9], when k = Q the fundamental
domain for P,,/GL,(Z) resulting from this method coincides with Grenier’s ([4]). It was observed by
Dutour Sikirié and Schiirmann that this fundamental domain is in fact equivalent to the one previously



developed by Korkin and Zolotarev. Regarding P,,/GL,(O) for general number fields however, we note
that the fundamental domain produced by the method here differs from Humbert’s construction which
utilizes the matrix trace, whereas the domain here is defined using the adele norm of matrix determinants.

Notation

We fix k, an algebraic number field of finite degree over Q, and denote its ring of integers by O and
the adele ring by A. po and py denote the sets of infinite and finite places of k respectively and we let

P = Poo U Py. koo denotes the usual étale R-algebra k ®q R which we identify with 11 ko
T€Pso

2 Fundamental domains of G(k)\G(A)! and T';}\G(ko)*
2.1 The Ryshkov domain of G associated to @)

Let G be a connected reductive isotropic affine algebraic group defined over k. Fix a minimal k-
parabolic subgroup of G and let @ be a proper maximal k-parabolic subgroup of G containing it.

Definition ([9, §4]). The Ryshkov domain of G associated to @ is defined by
Rq :={g € G(A)! | mq(g) = Ho(9)}

where Hg : G(A) = R0 and mg : G(A)! — R are respectively the height function and Hermite
function associated to @ given by

Hg(umh) = |xo(m)|3' (u€U(A),m e M(A),h € K),
me(9) = gl Fo (@)
Here,
e U and M: the unipotent radical and Levi subgroup of Q,
e K: maximal compact subgroup of G(A),

o xq the k-rational character of M/(the maximal central k-split torus of G) spanning the (rank 1)
Z-module of all such characters.

o G(A) :={g € G(A) | |x(g)|s =1 for all k-rational characters x of G}
The Ryshkov domain is useful to us because of the following theorem from [9].

Theorem 1. Let € be an open fundamental domain of (Rg)™ (closure of interior of Rg in G(A)!) with
respect to Q(k). Then 2° is an open fundamental domain of G(k)\G(A ).

Thus by starting with the Ryshkov domain, we can proceed to construct a fundamental domain for
G(k)\G(A)!. The following subsection details this.

2.2 Constructing Rg and Q2

Notation
¢ Kf = ]—[aepf K, (the finite part of K),
o Gaoo = Glko) X Ky, Gh o = Gae NGA),
o Glkoo)! = Gkeo) N G(A)L.
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Also we will denote the class number of G, that is the finite number |G(k)\G(A)/GA, |, by ng.
We note here that |G(k)\G(A)'/G} | is also equal to ng.

First, take a complete set of representatlves {ni}2e, for G(k)\G(A)! /G}A,OO. We then define the
arithmetic subgroups I'y,...,I's; by

Ts = 0iGh oo ' NG(K).

Also for each i = 1,...,ng take a complete set of representatives {&;; };‘;1 for Q(k)\G(k)/T; (where
the number of double cosets h; is finite, see (2, §7]) and define groups

Qi = QN&;L =Qk)N&; 151_7

and the sets
Rijoo = {9 € G(koo)' : mq(g€ijm) = Holgéiim:)}

for j=1,...,h;.
‘We can immediately verify that

e G(A) = L| Ll QK)G (ko) &smiKy,

=1 j=1

d RQ LJ U Q(k) ,J,oogz]"th

i=17=1

Also, by taking a complete set of representatives {6;;x}« for Q(k)/Q;, ;, we obtain

ng hi i
RQ _ LJ U Q(k » wgz]anf — U LJ (U&Jsz ]) s oogz]rhKf
i=1i=1 i=1j=1
ch ]hi "
= |_J |__| ugiiji,j,oofijnin (l)
i=1j=1 k

