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On derivation of incompressible fluid
systems with heat equation'

Hajime Koba?
Graduate School of Engineering Science, Osaka University3

1 Introduction

We are interested in a mathematical model of a soap bubble in air:

Air lGraVity Air lGraVity
— , i Wind
Wind| ____ Air
Soap bubble [ ’
\—AII' Soap bubble

Surface flow and surface tension play an important role in a soap bubble in air. The
flow is often called surface flow. One can consider surface flow as fluid flow on an evolving
or moving surface. An evolving surface means that the surface is moving or the shape of
the surface is changing along with the time. Soap bubble is soft matter, so fluid-flow in
the bubble is affected by the temperature of the fluid. Therefore we have to consider the
fluid with heat effect on an evolving surface. This paper focuses on fluid flow on a bubble.
Especially, we consider the incompressible fluid on an evolving surface. In this paper we
report two incompressible fluid systems with heat equation on an evolving surface, which
derived by an energetic variational approach. Moreover, we study fundamental properties
of some operators on surfaces. The argument in the Appendix (I) in Koba, etc [8] is not

right, so Section 7 gives its.explanation and correction.
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The outline of the paper is as follows: In Section 2, we introduce two fluid systems on
a manifold derived by Arnold [2] and Taylor [13]. In Section 3, we introduce two incom-
pressible fluid systems on an evolving surface, which derived by our energetic variational
approaches. In Section 4, we state historical results on surface flow and some papers
related to this paper. In Section 5, we study fundamental properties of some operators
on surfaces. In Section 6, we introduce several Laplace operators on surfaces. In Section
7, we study the viscous term of our systems.

2 Known Results(Incompressible fluid systems on a manifold)

Let us now introduce Arnold’s system and Taylor’s system on a manifold. Let M be a
. 2-dimensional closed Riemannian manifold, and let u > 0 be the viscosity coefficients of
the fluid on M. Let u be the velocity of the fluid on M, and let p be a pressure associated
with u. Assume that v is a 1-form on M and that p is a function on M.

Arnold [2] applied the Lie group of diffeomorphisms to derive the following inviscid
incompressible fluid system on a manifold M:

Owu + Vyu + gradyp =0,
Emy .
divpu = 0.
Here V,u is covariant derivative along with the velocity u and grad,, is gradient operator
on M.
Taylor [13] introduced the following viscous incompressible fluid system, derived from
- their physical sense, on a manifold M:

O + Vyu + grad yp = u(Apmu + Ku),
(NS)pc .
divapqu = 0.

Mitsumatsu and Yano [9] also derived the system (NS)xs by using their energetic vari-
ational approach. Arnaudon and Cruzeiro [1] applied stochastic variational approach to
derive the system (NS)aq. Here A, is the Borhner-Laplacian, K is the Gaussian curva-
ture (the Ricci curvature), and div g is divergence operator on M.

3 Main Results(Incompressible fluid systems on surface)

Let us state our main results. Let I'(¢) be a surface in R?® depending on time ¢ € [0,T’)
for some T € (0,00]. Let w = w(z,t) = ¥(w1, wq, w3) be the motion velocity of I'(¢).
Let u = u(z,t) = *(uy,us, u3) be a relative velocity on I'(t). The velocity v = v(z,t) =
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" Y(vy,v2,v3) :=u+w is called a total velocity of the fluid on I'(t). The symbol ¢ = o(z,t)
denotes a total pressure or a pressure associated withv. Let p = p(z,t), 0(z,t), p = u(z,t),
and k = k(z,t) be the density, temperature, viscosity coefficient, and thermal coefficient
of the fluid on I'(t), respectively. We assume that ['(t) is a 2-dimensional closed manifold
for each fixed ¢t € [0,T) and that

