NEW FORMS IN THE KOHNEN PLUS SPACE

REN-HE SU

1. Introduction

Let $k \geq 2$ be an odd integer, χ a Dirichlet character mod 4Nwhere N is a natural number. By $S_{k+1/2}(4N,\chi)$ and $S_{2k}(2N,\chi^2)$ we denote the spaces of cusp forms of weight k + 1/2 and 2k with respect to the congruence subgroups $\Gamma_0(4N)$ and $\Gamma_0(2N)$, respectively. For any $f \in S_{k+1/2}(4N,\chi)$ and square-free integer t, Shimura showed that there exists $Sh_t(f) \in S_{2k}(2N,\chi^2)$ which can be described exactly by the Fourier coefficients. If f is an eigenform, then so does $Sh_t(f)$ and they share the same eigenvalues for all Hecke operators T_p and T_{p^2} , respectively, where p is an odd prime number. Note that the above is also true for k=1 if f is in the complement of the subspace of $S_{3/2}(4N,\chi)$ spanned by all single variable theta functions (otherwise $Sh_t(f)$ may not be a cusp form). By taking linear combinations of such correspondences for square-free t's, one gets various liftings from $S_{k+1/2}(4N,\chi)$ to $S_{2k}(2N,\chi^2)$. However, in general, one cannot get a bijective lifting in such a way. A natural problem is to identify the image of such liftings, or the subspace of $S_{k+1/2}(4N,\chi)$ by restricting some lifting to which one can get a injective lifting. A partial answer to this question comes from the Kohnen plus space.

Definition 1.1. For N odd and square-free and χ quadratic, the plus space $S_{k+1/2}^+(4N,\chi)$ is the subspace of $S_{k+1/2}(4N,\chi)$ consisting of those forms whose n-th Fourier coefficients vanish for all natural number n such that $(-1)^k \chi(-1)n \equiv 2$ or $3 \mod 4$.

Kohnen initially introduced the plus space in 1980 [3] for the classical case and generalized it to the version as the definition above in 1982 [4]. He showed that there exists a one-to-one correspondence, which is a lifting introduced above, between $S_{k+1/2}^+(4N,\chi)$ and $S_{2k}(2N,\chi^2)$. From now we want to consider the case for general totally real number field, that is, the Hilbert case.

2. Definitions

Let F be a totally real number field with degree n over \mathbf{Q} . As usual, \mathfrak{o} and \mathfrak{d} denote its ring of integers and different over \mathbf{Q} , respectively. We fix a odd square-free ideal \mathfrak{I} of \mathfrak{o} and a primitive quadratic character χ of (o) with conductor (\mathfrak{f}) , a principal ideal generated by some $\mathfrak{f} \in \mathfrak{o}$. Thus explicitly, we can write χ in the form

$$\chi(d) = \prod_{v \mid 2} (\mathfrak{f}, d)_v \prod_{v \mid \mathfrak{f}} (\mathfrak{f}, d)$$

where v runs over places of F and $(\cdot, \cdot)_v$ is the Hilbert symbol of the local field F_v corresponding to v.

For ideals \mathfrak{b} and \mathfrak{c} of F such that $\mathfrak{bc} \subset \mathfrak{o}$, we put

$$\Gamma[\mathfrak{b},\mathfrak{c}] = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathrm{SL}_2(F) \,\middle|\, a,d \in \mathfrak{o}, b \in \mathfrak{b}, c \in \mathfrak{c} \right\}$$

and

$$\Gamma_0(\mathfrak{a}) = \Gamma[\mathfrak{d}^{-1}, \mathfrak{a}\mathfrak{d}]$$

for ideal \mathfrak{a} of \mathfrak{o} .

For simplicity, we let $k \in \mathbb{N}^n$ be parallel and \mathfrak{f} be with the sign $(-1)^k$, that is, the norm of \mathfrak{f} over \mathfrak{Q} has the same sign with $(-1)^k$.

We define the theta function θ on \mathfrak{h}^n , where \mathfrak{h} is the upper-half part of the complex plane, by

$$\theta(z) = \sum_{\xi \in \mathbf{o}} \exp\left(2\pi\sqrt{-1}\mathrm{tr}(\xi^2 z)\right).$$

Applying θ , we can define the factor of automorphy of weight 1/2 by

$$j(\gamma, z) = \theta(\gamma z)/\theta(z)$$

where $\gamma \in \Gamma_0(4)$ and γz denotes the image of z under the Möbius transformation by γ .

Putting $S_{k+1/2}(4\mathfrak{I},\chi)$ to be the space consisting of Hilbert cusp forms with respect to the factor of automorphy given by $j(\gamma,z)^{2k+1}\chi(\gamma)$ where

$$\chi\left(\begin{pmatrix} a & b \\ c & d \end{pmatrix}\right) := \chi(d) \text{ for } \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma_0(4\mathfrak{I}),$$

we give the definition of the plus space.