Denote (R ; )~ by R} ; ., where the interior and closure is taken in G(koo)!. Similarly write Ry
for (Ry)~ in G(A). From (1) we have

ng hi
= |_| I_I I_lﬁiijZ,j,oofiﬂlin- (2)
i=1j=1 k
We have the following main result.
Theorem 2. For each i =1,...,ng and j = 1,..., h;, take open fundamental domains Q; j,cc of R}, .,
with respect to Q; ;. Then the set
ng hi
Q= || || QusoobismiKs
=1 j=1

is an open fundamental domain of Ry, with respect to Q(k).
Corollary 3. Q°(interior of 2 in G(A)?) is an open fundamental domain of G(A)! with respect to G(k).
Proof. From (2) we have

neg hi ng hi

Ry = | L L 0iswBi g ocbiamiKs = || L] [L] 6w (@05 5 00)6i5m: K 5
i=1j=1 k i=175=1 k
ng hi

= | L] @00 coniks = QR

i=1j=1
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Now suppose 2 N g~ # @ for ¢ € Q(k). So for some 1,7, 7,5 we must have q(£ ;,00€in:Ks) N
(Q i 00 imir Kg) # 0. Writing ¢ = 0;;1¢' with ¢’ € Q; ; and some k, we have

035%(0 ) oo j,00€i5mi K s N Q7 1 &y Ky # 0

since (¢')s€ijn: K C &iymiKy. Then (2) implies i = i', j = j, and 0;5 = e. Thus Qi 5,00 N (40 00 =
Qi j,00 NG'Q; ; o, Must be non-empty, which means ¢’ = e and hence ¢ = e. This proves the theorem, and
the corollary follows from Theorem 1. 0

Additionally, for any fixed 1 < ¢ < ng, we have the following theorem.
hi
Theorem 4. The set Q; o = UJ g;jln,-,jmg,-j is a fundamental domain of G(ke)! with respect to T';.
j=1

Proof. To show that G(ke)! = T'i;, consider an arbitrary g € G(keo)'. From corollary 3

ng hi
G(A)! =GR =G | ] | ] 9,00bism:K
1=1j=1
ng hi

=GK) || | ] &35 Qjroois e K

i=1j=1
ne
Gl | Q5 omiKy
i=1
so we may write gn; = g'wn;h with ¢’ € G(k), w € Q;,, and h € K;. Rearranging we get g =
(gw™ Y (mh 1Y) Wthh belongs to G(keo)!n:K n; ! = G;. Hence ¢’ € T';. Since g = (¢'w)(n:hn; *) and
g € G(koo)?, mihm; ! must necessarily be trivial. Thus g € T,
Now suppose that Q7 N g€ . is non-empty for a g € I';. Then we must have 65.19;-"]-,00{,-1- n
gfi;,lﬂi_"j,m&j: # { for some j,j'. Since gym: Ky = n; Ky,

E IQO] cogl] ﬂggn Qz ] oo{l] #@

= (Qj0olisMiK5)° N Eii 857 (R jroobiymiK )™ # 0

= Q° N (&;965)0 #0
and thus {,]gf .+ = e by Corollary 3. Hence Q(k)&;I; = Q(k)&;;Ts, which implies j = j' whereby
g= 6;] fz]’ =e€. O

3 The case G =GL,

In this section we will consider the case where G is a general linear group GL,, defined over k. Fixing
an integer 1 < m < n, we consider the maximal standard k-parabolic subgroup @ defined by

Q) = { [g 2] :a € CLn(K),b € My p_m(k),d € G’Ln_m(k)} .

For the maximal compact subgroup K of G(A) let K = Ko, x Ky where

= {9 € GLn(keo) : 'fg=1n}, Kr= [[ GLa(O,).

oEPS

Here we identify GL,(keo) with [] GLn(k,), and for g = (95 )oepo. € GLn(koo) we write *g for the
o€Po

element (*gs)oepo, Of GLn(Koo)-
We shall see that in this case the number of double cosets of Q(k)\GLy(k) /[‘ for each % is invariant
and equal to |GLp(k)\GLn(A)'/G} |, the class number of GLy,.
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Denote the set of all O-lattices in k™ (r > 1) by £,, and the standard unit vectors of k™ by eﬁ’), cees eln.