Hyp(n - w)dH2 =0,
(t)
where Hp = Hp(z,t) is the mean curvature and n = n(z,t) = ¥(n;, ng,n3) is the unit
outer normal vector at z € T'(¢).
Applying energetic variational approaches similar to those in Koba-Liu-Giga [8] and
Koba [7], we can derive the two incompressible fluid system with heat equation:

(D=0 on Sr,
divrv =0 on Sr, (3.1)
pDw + gradpo + o Hpn = dive{2uDr(v)} + pF  on Sr,
\tho = —dinqo on ST,
(DFp=0 on Sr,
di =0 ,
) ivpy on St (3.2)
PrpDfv + gradro = Prdivp{2uDr(v)} + PrpF  on Sr,
| pDF6 = —divrgy on Sz,

where Sy = Uy,er{I'(t) X {t}}. Here D, is material derivative, divr is surface divergence,
gradp. is surface gradient, Dr(v) is a projected strain rate, F' = {(Fy, Fy, F3) is the exterior
force or gravity, gs is the heat flux defined by gp = —xgradpf, DI is surface material
derivative, and Pr is an orthogonal projection to a tangent space. See Sections 5-7 for
some operators on surfaces.

Note that the tangential incompressible fluid system (3.2) is different from Taylor’s
system (N.S)a when v - n # 0. See Section 7 for the case when v -n = 0.

Now we investigate some energies of the system (3.1), Multiplying (3.1) by v, and then
integration by parts on the surface, we check that for 0 < s <t < T,

. t
/ Lol dH2 + / / 20 Dr(v)? dH2dr
r) 2 s Jr(r)

1 . ¢
= / Eplvlz dH? +/ / pF -v dH2dr.
I'(s) s JI(7)

We call p|v|?/2 the kinetic energy, u|Dr(v)|? the energy dissipation due to the viscosity,
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and pF - v the work done by F. In [7] and [8], they used such energy densities to derive
their fluid systems.

4 Note(Surface Flow and Fluid-Flow on Evolving Surfaces)

Let us introduce some historical results on surface flow. Boussinesq [4] first considered
the existence of fluid-flow on a surface. Scriven [10] introduced their surface stress tensor,
which is called the the Boussinesg-Scriven law. Slattery [11] studied some properties of
the stress tensor determined by the Boussinesq-Scriven law. After that many‘ researchers
have studied surface flow, interface flow, and two-phase flow with surface viscosity and
surface tension. See Slattery-Sagis-Oh [12] for details.

Next we state some papers on fluid systems on an evolving surface. Dzuik and Elliott [5]
made use of the transport theorem on an evolving surface and their surface flux to make
several fluid systems on the evolving surface. Bothe-Priiss [3] applied the Boussinesg-
Scriven law to make a two-phase flow system with surface viscosity and surface tension.
Koba-Giga-Liu [8] used their energetic variational approach to derive incompressible fluid
systems on an evolving surface. Koba [7] applied their energetic variational approach and
the first and second laws of thermodynamics to derive their compressible fluid systems
on an evolving surface. Note that, in [7] and [8], they did not use the Boussinesq-Scriven
law directly in order to derive their fluid systems on an evolving surface. ‘

The paper [7] gave a mathematical justification of the Boussinesq-Scriven law from an
energetic point of view. However, there exist other possibilities for surface stress tensor,
for example, third viscosity problem. ‘

5 Fundamental Properties of Several Operators on Surfaces

We study fundamental properties of several operators on surfaces. We first introduce
some notation. Let T'(t)(= {['(¢)}o<i<r) be a smooth evolving 2-dimensional surface in
R3. By n = n(z,t) = *(n1, ng,n3) we mean the unit outer normal vector at z € I'(¢). Let
Pr be an orthogonal projection to a tangent space defined by

1-— niny —N1N2 —ning
P = Pr(l', t) =3 —n®n= —ngny 1 —mngny  —npng = (5ij - ninj)3x3~
—ngn —ngng 1—ngng



Let g = g(z,t) be a smooth function. For-each j =1,2,3,
dg

8jg = 5-:;]-,
3
8317g = ng — nj(nlalg + ngdeg + n383g) =

=1

Z(&, — ninj)aig.