Definition 2.1. With the notations stated above, the Kohnen plus space $S_{k+1/2}^+(4\mathfrak{I},\chi)$ of weight k+1/2, level $4\mathfrak{I}$ and character χ is defined to be the subspace of $S_{k+1/2}(4\mathfrak{I},\chi)$ such that $h \in S_{k+1/2}^+(4\mathfrak{I},\chi)$ if and only if the ξ -th Fourier coefficient of h vanishes unless there exists $\lambda \in \mathfrak{o}$ such that $\xi - \mathfrak{f}\lambda^2 \in 4\mathfrak{o}$.

Let \mathbb{A} be the adele ring of F with finite part \mathbb{A}_f and $\mathrm{Mp}_2(\mathbb{A}_f)$ be the metaplectic double covering of $\mathrm{SL}_2(\mathbb{A}_f)$.

An eigenform $h \in S_{k+1/2}^+(4\mathfrak{I},\chi)$ generates an irreducible representation $\pi_{\mathrm{f}} = \prod_{v \in \infty} \pi_v$ of $\mathrm{Mp}_2(\mathbb{A}_{\mathrm{f}})$ where π_v is an irreducible representation of $\mathrm{Mp}_2(F_v)$. An eigenform h is called a Hecke new form if for any finite place v dividing \mathfrak{I} , π_v is quivalent to a Steinberg representation, which is a certain ramified subrepresentation of some principal series representation. We let $S_{k+1/2}^{+,\mathrm{NEW}}(4\mathfrak{I},\chi)$ be the C-space spanned by Hecke new forms given above. Any form in $S_{k+1/2}^{+,\mathrm{NEW}}(4\mathfrak{I},\chi)$ is called a new form. Note that the definition of new forms coincides with the one given by Kohnen.

3. An if-and-only-if condition for the Hecke new forms In this section, for simplicity, we set $\chi=1$. For $v\mid \mathfrak{I}$, we let

$$\Gamma_v = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \operatorname{SL}_2(F_v) \,\middle|\, a, d \in \mathfrak{o}_v, b \in \mathfrak{d}_v^{-1}, c \in \varpi_v \mathfrak{d}_v \right\}$$

where $\varpi_v \in \mathfrak{o}_v$ is the uniformizer corresponding to the place v. We denote the inverse image of Γ_v in $\mathrm{Mp}_2(F_v)$ by $\widetilde{\Gamma_v}$.

Let $\widetilde{\mathcal{H}_v} = \widetilde{\mathcal{H}_v}(\widetilde{\Gamma_v} \backslash \mathrm{Mp}_2(F_v) / \widetilde{\Gamma_v}, \varepsilon_v)$ be the Hecke algebra with respect to the genuine character ε_v of $\widetilde{\Gamma_v}$ which comes from some Weil representation of $\mathrm{Mp}_2(F_v)$.

Definition 3.1. Let $\widetilde{\mathcal{T}}_v$ and $\widetilde{\mathcal{U}}_v$ be the Hecke operators in $\widetilde{\mathcal{H}}_v$ which are supported on $\widetilde{\Gamma}_v \begin{pmatrix} \varpi_v & 0 \\ 0 & \varpi_v^{-1} \end{pmatrix} \widetilde{\Gamma}_v$ and $\widetilde{\Gamma}_v \begin{pmatrix} 0 & -\boldsymbol{\delta}_v^{-1} \varpi_v^{-1} \\ \boldsymbol{\delta}_v \varpi_v & 0 \end{pmatrix} \widetilde{\Gamma}_v$, respectively, such that

$$\widetilde{\mathcal{T}}_v\left(\begin{pmatrix}\varpi_v & 0\\ 0 & \varpi_v^{-1}\end{pmatrix}\right) = q_v^{-1/2}\frac{\alpha_v(\varpi_v)}{\alpha_v(1)}$$

and

$$\widetilde{\mathcal{U}_v}\left(\begin{pmatrix}0&-\boldsymbol{\delta}_v^{-1}\varpi_v^{-1}\ \boldsymbol{\delta}_v\varpi_v&0\end{pmatrix}\right)=\alpha_v(\boldsymbol{\delta}_v\varpi_v).$$

Here $\boldsymbol{\delta}_v \in \boldsymbol{\mathfrak{o}}_v$ is one which generates the local principal ideal $\boldsymbol{\mathfrak{d}}_v$, α_v denotes the Weil constant and q_v is the index of the local residue field with respect to v.

In the definition above, $\widetilde{\mathcal{T}}_v$ is the usual Hecke operator and $\widetilde{\mathcal{U}}_v$ is the Atkin-Lehner operator.

Theorem 3.1. An eigenform $h \in S_{k+1/2}^+(4\mathfrak{I},1)$ is a Hecke new form if and only if

$$\widetilde{\mathcal{T}}_v \widetilde{\mathcal{U}}_v h = -h = \widetilde{\mathcal{U}}_v \widetilde{\mathcal{T}}_v h$$

for all finite $v|\mathfrak{J}$.