For this section we simply write £ for £, and e for efc") (1<k<mn).
For L € £, and g = (go)oep € GL-(A) put

L= ((koo)' <11 g,La) nk™ € &,. 3)

oEpy

This defines a transitive left action of GL,(A)1 on £,.. Note that if g € GL,.(k) then gL as defined above
coincides with the usual image of L under the linear transformation v — gv of k™. The subset of £
consisting of all O-lattices of the form gL with g € GL, (k) will be referred to as the O-lattice class of
L or just the lattice class of L in £. Since every O-lattice in a lattice class has the same Steinitz class, we
refer to the Steinitz class of any lattice representing the class as the Steinitz class for that lattice class.
From the previous section, we will require a complete set representing GLn(k)\GL.(A)!/G)y . Take
{n1,...,mn} to be such a set of matrices. Then for each i =1,...,h put L; = n;(Oe; + -+ + Oey,) € £.
We then have a one-to-one correspondence between GL,(k)\GL,(A)'/ G}A,m and the set of O-lattices
classes in £ by mapping each 7; to the lattice class of L;. That this is a bijection follows from ka
being the stabilizer group of the O-lattice Oe; + - - - + Oe,, under the action of GL,(A)! on £.
Continuing the map to St(L;), the Steinitz class of L; gives us a bijection from G Ly (k)\GLn(A)' /G}
to Cl(k). As a result the class number of GL,, is equal to the class number of k, which we write as h.
We can proceed on to our next main results, that h; = |Q(k)\GL,(k)/T;| is also equal to h for every
i=1...,h
Identify Q(k)\GL, (k) with the set of all m-dimensional linear subspaces of k™ denoted by Gr,, (the
Grassmanian) via the bijection

m
QK\GLa(k) 5 Q(k)g — g7 (D _kex) € Gryn. (4)
k=1
Fix ¢ € {1,...,h}. Considering the left action of I'; C GLn(k) on Gry,, the map (4) gives rise to the
bijection
m
QK\GLy(k)/T; 3 Q(k)gl — Tig™ (D _kex) € [\Grm, (5)
k=1
which lets us identify Q(k)\GLy(k)/I'; with I';\Grp,.
Lemma 5.
Iy ={g9 € GLy(k) : gL; = Li}
i.e. I; is the stabilizer of L; in GL,(k), under the action of GL,(A)! on £.
Theorem 6. The map
PV F,;\G’r‘m — Cl(k), )\Z(FZV) = St(L, N V) (V (S GTm) (6)
is a well-defined bijection, and thus h; = h.

The above bijections give us an explicit way to find candidates for {m;}*, and {5;']'}?:1 as follows.
Let {ai,...,a} be a complete set of fractional ideals representing the ideal class of k. For each i =
1,...,h, we shall require an element 7; € GL,(A)?! such that the Steinitz class of the resulting lattice
L = ni(3_5—; Oeg) is the ideal class represented by a;.

Let D,(z) (z € A) denote the unit matrix of size n with bottom-most diagonal entry replaced by z.
For each 1 < 7 < h we can choose a; € A* such that «;, generates the principal ideal a;O, for every finite
o and |a;|eo = N(a;), the ideal norm of a;. Then D, (c;) € GL,(A)! since |det Dp(c)|a = |oula = 1,
and

Dn(al)(z Oe;) = Z Oey, + aje,,.
k=1

1<k<n

Hence putting 7; = Dy (a;) (1 < i < h) gives us our required set of representatives for GL,, (k)\GLn(A)!/ ka.
The corresponding O-lattice L; and its stabilizer group I'; will be denoted by L, (a;) and I',,(a;) respec-
tively whenever we want to call to attention the fractional ideal a; or the dimension n.



We can also proceed similarly to find for a fixed 7 a suitable set of representatives for Q(k)\GLy (k)/T;.
We do this using the bijection

Q)\GLn(k)/T; 3 Q(k)gT; = St(L; N g~ 'V,,) € Cl(k)

m
formed by composing \; with the bijection (5), where V;, = 3 keg.
k=1

For each j € {1,...,h} the ideal a; g'l shares the same ideal class as a unique a; (§' € {1,...,h}),
that is [a;][a;/] = [as]. Puttmg 7;(j) := j' defines a permutation 7; on {1,...,h}.
Call a set of matrices {£1,...,&n} C GLy(k) an (n, m)-splitting set for Ln(az) ifforeachj=1,...,h

Z Oey, +ujem> + ( Z Oey +a,i(j)en)

&Ln(a) =
1<k<m m<k<n

=~ Lm(aj) & Ln—m(aﬂ(j))- (7)

Since St(L; N &7 W) = St(&;L; N Vin) = [a;] (i < j < k), such a set of matrices completely represents

QK)\GLn(k)/T;.
One such set is given as follows. For each j =1,...,h, first take ki; € k such that aja, ;) = Kij0;.