We call the operator 9} a differential operator on the surface I'(t). Moreover, we define

V= t(al,a%aS),

Vr = t(afaa'g’ag)v
A:=08+085+03,

Ar = (9])* + (83)* + (85)>

Next we introduce gradient, divergence, and curl operators. For smooth functions f =

f(zv t) = t(fly‘f% f3)7 g= g(za t), and F = F(.’E, t) = (Ej)3x3:

Ovg
829 ’
Osg

03 f1
032
03 f3

gradg = Vg = gradrg :== Vrpg =

Ofi Oafs
Oifa O2f2
Ofs Oafs

gradf = Vf = . gradpf = Vpf =

divf:=V - f=0,fi+0sf2 + Osfs,

a9
g,
%9

(005 Ofi O

ONfr 05fr %S|,
Ofs O5fs O5fs

divef :=Vr- f =8 fi + 85 fo + 0L f3,

OTFyy + 85 Fiy + 0L Fis

01F11 + 0o F19 + O3 F13
divF = | 01Fy + OoFpy + 03 F93 |, divpF = 6{F21 + 6£F22 + 8§F23 s
O1F31 + 02 F33 + 03 F33 O F31 + 05 Fsy + 0% Fi3
02f3 — O3 fa OF f2 — 0% f
curlf =V X f=|0sfi—01fs|, cutlpf:=Vpxf=|fi—06Ifs
O1fa — O fi O fa— 05 f1

We call grady. a surface gradient, divr a surface divergent, and curly a surface curl oper-
ators. Note that in general divpF - n 5 0 and curlf - n # 0. It is easy to check that

div(gradg) = Ag, div(gradf) = Af,

div(*(gradf)) = grad(divf),

curl(curlf) = —Af + div(*(gradf)) = —Af + grad(divf),

divr(gradrg) = Arg, divr(gradpf) = Arf,
curlp(curlr f) = —Arf + dive(*(gradr.f)).

134
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Remark that, in general, if ¢ # j then
ororg # 6,0k g.
Remark that the mean curvature Hr = Hr(z,t) is defined by
Hr = —divpn = —(8fny + 85ny + 05 ng) = —(01ny + Oang + Ban3).
Now we define some strain rate tensors. For smooth functions f = f(z,t) = *(f1, f2, f3),

- 20if1 Odfi+01fa O3fr+01fs
O1f2+ 02 f1 20 fa Osfa+0afs |,
O1fs +03fy Oaofs+ O3fa 203 f3

N~

D(f) = D¥(f) = 5{(VH) + (V) =

1 20 f1 Rfi+0fs 5fi+0lfs
Dr(f)=Df = 5{(Vr‘f) +YVrf)} = 3 Nfot+ oL f1 2065 f2 Afa+dfs],
Ofs+5f1 O5fs+05f2 205 f3

Dr(f) = DE(f) = 5{(BVef) +(FrVr)}.
We call D(f) a strain rate tensor, Dp(f) a tangential strain rate tensor, and Dr(f) a
projected strain rate tensor. See [12] for surface strain rate tensors. Note that
N fr—m(n-0(f) 5 fi—n(n-05f) fi—n(n-05f)
PrVrf = |01 fo—na(n-01f) 05fo—na(n-03f) 05fo—mna(n-05f)
O fs —na(n-01f) 05 fs—ns(n-05f) 05fs—ms(n-05f)
Moreover, ’
1 1 0 Ofi—0f: O3fi—0ifs
D™ (f) = 5{(Vf)-—t(Vf)}= 2 Orfa— G fa 0 Osfa—02fs |
O1fs —03f1 Oafs — Osf2 0

1 1 0 B fi—0Lfa Vagfl—aff:i
Dr = o{(Vef) - (Vrf)} = s|0h-0h 0 %f—03fs ],
ONfs—05fr O5fs—a5fe 0

DE(f) = 3{(AVe) ~(RVie)}
It is clear that
curl - curlf = 2D~ (f) : D~(f),
curlp f - curlp f = 2D5(f) : DR (f).

