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Eigenvalue Problem of Anti- Wick (Toeplitz)
Operators in Bargmann - Fock Space and Ap-
plications to Daubechies Operators

Kunio Yoshino

Abstract: In this paper we will consider algebraic background of Gabor
analysis and eingenvalue problem of anti - Wick (Toeplitz) operators in
Bargmann - Fock space. We will clarify the relationship between anti -
Wick (Toeplitz) operators and Daubechie (localization) operators. We
apply our results to eingenvalue problem of Daubechie operators.

1 Gabor transform

In this section we will recall the definition and properties of Gabor
transform([5], [6]). Gabor transform Wy(f)(p, q) is defined as follows:

Wolp0) = [ Foa@f(e)dz, (fa) € LR, 7,p,q €R)

¢(z) = n™4e~*"/? is Gaussian and ¢p () = n 46~ (#-9%/2 i5 Gabor
function. We have following inversion formula(resolution of identity)
Proposition 1(Inversion formula of Gabor transform)

10 =(52) [ ral@Welp. v
(Proof ) / bpa(@)Wo( ) (p, a)dpdq
/ Ppq( / e™¢(y — q) f(y)dydpdq

e P p(x — q)eP(y — q) f(y)dydpdyg

R3n

= /R ~ { / ) e""’(””'y)dp} o(z — q)p(y — q) f(y)dydg
= (2n)" / 5(z — 1)z — )by — 0)f (v)dydg

R2n

- @2n)" / bz — )p(z — @) f(z)dg = (2n)" < 6,6 > f(z) = (2m)" ()

R

Proposition 2(Unitarity of Gabor Transform)
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<Wu(f), Wy(g) >= (2m)™" < f,9 >

1.1 The relationship between FBI transform,
Bargmann transform and Gabor transform

Gabor transform is closely related to FBI (Fourier - Bros - Iagolnitzer)

transform and Bargmann transform ([7]).
FBI transform P*(f)(p,q) is defined by

P(Do0) = [ e e (a)do

Rn
1. FBI transform is related to Gabor transform as follows :
PY(f)(pg) = | e e e f(a)ds

Rn
2. Bargmann transform is related to Gabor transform as follows:

B(f)(z) = /4 o1/ AP +4* +2ipq) / o~z o —(2—0)%/2 f(z)dz

n

Q+P
z=——pq€eR"”
( 75 P )-
Remark.

1. Gabor transform is used for iris identification and signal analysis of
human voice. It is also used for the definition of Feichtinger(Segal) algebra

and modulation space([9]).
3.  Recently the relationship between Gabor analysis and operator
algebra is studied by several mathematicians([8], [13], [14], [15], [17]).

2 Projective representation of time
frequency plane(phase space)

In Gabor analysis the function e?*g(x — q) frequently appears. We already
saw this type of functlon(Gabor functlon ) in the Gabor transform. Another

example is Zak transform: Z(g E e™g(s —n)

nez
And here is celebrated Balian - Low Theorem.

Balian - Low Theorem([6]). If {€?™g(z — n)}nmez is a Frame, then

/ 2lg(z)Pdz = oo or / €213(6)Pde = oo.
R™ R”
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2.1 Modulation operator and translation operator
In this section we will consider the meaning of the function €#*g(z — q).
For g(x) € L*(R"™), we define modulation operator M,g(z) = e*®g(z) and
translation operator T,9(z) = g(x — q).

Both are unitary operators and satisfy M, My = My, and T,T, = To1p-
Namely M, and T, are unitary representations of additive group R".

We have the following commutative diagram:

IAR") —— L*(R")

n| |

L*(R") —— L*(R")
F is the Fourier transform(intertwining operator).
M, and Ty satisfy M,T, = e~ "PT,M,.