Then choose elements o;; € 05, &j; € r,(j), Bij € aj'l and §;; € a. (J) satisfying
0ijfij — aiiBi; =1
(see [3, §1, Prop. 1.3.12 or Algorithm 1.3.16]) and define the matrix
L1 ,
&ij = w ) A w5 | e GL ().
/

G KiiBij

By direct calculation it is easily verified that {£;;}?_, is indeed an (n,m)-splitting set for Ly (a;) and thus
fully represents @™ (k)\GLn(k)/I's(a;).

4 Fundamental domains of GL,(k)\GL,(A)! and P,/T;

We will apply the general results of section 2 to GL,,, before proceeding to P,. The matrices {m}ﬁ'=1
and {&;; }5-‘=1 used from here on are the same ones chosen in the end of the previous section.

4.1 The height function

The height function associated to the parabolic subgroup @ used in the previous section is given by

0 d 0 d

where [ is the greatest common divisor of n — m and m.

Ho (u {“ 0] ) |det al3"™ detdT  (u € U(A), [“ 0] € M(A),h € K)

m
Definition. For each o € p define H, : Ak? — R by

kot .
(?'“”3)[ 2 (0 € poo)s

sup lar]s (o €py),

HU(ZGI(ez'l/\HJ\eim)) =
1

the sum and the supremum taken over all I = {i; < --+ < 4,,} C {1,...,n}. We call this the local
height function at 0. H,, can be extended to a function of GL,(k,) by defining

Hy(y) = Hy(ve1 A= Avep), v € GLp(ks).
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The following lemma allows us to express the height function H (restricted to GL,(A)!) in terms
of these local heights.

Lemma 7.
Ho(g) = [ Holgz )™

oEPp
for g = (9o)oecp € GLn(A)'.

We proceed to describe the sets R; ;. using the matrices 7; and £;; chosen at the end of the previous
section. For the rest of this paper, for a square matrix A with entries in A or ko, we will write |A|5 and
|Alco to denote |det A|a and | det Ao, respectively. When the size of A is at least m, we write A™ for

the top-left m by m submatrix of A, and use ]A|([,Z' 1 to denote |Al™] | .
Theorem 8. Let X;; denote the n by m matrix formed by the first m columns of {{jl. Then
Ho(&jvgms) = N (o)™ ' X545 47 (i) 229 2y~ Xy |2 (8)
forany 1< 4,5 < h,y€T; and g € GLy(koo)!.
Proof. This can be proved by verifying that
o T H,((&5v9m:)5"') = N(a;) from our choices of n; and &,
gEPf
o T1 H,((&5v9m)7") = 'Kt (1) 229~ v~ * Xijloo Which can be shown using the Cauchy-
0EPoo
Binet formula.
The result follows from the previous lemma. [}

Now fix 1 < 4,7 < h and first consider the set §{lei,j,oo€ij- It is easy to directly verify that
&7 Rijioobis = {9 € Glkoo)' : Ho(&isgms) = mq(gmi)}
Hence for g € {;IR,-,J-‘OQ&]' we have

Hg(&;9m) = mo(gm) = Ho(xgm:) = lglkigh Ho(&irvan:)

min
2€Q(K)\GLn (k)
~yerl;

which in this case can be written using (8) as

N(ak)

2 _
—m) X777 () 29 Y Xikloo
¢

FXi'a " ()9 Xijloo < (

forallk=1,...,hand y€T}.

Now *X et 357 (m)oZ g™ v Xk = (%€ 75 ()9~ €5 )™, which by letting gj;;) = &i;9€;;" can

be rewritten as
t TTvt=—1tF— 1, \—2,—1y, -1 —1y\ ™
( (gij')’éik ) g[ij]( Eij (ni)oo gij )g[ij] (&ij’ygik )) .