Here f - f = fifi+ fofa + fafs and M : M =3} | M2, where M = (Mj;)3xs.
Let us now study some operators on surfaces.
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Lemma 5.1 (Funda.rhental properties of Pr, Vr, Dr, and Dr).
Let f = f(z,t) = *(f1, fa, f3), 9 = 9(x,t), and F = F(x,t) = (Fi;)3x3 be smooth functions.
Then

Pen = 4(0,0,0), (5.1)

Pt =Py, (5.2)
Pr(Vg) = Vrg, (5.3)
n-(Vrg) =0, (5.4)
YPrF)n = t(O, 0,0), (5.5)
(Prf) = (5.6)
f= Prf +(f - m)n, (5.7

Dr(f) = PrD(f)Pr = PeDr(f) Fr, (5.8)
D (f) = PeD™(f)Pr = BDp (f) Fr. (5.9)

Proof of Lemma 5.1.

We first prove (5.1) and (5.2). Since n? + n3 + nZ = 1, we observe that

1-— niny —NniNno —ning n1
Pp'l’l/ = —TeNy 1- NoNg —TMN3 o
—ngang —ngny 1 —ngng N3

ny — ny(n? +n? +nl)
= | na — ny(n? + n + nl)
ns — ng(n? + n} + nl)
0
=10
0




We also see that
1-—- ning —MN1MNg —ning 1- niny —N1N9 —ning \
Pi=| —ngny 1—mnony —ngng | mena 1—mnamy —ngng
~T3N —T3Ng 1-— ngng ( —nN3gni —nNgng 1- n3n3}
N2 4 2,2 4 22 2 024 2 24 2 2
(1 —n2)?+ning +nind nmne(nf+n3+n5—2) ninz(ni +ns+nj — 2)\
= [ nom(n}+nf+nf—2) nini+(1—nd)*+nini nons(nf+nj+nj-2)
ngni(n? +n3+n2—2) mngne(n?+ni+ni—2) ninl+nind+(1- n§)2}

1- nn —MN1Na —niNng
= —Nao 1 —ngng —MNaNg = P[‘.
—Tgn, —Ti37N9 1-— n3ng
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Secondly, we show (5.3) and (5.4). Let g = g(z,t) be a smooth function. By definition,

we check that

1—-mn  —mny  —mng o019
Pr(Vg)=| —neny 1—mngny —ngng Oag
—N3ny —nzng 1 —ngng 0sg

019 — n1(n101g + n2029 + n3039)
= | 029 — n2(n1019 + 2029 + n30sg)
(039 — n3(n1019 + n202g + n303g)
oig

= |d5g | =Vrg.

059

We also check that
3

n - (Vrg) = n1d1g + n1dag +nsdsg — Y _(n} +nj +n)n;0;9 = 0.

j=1
Thirdly, we derive (5.5). Let F' = F(z,t) = (Fj;)3x3 be a smooth function. Since
, Fu— Y, mnFn Fo =35 mnFy Fig— 35 mnF
PF=|Fy— Egzl non;Fj1  Fpo — E;Ll non;Fjo  Fog — E?Zl nan;Fs |,
Fy — Z;Ll ngn;Fj  Faz — Zle nan; Fjo Fiyz — E:J;l ngn; Fj3
if follows from the fact n? + n2 + n = 1 that

[P+ ngFy 4 ngFa — 30 (n} +n3 + nd)n; Fi 0
HPrF)n = n1F1 + noFy + ngFyp — E?=1(n§ +nd+ndn;Fye { = | 0
0

n1Fi3 + ngFog + ngFas — 23:1("'21) +nj +n3)n; Fi
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Fourthly, we deduce (5.6) and (5.7). Let f = f(z,t) = *(f1, f2, f3) be a smooth function.