2.2  An interpretation of ¢g(z — q) by projective
representation of time frequency plane

For g(z) € L?(R™), we put

m(p,q)g(z) = MyTyg(z) = e*g(z — q), (p,q) €R" x R™
7r(p, q) satisfies 7(py1, q1)7(p2, g2) = e~ P2%r(py + pa, q1 + g2). Although
7(p, q) is unitary operator, it is not unitary representation because of factor
e~"P291, So 7(p, q) is called projective representation(ray representation,
Weyl - Heisenberg operator) of R™ x R™. To make projective representation
7(p, q) to unitary representation, we will introduce Heisenberg group.

2.3 Heisenberg Group

We identify phase space(time frequency plane for n = 1) R® x R™ with C".
Remark that C" has symplectic structure. i.e. C" is symplectic vector
space. We have the following exact sequence.
0—R—RxC*"—C*"—0

R x C* = H,, is called the Heisenberg group(polarized).

We put 7(t,p, q)g(x) = e"ePg(x — q), (g € L*(R"),p,q € R",t € R)
7(t,p,q) is unitary representation (Schrodinger representation) of the
Heisenberg group and (0, p, q) = 7(p, q)-
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Example H; is realized as the group of matrix.
1 pt 1

Hl = (tapa Q) - 0 q ) Hl = 0
0 1 0

O =3

t
q |:t,pqgeR
1

O =

Remark

1.  For the details of Heisenberg group, we refer the reader to [7], [10],
[12], [16] and [18].

2. Projective representation (ray representation) of continuous group is
studied by V. Bargmann ([1]).

3.  To construct irreducible unitary representation of the Heisenberg
group, we use L2(R") (Schrodinger representation) or Bargmann - Fock
space BF(C") (Fock representation).

L2(R") —2— BF(C")
W(t;pr)Jr lBovr(t,p,q)oB“1
L*(R") —2- BF(C™)

B is the Bargmann transform(intertwining operator).

3 Bargmann transform and Bargmann -
Fock space

3.1 Bargmann transform

We recall the definition of Bargmann transform and its properties([2]). We
put A,(z,z) as follows :

Ap(z,z) = 74 exp {—%(z2 + %) +V2z- :v} , (zeC",zeR").
The Bargmann transform B(v) is defined as follows :
de n
BN Y | f@)An(z2)dz, (f(@) € LR).

Example([2]) Let h,,(x) be Hermite function of degree m. Then

B(h)(2) = Z=, (m € N)
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3.2 Bargmann - Fock space BF(C")
We put

BF(C") = {ge€ H(C"): /C ) l9(2)Pe™ ¥ dz A dZ < o0}

H(C"™) denotes the space of entire functions.
Example([28])
1. Polynomials and entire functions of exponential type belong to

. . sinz
Bargmann - Fock space. For example, sinc function —— and prolate
z

spheroidal function(eigenfunction of (72 — tz)—gt- - 2t~(—%

functions of exponential type([20]). Hence they belong to Bargmann - Fock

Space.
z z 4 22
ex _—
Mo ) TP\ N 22 )

2.
is Weierstrass o - function and A, , are lattice points in C.

o(z)

Under suitable conditions on lattice points, - belongs to Bargmann -
Fock space([10]).

— o°t?) are entire

Theorem 1([2])
Bargmann transform is a unitary mapping from L?*(R™) to BF(C").

The inverse Bargmann transform B~! is given by

0@ Y G [ @A P az A de, (g € BFE)

Inner product in BF(C™) is defined by following formula:

< f,9>pr= / f(2)g(z)e™*dz A dz
BF(C") is H1lbert space with this inner product.



3.3 Projection, Bergman Kernel and Reproducing

Formula
Since BF(C™) is a closed subspace of
(e e ) = {g(2): [ lg(z)Pe Pz A dz < oo},

Ccr
we have the following orthogonal decomposition:
L*(C" e #*) = BF(C") @ BF(C™)*
Proposition 3([29])
Projection P : L*(C", e 1**) — BF(C™) is the following integral
operator:
1 _
(PO):) = oy [ ePatwle™ dm ndu, (g € (€, 7)),
mT)n Cn
Proposition 4 Following statements are equivalent:
1. g(z) € BF(C")
2. P(g)(2) = g(2)
3.  (Reproducing formula)
e@g(w)e "’ dw A dw

"= Gy Je

Remark
e*” is Bergman (reproducing) kernel with respect to Gaussian measure

(2mi) e 1P dw A dw.