This lets us express the set R; ;oo as follows. For g € GLn(koo) let mi;(g) denote *g~2 (*6;;! (m:) 2551 ).
Then g € R; j « if and only if

@I < (Fad) FEnEDms o) eI )

forallk=1,...,hand y €.
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4.2 Fundamental domains of P, /T;

For each infinite place o of k let P, (k,) denote the subset of GL, (k) consisting of all positive definite
real symmetric matrices when ¢ is real and positive definite Hermitian matrices when o is imaginary.
We consider the subset of GL, (k) defined by P, =[] P,(k,). This is the space of positive
definite Humbert forms over k..

‘We have the following right action of GL,(ks) on P,

A~g=t§Ag (9 € GLn(keo), A€ Pyp). (10)

FEPoo

To determine fundamental domains in P,, with respect to subgroups of GL,(k), we consider instead the
induced action A - gZ = *gAg of GL,(k)/Z on P, where Z = {z € k : Zz = 1}, the set of roots of unity
in k. Here {zI, : z € Z} is naturally seen to be the intersection of K, and the center of G L, (k).

Now for each 1 < 4,5 < h, put

Ki oo = (€ijni)ooKoo(bisNi)oas Pl ={A € Py |Aloo = N(kiza:) 7%},

and define the map m;; : G(koo) 3 g = g7 (*€;; (1) 52£;' )97 € Pn. Note that K; j o is the stabilizer
of *6;;'(n:)32¢5;" € Pn under the action of GLn(Koo) on P, and that m;; preserves this action. Thus the
surjective map ;; gives us the isomorphisms

GLy(koo)/Kijoo 2 Pn and GLp(keo)'/Kico = mij(GLn (ko)) = PY

since 63! (1) 57635 loo = N (mijas) 2.
Lastly let F; ; denote the following closed subset of P,,:
N(ag)\2;, — = ~1y([m
(e P A < () FEmEn e e, 1< k<h, yeTs.
From (9), m;; maps R; j o onto F; ; NP, We also note that F; ; is right @; j-invariant under the action
(10).

Thus the subgroup Q;; of GLn(keo) acts on R; ;o from the left and on Fj; from the right, and m;;
preserves this. Hence by constructing a fundamental domain for F; ;/Q; ;, we can find one for Q; ;\R; j 00
by taking the inverse image under ;.

We start by observing that gijri,g;].‘ is the stabilizer in GLy (k) of the O-lattice §;;L; described in (7).
This gives us the following expression for Q; ; = Q(k) N §ijl"i§i_jl:

b
{ {g d] i @€Tm(a), dE€Tnm(tny) bln-m(ang) C L,,.(aj)}.
Any A € P, can be written uniquely in the form
I 0 | [Al™ 0 Im ua
A — m m s m 11
[t“A,m In—m} [ 0 A[n—m]} [0 In-m (1)
with Al™ € P, Ajn—m) € Poom and uam € Mpypn_m(Keo) (The symbol Al™ here coincides with

its prior use to denote the top left m by m submatrix of A). It is easy to verify that the action of
g=[2%]€Q;; on Aresult in

(thq) ml = tﬁA[m]av (thQ)[n—m] = tEA[n—m]dv

Usgagm = @ (ua,md + b).

These equations will determine the necessary form of our fundamental domain.

For each k = 1, ..., h choose sets 0, O}, and 0;; that are fundamental domains for ko, with respect
to addition by ag, a;l and aka:i%k) respectively. We require each of these sets are closed under multi-
plication by Z. Then choose also a subset d;x of 03, that is a fundamental domain for ?;; with respect
to multiplication by Z. Also if necessary (which will be the case when m > 1 and n — m > 1) take a
fundamental domain d¢p of ko, with respect to addition by O.



43

Using these, we define for 1 < 7,5 < h the sets

din - dinem 1) r<m, s<n-—-m
Dij= o : ¢ dmp—m €035, drs € Vi T<m, s=n-m
dni - dman-m 0; r=m, s<n—m

By observing the action of @; ; on F; ;, we establish the following result.