By the argument similar to derive (5.4) and (5.5), we see that

fl Z]—l nln]f] LG}
(Prf) m=|fa— ZJ_ nan; f; ny
f3— EJ_. nan; f n3

3
=nifi +nefo+nsfs — Z("ﬁ + 13 +n3)n; f; = 0.
j=1

By definition, we check that

1-mny . —nny  —nyna fr ny
Prf+(f-nn=| —nagny 1—nony —naong fol + (fin1 + fang + fanz) | ny
—ngny  —Nang 1 —mnzng fa n3
1—nny  —nng  —nyng f mny nng nang\ [ fi
=| —nony 1—mngny, —ngng fo| + | nama mang ngns | | fo
—n3n, —nzny 1 —mnan; f3 N3Ny N3Ny N3Ng f3
fi
=|f|=7r
f3

Finally, we attack (5.8) and (5.9). Let f = f(=,t) = ¥(f1, f2, f3) be a smooth function. A
direct calculation gives

Orfi—ni(n-0vf) Oyfy —mu(n-0:f) Osfi—nai(n-0sf)
PVf Oifa—ne(n-01f) Oofa —mna(n-05f) Osfo—ne(n-dsf)
01fs —n3(n-01f) Oofs —ns(n-0yf) Osfs —mnz(n-dsf)

K fa—na(n-0Lf) Kfa—na(n-05f) 85 fs—mna(n-05f)

O fr—n(n-0{f) 0 fi—m(n-85f) fi—m(n-05f)
PrVrf
O fs—na(n-01f) 05fs—ns(n-05f) 0 fs—mns(n-065f)

Ofi—mn-01f) 05fi—mn-05f) 95 fr—ni(n-3f)
Po(Vf)Pr=| 0] fa—na(n-8]f) 85fa—ma(n-05f) O5fo—ma(n-065f)
a{fa—nz(n'aff) 3§f3—n3(n'3§f) arfg,—n;;(n aFf)

and

Pr(Vrf)Pr = (5“2—”2(”'3”) Oy fr—na(n- 05 f) 05 fr—na(n-05f)

O fr—m(n-0Lf) 5 fr—mi(n-0Lf) agfl—nl(n-agﬁ)
O fs—n3(n-0Tf) OLfs—n3(n-05f) O5fs—mna(n-65f)
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Here we used the fact that n,0] g + 17205 g + n30L g = 0. Therefore we find that
Pr(Vf)Pr = Pr(Vrf)Pr = PrVrf.

Since Pr is a symmetric matrix, we observe that
{

2PrD(v) P = Fr(V)Pe + Be({(V ) Pr = Be(V)Pr + {(Be(V ) )
= Po(Vef)Pr + Y(Po(Vrf)Pr)
= 2P Dr(f)Pr.

Similarly, we check that

2PDr(f)Pr = Pr(Vrf)Pr +(Po(Vref)Pr)
= BrVrf + {(PrVrf) = 2Dr(f).

In the same manner, we see that
PrD™(f)Pr = D5 (f)Pr = Dr (f).

Therefore the lemma follows. O

6 Laplace Operators on Surfaces

We introduce several Laplace operators on surfaces. Let I'(t)(= {['(£)}o<t<r) be a
smooth evolving 2-dimensional surface in R3.