4 Anti - Wick(Toeplitz) Operator

4.1 Toeplitz operator

In this subsection we will recall the definition of Toeplitz operators. For a

region D in R™(or C"), we put L*(D : du) = {f(2) : /D|f(z)|2d,u(z) < oo}

Suppose that H is a closed subspace of L*(D : du) and

59

Py : L*(D : du) — H is projection operator. If h(z) is a bounded function

in R"(or C"), then we can define multiplication operator

m(f)(2) = h(2)f(2).
We put T = Py omy,. i.e. T(f)(2) = Pu(h(2)f(2)).

T:L*D : dp) 2 LX(D : dp) 25 H,
T is called Toeplitz operator.
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4.2 Toeplitz operator on Bargmann - Fock space

Since Toeplitz operator Tr with symbol F' is a composition of
multiplication operator and projection operator, we have

(Tef)(z) = / T (w, 0) f(w)dp(w), (Vf € IA(C™ dp)),

n

where F(w,w) is a bounded function on C™ and
dp(w) = (2mi) e P dw A dw.

Remark For the recent development of the theory of Toeplitz operators
on Bargmann - Fock space, we refer the reader to [3], [4], [11], [19], [28] and
[29].

4.3 Wick Operator and Anti - Wick Operator

According to ([7]), we will recall the defintion of Wick Operator and anti -
Wick Operator. For f € BF(C"), we define Wick operator T as follows:

dP
TY () = 3 ausz 5 £(2)
If we employ reproducing formula(3 in Proposition 4), then we obtain
following integral representation of Wick operator Ty :

T 1) = [ TP (0)f(w)du(w),

F(z,w) is an entire function of (z,w) with some estimate.

We define anti - Wick operator as follows:

4P
TV 1(z) = Y taasa (2).
If we employ reproducing formula(3 in Proposition 4), then we obtain
following integral representation of anti - Wick operator Ta":
TAY () = [ TR, w) f(w)duto)
F(w,w) is measurable function with some estimate.
Remark
If F(w,w) is bounded function, then TAW is Toeplitz operator.
Example
1. If we consider harmonic oscillator operator in Bargmann - Fock space,
then it is Wick operator.
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2
T = 4 + 2% —1: L*(R) — L*(R), then

dx?
(BoToBV)f(z) = z% f(2) : BF(C) — BF(C)([2]).
e f) = / & f (w)dpu(w) = / e f () du(w),

So we have F(z,W) = 2.

2. -d—z : BF(C) — BF(C) is anti - Wick operator.
d d = _
Z216) = 1 [ Eufidntu) = [ wwe w)dutw),

Hence we have F(w,w) = ww = |w|?.

4.4 Eigenvalue problem of Anti - Wick(Toeplitz)
Operator on Bargmann - Fock Space

In this subsection we will consider the eigenvalue problem of anti -

Wick(Toeplitz) operator Tr(f)(2) = / e F (w,0) f(w)du(w).

Theorem 2([28]) Suppose that F(S, w) is bounded integrable and

polyradial function. i.e. F(w,®) = F(jwi|?, -, |wn|?). Then
(1) 2™ is eigenfunction of Tr.