Theorem 9. Let % and € be fundamental domains for Py, /T'm(a;) and Pn_m/Tn_m(ar,(;)) respec-
tively. Then F; ;(B,¢) = {A€ F;: A e€B, Ap_m €€, uam €Dy;} is a fundamental domain
of Fi;/Qi ;-

As a result, the inverse image of F; ;(8B;, €, (;))NPi under m;; is a fundamental domain of Q; ;\ R; jco-
Also, if we have fundamental domains By for P, /Ty (axr), as well as fundamental domains € of
P m/Tn_m(ay) for each k = 1,...,h, we can then construct the sets Fj ;(B;, €y, 5)) (1 < 4,5 < h).
Then by Corollary 3 a fundamental domain for GL,(k)\GL,(A)! is given by the set

L] 7t (Fig (B, €raiy) 0 P)EijmiK 5.
1<i,j<h
Also Theorem 4 shows us that U?=1 &5 it (Fij (B4, €, 5)) N Pi)gs; is a fundamental domain for
GLy(koo)! with respect to I';. Now let

A
Q(B1,...,Bn,C1,...,E) = U iy 5 (B, €y () )is-

j=1

Theorem 10. Q;(By,...,Bp, €1,...,&) N P is a fundamental domain of P¥ with respect to I';. In
addition, if we assume that each of the B, and €, are closed under positive multiplication (viewing Rsq
as a subset of ko, via the usual diagonal embedding), then

R0k = Br, Ryo&k =,
then €;(B1,...,Bs,€1,...,E€) is a fundamental domain of P, /T;.

Using the theorem, we can construct fundamental domains for P, with respect to I'; for each 7 and
n > 1. Since I’; = O* for any i when n = 1, we can start by choosing a fixed fundamental domain, Q1,
for Py with respect to O /Z that is closed under multiplication by R~q (The existence of such a set can
be shown using Voronoi reduction, as demonstrated in the appendix of [7]). Then for each i =1,...,h,
let O} = Q! and define

OF = QPO Ll 0h)

inductively for n > 2. By construction R5oQF = QF so for each 1 < i < hand n > 1, QF gives us a
fundamental domain for P, /T;.

4.3 An example (k = Q(v/-5))

When k is an imaginary quadratic field, we have koo = C. For n = 1 we have P, = R5o(C C) and
I'; = O* = Z acts trivially on P;, hence P itself is a fundamental domain for Py /T’ (a;).

Consider in particular k = Q(+/—5) of class number h = 2. We can choose representatives ay,as for
Cl(k) by putting a; = O and a2 = (2,1 + /=5). Then following the procedure at the end of section 4,
we see that
K11 = 1, K12 = 2),

af=a;, af=20 (n= )
) K21 = Koo = 1).

ajap = dg, d20; = Az (T2 =

(2, 1)—splitting sets for La(a;) are given by

for=f 1. -t 22} o

bt @ B en



For 1 < 4,7,k < 2 denote by Z;;x the set of the first columns of the matrices &j’y{{kl as <y ranges
over I'(a;). Then for A € P,

min [*(&;7€;, VA7 )| = min ['RAx|=  min  AMle+ua1 7+ Aylff
V€T x€8i .k ; € 5,k

and so F'z;-l can be expressed as

b,ce Ryg, deC
2,1_1_0b01d_ 25 cif2>
{9k b 4 e, 1

1 = =
£l € Napy=iit Y N(apy=inin2

Now for e, 8 € k let d(er, 8) = {za + yB : —1/2 < z,y < 1/2}. When a and 8 generate a fractional
ideal a, 0(a, B) is a fundamental domain for C with respect to addition by a. Also if we let 9(c, 8) denote
the subset of (e, 8) where the range of y is restricted to 0 < y < 1/2, this gives us a fundamental domain
for d(e, B) with respect to multiplication by Z = {+1}

In particular 9(1,v/=5),0(2,1 4+ v=5), (1, 1=¥=F) are fundamental domains for C with respect to
addition by O, az and a;! respectively, and we can put d;; = d12 = (1, v/=5), 921 = (L, 1;25) and
D0 = 5(2, \/—_5) Then

b,c € Ry, dEﬁij
FE L Py =4 |5 0D O A e gl
nI d 1|0 ¢|]|0 1 e 1L = 2 =
[7] € FaySiin U wgySiie

Writing Ffjl (P1, Py) as F; ; for short, we obtain the fundamental domains Q% = Fy ; U%€12F 2612 for

P2/F2(Cl1) and Q% = Fl,l Uté_.22F2‘2£22 for P2/I‘2(a2).
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