Lemma 6.1. Suppose that I'(t) is a closed surface. Assume that for every smooth func-
tions f = f(.’E,t) = t(flv f27 f3) and Y= (,0(23, t) = t(()ola ©2, ()03);

/ (Vrf) : (Vryp) dHZ = / Arf - dH2,
I(t) I(t)

(PeVef) : (PeVirg) dH2 = / Aof - dH2,
I'(¢) I'(t)

2 [ Dr(f)iDu(e) arE = [ af-p ar
@) I'(t)

2 Dr(f) : Dr(p) dH2 = Af - dH3,

r'@) (s

2/()D5(f) D(p) dHE= [ Asfp dH2.
I'(t

@)
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Then

A f = —dive{Vrf} = —Arf,
Ay f = —dive{PrVr f},
Asf = —divp{2Dr(f)} = —dive{(Vrf) + (Ve f)}
Ayf = —dive{2Dr(f)} = —dive{(P-Vrf) + (P Vi f)},
Asf = —dive{2D7(f)} = —dive{(Vrf) — (P Ve )}
Assume in addition that ¢ -n = 0. Then

A f = —Ppdive{Vrf},

Asf = —Prdive{ PVrf},

Asf = —Prdive{2Dr(f)},

Asf = —Ppdive{2Dr(f)},

Asf = —Prdive{(Vrf) — {(PoVrf)}.

Proof of Lemma 6.1. Using integration by parts on the surface and the fact
that Z;Ll n;0; g = 0, we prove Lemma 6.1. See [7] for details. O

7 On the viscous terms of our systems

We consider the viscous term of incompressible fluid systems (3.1) and (3.2). Let ['(¢)(=
{T'(t)}o<t<T) be a smooth evolving 2-dimensional closed surface in R3. Applying Lemma
6.1, we can derive the viscous term of our systems. In fact, the following proposition hold:

Proposition 7.1. Let u> 0 and 0 <t < T. For smooth function f = *(f1, f2, f3), Set
Eolfl(t) = | PR
t .

Then for every smooth function ¢ = (1, 2, p3) € C(L(t)),

de

OED[U +epl(t) = — /F(t) divr{2uDr(v)} - ¢ dH2.

e=l
Moreover, the two assertions hold:
(i) Assume that for every ¢ = (1, P2, p3) € CP(T'(t)) satisfying divpe = 0,

de

Then there is a function o such that

Eplv +ey](t) = 0.

e=0

divp{2pDr(v)} = gradro + o Hn.
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(ii) Assume that for every @ = (i1, 2, v3) € C°(T(t)) satisfying divre = 0 and p-n =0,

d
e €=0ED[v +epl(t) = 0.

Then there is a function o such that

Prdivr{2uDr(v)} = gradyo.

See [8] for the proof of Proposition 7.1.
From Proposition 7.1, we have

0Ep

e = divp{2uDr(v)} — gradro — o Hn,

divpv=0

= Prdivr{2uDr(v)} — gradro.

divpv=0, v-n=0

$Ep
ov

Therefore we obtain the viscous term and pressure term of our systems. Note that we
do not use the Boussinesg-Scriven law directly in order to derive the viscous term of our

fluid systems on an evolving surface.

The Appendix (I) in [8] showed that Prdivr{2Dr(v)} # PrArv + PrKrv, where Kr is
the Gaussian curvature. Now we study the case when we can use another Laplace operator
Ar to show that Prdivr{2Dr(v)} = Ppﬁpv + PrKrv. Now we explain the argument.

From the previous sections, we find that

2Dr(v) = Pr((Vo) + 4 (V0))Pp = Ly + Ly + Ls + La,
2D (v) = Pr((Vv) — t(V'U))Pp =ILy—Ly+ L3 — Ly,
PrVv = Ly + L,
Y(PrVrv) = Ly + Ly,
where
8{1}1 85111 3{’01
L1 = V["U = 8{1)2 (92Pv2 8{1}2
3{"03 (951)3 6§v3
val (9{"02 6{"03 )
L2 = t(Ll) = 85’01 8%"02 6{’03 y
8§v1 (9{1}2 3{1;3
—ny(n-8v) —ny(n-0v) —ni(n-6v)
1 2 3
—ng(n-85v) —ny(n-085v) —no(n-8kv) |,
1 2 3
—nz(n-0fv) —ng(n-05v) —ns(n-dv)