(2) Eigenvalue )\, of TF is given by
1 00 0o n
Ayﬂ:ﬁ/{)‘ .-./0‘ F(sl’...sn)ne—slsimzd'si,m:(ml,...,mn)eNn.
i

(Proof) For brevity’s sake, we pt—xt n=1

Te)w™)(e) = [ FluPlemurduu) =+ [ Fup)eume " dmw)

=l F(|w|? “(_Z-w_)n w™e 1 dm(w
W/CF(II)(Z n!) dm{u)

0
00 n 1 _
= Zz—'—/F(|w|2)w"wme_lw|2dm(w).
poyrd n'm Jc

By using the polar coordinate w = re®,

1 ad 2" e an ; 2
== Z -——l/ / F(r?)em=m0pneme="rdrdf
m<=nl Jo Jo



62

1 00 - o0 ~
=zm——'/ e " F(r?)r*™2rdr =zm——1—/ e *s™F(s)ds.
m! Jo m! J,
Hence we obtain |
(Tr)(w™)(2) = zm;l—'/ e~*s™F(s)ds.
' Jo
Example( [24], [28])
a—1

1.  F(w,w) = exp( lw]?), (0<a<1)

-1

5), Apm=a™"!
a

F(s) = exp(

5 Daubechies (Localization) Operator

5.1 Daubechies (Localization) Operator

Daubechies operator was introduced by Ingrid Daubechies in ([5], [6]).
Daubechies operator Pp is defined as follows:

Pe(N@ = n) " [ [ Fo,060u(0Wel 1), pds

f(z) € LAR™). ¢pg(z) = n /e P (00?2,

Ws(f)(p,q) = / &p.q4(y) f(y)dy is Gabor transform of f(z) and F(p,q) is
symbol functionRof Pr

Remark If F(p,q) is 1, then P is identity operator. i.e. We have
Resolution of identity(Inversion formula of Gabor transform)

10)=(52) [, SoalWolr) o, 0)pde

5.2 Daubechies Operator in Bargmann - Fock space

If we consider Daubechies operator in Bargmann - Fock space, then we
have following theorem ([28]).
Theorem 3 For g(z) € BF(C"), we have

(Bo ProB ) (g)(z) = (2mi)™ / /cn F(w,)e™g(w)e™ " dw A dw.

Especially if F'(w,w) = 1, then we obtain



Corollary(Relationship between resolution of identity and reproducing
formula)

10 =(3) [, draaWelDlp0doda, 1(o) € 12®)
is equivalent to
92) = [ eTotw)dutw), (Vo(2) € BF).

[*(R") —2— BF

PFJ/ lBO}D};‘OB—1

I*R") —2 BF

6 Application to Daubechies Localization
Operator

6.1 Hermite Functions
Hermite functions h,,(z) of one variable is defined by

dm
h(x) = (=1)™(2"mly/m)~1/? exp(z*/2)—— exp(~z%).
Generating function of Hermite functions is the kernel function of
Bargmann transform.

1
7 Y4 exp {—5(22 + %) + V22 :r} Z

m=0
We also have the following expression.

- (5 D)

Hermite functions h,,(x) of several variables is defined by
h (1, T2, ...Ty) = H:_lhmi(xi)’ m = (my,..m,) € N™
Example

1. ho(z) = m~Y*exp(—z?/2), (coherent state)

a2z~
2. hyz) =7V — %

(z), (z € Cl,z e RY).

\/_

! exp(—z2/2), (Mexican hat wavelet)
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6.2 Daubechies’ result

As an application of our result, we will give a new proof of following
Daubechies’ result.

Theorem 4([5]) Suppose that F(p, q) is integrable polyradial function.
Then we have

1. Pr(hm)(z) = Amhm(z)

n
s ms
Am l/ / (s1,- )He ‘siMds;,
T m
i=1

= (my,- - ) € N™.
(Proof) For the simplicity we put n=1. Let Pr be Daubechies operaotr
with integrable polyradial symbol F. Then Tr = B o Pro B™! is Toeplitz
operator with integrable polyradial symbol F'. So we can apply Theorem 2
to Tr. Henco% we have

1 ~ —s.m zm _ z
/\m=51/0 F(s)e *s™ds, TF(\/T_n_!)—)\mm.

By inverse Bargnmann transform,

hm(z) = \/— ().