This theorem is motivated by a result from [1]. They treated the case for integral weight, $F = \mathbf{Q}$, $\chi = 1$ and general level.

4. Application of Waldspurger's theory

Theorem 4.1. The plus space $S_{k+1/2}^+(4\mathfrak{I},\chi)$ is the E^K -fixed subspace of $S_{k+1/2}^+(4\mathfrak{I},\chi)$ for some Hecke operator $E^K = \bigotimes_{v < \infty} E_v^K \in \bigotimes_{v < \infty} \widetilde{\mathcal{H}}_v$ where for each $\widetilde{\mathcal{H}}_v = (\widetilde{\Gamma_v} \backslash \operatorname{Mp}_2(F_v)/\widetilde{\Gamma_v}, \varepsilon_v)$ we set

$$\Gamma_v = \begin{cases} \Gamma_0(1)_v & \text{if } v \nmid 2\mathfrak{I}, \\ \Gamma_0(4)_v & \text{if } v \mid 2 \\ \Gamma_0(\varpi_v)_v & \text{if } v \mid \mathfrak{I}. \end{cases}$$

The Hecke operator E^K is an idempotent and can be written down explicitly, but we omit its definition here. The following proposition was given by Hiraga and Ikeda [2].

Proposition 4.1. Let v be a finit place of F not dividing \mathfrak{I} and \mathcal{B} be the Borel subgroup of $\mathrm{SL}_2(F_v)$ consisting of upper-triangular matrices. For $s \in \mathbf{C}$, if the principal series $\mathrm{Ind}_{\widetilde{\mathcal{B}}}^{\mathrm{Mp}_2(F_v)}(\left(\begin{smallmatrix} a & b \\ 0 & a^{-1} \end{smallmatrix}\right) \mapsto \frac{\alpha_v(1)}{\alpha_v(a)}|a|_v^{s+1})$ is irreducible, then its E_v^K -fixed subspace is of one dimension.

Proposition 4.2. The E_v^K -fixed subspace of a Steinberg representation is of one dimension for $v \mid \mathfrak{I}$.

Now let $k \geq 2$. By Waldspurger's results, each irreducible representation π of $\operatorname{Mp}_2(\mathbb{A})$ from an eigenform $h \in S_{k+1/2}^+(4\mathfrak{I},\chi)$ corresponds to an irreducible cuspidal automorphic representation of $\operatorname{PGL}_2(\mathbb{A})$, which gives a non-zero unique-up-to-non-zero-scalar-multiplications eigenform in the space of cuspidal automorphic forms

$$\mathcal{A}_{2k}^{\text{CUSP}}(\mathfrak{I}) = \mathcal{A}_{2k}^{\text{CUSP}}(\operatorname{PGL}_2(F) \backslash \operatorname{PGL}_2(\mathbb{A}) / \prod_{v < \infty} \Gamma_v'(\mathfrak{I}))$$

where $\Gamma'_v(\mathfrak{I})$ is a congruence subgroup which is maximal compact if $v \nmid \mathfrak{I}$ and Iwahori if $v \mid \mathfrak{I}$. We put $\mathcal{A}^{\text{CUSP},\text{NEW}}_{2k}(\mathfrak{I})$ to be the subspace of $\mathcal{A}^{\text{CUSP}}_{2k}(\mathfrak{I})$ spanned by g such that its corresponding representation of $\text{PGL}_2(\mathbf{A})$ is locally a Steinberg representation at any finite $v \mid \mathfrak{I}$.

REN-HE SU NEW FORMS IN THE KOHNEN PLUS SPACE

Theorem 4.2. The plusspace $S_{k+1/2}^{+,\text{NEW}}(4\mathfrak{I},\chi)$ is Hecke isomorphic to $\mathcal{A}_{2k}^{\text{CUSP},\text{NEW}}(\mathfrak{I})$.

Note that for the case $\Im=1$ the theorem was treated by Hiraga and Ikeda in [2].

Using Theorem 3.1 and Theorem 4.2 we can get an analogue of the result from Baruch and Purkait in [1] for the Hilbert modular forms of integral weight.

REFERENCES

- [1] E. M. Baruch and S. Purkait, Hecke algebras, new vectors and new forms on $\Gamma_0(m)$, arXiv:1503.02767 (2015)
- [2] K. Hiraga and T. Ikeda, On the Kohnen plus space for Hilbert modular forms of half-Integral weight I, Compositio Mathematica 149 (2013), 1963-2010
- [3] W. Kohnen, Modular forms of half-integral weight on $\Gamma_0(4)$, Math. Ann. 248, 249-266 (1980)
- [4] W. Kohnen, Newforms of half-integral weight, Journal fr die reine und angewandte Mathematik 333, 32-72 (1982)

Graduate school of mathematics, Kyoto University, Kitashirakawa, Kyoto, 606-8502, Japan

E-mail address: ru-su@math.kyoto-u.ac.jp