Ls
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—ny(n-0fv) —ng(n-8fv) —ng(n-dv)

Ly="%Ls) = [ —ny(n-v) —ny(n-05v) —na(n-0kv)

—mi(n-05v) —ng(n-05v) —ns(n-O5v)

A direct calculation gives -
Arv;

dinLl = AF'U2 = A["U,
Arvs

(6{)2’01 + 6;6{’02 + 6{6{113
divpL, = 8{8{’01 + (85)2’02 + 8565’03 i
O v + 0505 vz + (05)s
22 1 ] Fny(n - djv) —m Zj.’:l(a{n - 8jv) —ny(n - Arv)
divpL; = Z] X J Ana(n - 8 v) —ny ijl(éfn - Ofv) —mny(n - Arv) |,
— 310 ng(n - Fv) — ng 35, (85 n - OFv) — ng(n - Arv)
—(0fn1 + 05ng + O5n3)(n - 0] v)
divrLs = | —(8¥ny + 85 ng + 05 n3)(n - 85v)
—(0Tny + 05ny + B nz)(n - Byv)
It is easy to check that ,
0% (divpw) + (85T vy — OFwp) + (OO vs — AT ws)
divpLy = | 65 (divrv) + (8T8 vy — 85 0¥ vy) + (05 B vz — 85 BLvs)
; 8;1; (din’U) + (8{651}1 Brafvl) (8§6§vz - a:l;a;'l)g)

Assume that v - n = 0. Since 9] (v - n) = 0, we have
—v-On=2=0{v-n. (7.1)
Using (7.1), we have

Z] 10,10 n-v) —my E] 1@ 'n - 8[v) — my(n < Arv)
divrLs = | 37, 0Fna(8Fn - v) — na ZF (Ofn - 8v) —na(n- Arv) |,
E?zl Bfng;((?fn -v) — g 2?:1 (0fn - 8v) — ng(n - Arv)

(6Fn1 + 0y + 85n3)(05n - v)
divpL, = ( n, + 0 JI’L2 + agng)(arn 'U)
( ni + arnz + 83 ns)(&fn ’U)
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Assume that divpv = 0. Using the following principal coordinates in [6]:

Olny = Oy = —ky,
Ong = diny =0,
Oiny = Oyny =0,
&fng = OhNg = —Kao,
n =%0,0,1),

K1+ ke = Hr,

K1k2 = Kr,

where Hr denotes the mean curvature and Kr the Gaussian curvature, we see that

(0F + 03)vr
PrdivpLy = | (82 + 8%)v, | = PrArv,
0
0
P]"diVl"L2 =10 )
0
K2,
PrdivrLs = | K3vq |,
0
(K1 + K2)K101
dein\L4 = (Iil + K/Q)K}QUQ
0
This implies that
—Kru;
deinL;), - Pr‘dinL4 = —-Krvz
0
Note that
100
P=|010]|, 6=0
000