So we obtained following Daubechies’ results.

Pr(hm)(x) = Anhm(z), Am = n—l{’ /000 e~*s™F(s)ds.

7 Reconstruction of symbol function from
eigenvalues

7.1 The first reconstruction formula

We consider the analytic continuation of eigenvalues A, of Tr. It is given by
1 o0

Mz) = ——— ~3s*F(s)d
(2) Tt 1)/0 e °s*F(s)ds,
where I'(z) is Euler Gamma function. We have A(m) = A, by Theorem 2.

Theorem 5([21])
F(s) = el AM2)T(z + 1)s%dz.

$ 2T Jo—ino



1 > ~
(Proof) Integral representation A(z) = EF) /0 e *sF(s)s* 1ds,

means that A\(2)I'(z + 1) is Mellin transform of e~*sF(s).
Hence we obtain above formula by inverse Mellin transform.

7.2 The second reconstruction formula

For eigenvalues {\,,} of anti - Wick(Toeplitz) operator Tr, we put

Aw) = Z Apw™.

m=0
A(w) is generating function (of eigenvalues) of anti - Wick(Toeplitz)
operator Tr. In signal analysis A(w) is called z - transform instead of
generating function. In what follows we assume that F'(p, q) is integrable
and polyradial function.
Proposition 5([23]) Suppose that A, are eigenvalues of Tp. Then we
have

(i) 3IC>0st. |Ap| < ——=

\/_ (m e N").
(i1) A(w) is holomorphic in H__l{w e C": |ws| < 1}

(i) Aw) = / / [T e 0 sy, ).
0 0 =

(iv) A(w) is holomorphic in Hr'l_l {w € C": Re(w;) < 1}
and bounded in its closure. B

(v) A(w) € Co(R™), (v € R™). i.e. A(iv) € C(R™) and limjyj—0 A(3v) = 0.

(Proof) Without loss of genelarity, we can assume that n = 1.
(i) By Theorem 2, \,, = % /000 e *F(s)s™ds.

Since e~ sm < e ™m™, we have

Al € e~ / \F(s)|ds.

By Stlrllng s formula m! ~ v/2rme"™m™, for sufficiently large m,
[Am] < Cﬁ valids.

(iii) Z)\mw Z m'/ e‘ssmF

m=0

65
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/:o e *F(s) i —(—%ﬁds = /Ooo e~V F(s)ds.

m=0

(iv) For Re(w) < 1, we have
Aw)| < / 0| F(s)|ds < [|F|zs.

(v) Since A(iv) is Fourier transform of L' function e=*F(s), it is in
Co(R™) by Riemann - Lebesgue theorem.

Theorem 6([21])

~ +w .

F(s) = (27r)_les/ e " A(iv)dv,
valids in distribution sense.
(Proof) For the simplicity, we put n = 1.

By (iii) in Proposition 5, we have
(o.9] (o]

A(v) =/ e F(s)ds =/ e~ F(s)ds, (v€ER).

This mear?s that A(iv) is the imgarse Fourier transform of integrable
function e*F(s). Since A(v) is continuous bounded function, A(iv) is
tempered distribution. Hence as tempered distribution we have

F(s) = e*F(A(iv))(s).

Example([24]) F(w, ) =e% ™" (0<a<1).

An =a™ Az) =a*,  Adw) g

1—aw’

7.3 Conclusion

1.  Daubechies operator in Bargmann - Fock space B o Pr o B~ is anti -
Wick(Toeplitz) operator.

2. Applying the results of the eigenvalue problem of anti -
Wick(Toeplitz) operator in Bargmann - Fock space, we can derive
Daubechies’ results more easily.

3. For anti - Wick operator T with polyradial symbols, we can
reconstruct polyradial symbol function F(w, @) from eigenvalues of Tr.

Remark For the details of our study, we refer the reader to [21], [22],
[23], [24], [25], [26], [27], [28].
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