Therefore we see that
Prdin{2DI_\(’U)} = PrArv — PrKrv

if v-n = 0 and divpv = 0. However, we do not have the information about PrdivyDr(v).
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Next we introduce another type type of differential operators on surface to study the
viscous term of our systems.
Definition 7.2 (Another type of differential operators on surfaces). For smooth function
f=ft,z)=tf, fo, f2) and 4,5,k = 1,2,3,
8 f =P} (Prf) = Pr(6] Pr)f + Pro) f,
8;fi =ex - (8f),
8.9, =8:8;f)
=Pr (0] Pr)(0] Pr)f + Pr(0L 8} Pr)f + Pr(0] Pr)df f + Pr(6} Pr)d; f + Prof o] f,
and )
B9, fx = ex - (B35 ).
Here e; = ¥(1,0,0), e; = (0, 1,0), and e3 = (0,0, 1).
Note that if v -n = 0 then-
Oifi+Bofo+ Bafs = N fi+ 82+ fs.
Lemma 7.3. Let f = f(t,z) =*(f1, f2, f3) be a smooth function. Assume that f-n=0.
Then PR A
(2291 _‘?\1?\2)f2 + (?\3?1 - Qlés)fs
((,9\1(22 - sz?})ﬁ + (2391 - 621?\3))03 = KrPrf = Krf.
(0103 — 0301) f1 + (0302 — 0203) fo
Proof. Let f = f(t,z) = *(f1, fa, f3) be a smooth function with Prf = f. Since
8:01f = Pr(9 Pr)(8F Pr) f + Pr(9L0F Pr) f + Pr(OF Pr)dk f + Pr(95 Pr)d f + ProL o} §,
818:f = Pr(OYPr) (85 ) f + Po(9YOL Pr) f + Pr(OL Pr)ok f + Pr(0Y Pr)0% f + Prof o} f,
we have
5.0,f - ] -
Pr{(85 Pr)(8; Pr)— (0] Pr) (85 Pr)}f + Pr{(85 0] Pr)— (8] 85 Pr)} f+Pr(8; 01 f — 9105 f).

Using the principal coordinates at the origin(see previous page), we observe that

8,01 f — 10of = Pr{(0F Pr)(8F Pr) — (O Pr) (05 Pr)} f

100 00 0 0 0 w 0 0 K1\ /0 0 O fi
=010{00n2000—000 0 0 kKo fa
000 0 ko 0/ \k1 0 O k1 0 0/ \0 Ky O f3)
100 0 00 0 wike 0\7 (A —K1Kaf
=|010 [ kKikg 0 OfF—10 0 O fo|l = ke |-
000 0 00 000)-f3 0 )



145

We also use the principal coordinates to see that

(=)

5351f—5153f = 8yBsf — Bedaf = | 0

(=4

By definition, we see that

(§251 3152)f2 + (3331 3163)f3 K1k f1
(010, — a231)]’1 + (3331 alas)fa = | kikaf2 | = Krf = KrPrf.
(3,05 — B30 f1 + (82D — BaB5) f 0

Note that in general for smooth function f = f(¢,z) = *(fi, fa, f3),
(0201~ 018 fo + (2301 — 0100 S\ ((650F — O£ ) fo + (950 — BT 65 s
(818, — 3,8)) fy + (BsBs — 82Bo) fs | # | (8F6L — GLN) fy + (350K — 50K fo
(0103 — 0301) f1 + (0203 — 0305) f (0705 — 0300) fr + (0505 — 8303) fa
Here we set for f = f(x,t) = '(f1, fo, f3),
divef = 81 f1 + Bofo + Bsfs,
Arf = ((61)* + (3:)* + (35)) .
Now we assume that v - n = 0. By definition, we see that

511)]- = 8{1)]- - nj(n - 8{’0).

Therefore we can write

51’01 52’01 53’1)1 51’01 51'02 51’03
2D[‘(U) = (L1 + L3) + (L2 + L4) = 81’02 (92’[)2 831)2 + 82’()1 62’02 92'03
O1v3 Oyvz O3 Osu; Osv; Osvs
Since
din{Ll + L3} = d/IV\p{Ll + Lg},
divr{Ls + L4} = divp{Ls + L4},
we have

Prdive{2Dr(v)} = PrArv + Pr | 85(divro) + (010, — 0201)v + (830, — 0205)vs
03(divrv) + (0103 — 0301)v1 + (0205 — 0302)vs
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Now we assume that d/iv\pv = 0. Note that divpv = (ﬁv\pv if v-n = 0. Applying Lemma
7.3, we find that
Prdin{ZDr(’U)} = PrArv + KrPro.

Therefore we conclude that if v-n = 0 and divrv = 0 then we can write the viscous term
of our system as Laplace operator + Gaussian term.
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