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QUASI-ALTERNATING LINKS AND POLYNOMIAL
INVARIANTS

MASAKAZU TERAGAITO

ABSTRACT. In this note, we survey several criteria for knots and
links to be quasi-alternating by using polynomial invariants such
as @Q-polynomials and Kauffman polynomials. Also, we mention
two new generalizations of quasi-alternating links.

1. INTRODUCTION

Alternating knots and links give a classical but remarkable class of
knots and links. The definition is described through diagrams, but it
is very recent that a characterization without involving diagrams was
found by Greene [8] and Howie [12] independently.

On the other hand, there are a lot of generalizations of alternating
knots and links in knot theory. Here is a list of adjectives, which is not

complete.
e almost alternating, m-almost alternating  (Adams et al. [1])
e toroidally alternating (Adams [2])
e adequate (Lickorish-Thistlethwaite [17])
e semi-alternating (Lickorish-Thistlethwaite [17])
e alternative (Kauffman [14])
e pseudo-alternating (Mayland-Murasugi [19])
e n-semi-alternating (Beltrami [3])
e algebraically alternating (Ozawa [20])
e quasi-alternating (Ozsvath-Szabo [21])

The objects of this note are quasi-alternating knots and links intro-
duced by Ozsvath and Szab6é in their Heegaard Floer homology theory.

Quasi-alternating links (abbreviated as QA links) are defined recur-
sively as follows.

(1) The unknot is QA.
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(2) If a link L has a diagram with QA-crossing, then L is QA.
Here, a QA-crossing is a crossing where two resolutions
Lo, Ly as illustrated in Figure 1 satisfy that
(a) both Ly, and Ly are QA, and
(b) det L = det Ly, + det Ly.

X)) (=
L L. L,

FIGURE 1. Two resolutions L., and Ly

For a link L, its determinant det L is a non-negative integer. We
should remark that if a link L is QA, then det L > 0. Also, Ozsvéth-
Szab6 [21] showed that any alternating knot and non-split alternating
link are QA.

Because of its recursive definition, it is not easy to identify whether
a given knot or link is QA or not.

Problem 1.1. Decide whether a given knot or link is QA or not.

Example 1.2. The knot 8,; is non-alternating, but QA. As illustrated
in Figure 2, the marked crossing in the first diagram is a QA-crossing.
For, each of two resolutions is alternating, so QA, and we have the
desired equality among their determinants.

There are several properties of QA links:

e The double branched cover is an L-space.

e The double branched cover bounds a negative-definite 4-manifold
W with Hy(W) = 0.

e Homologically thin (knot Floer, reduced Khovanov, and re-
duced odd Khovanov homologies are thin, i.e. supported on a
single diagonal.)

Here is a digression. Let K be the (—2)-twist knot, which is the knot
59 in the knot table. See Figure 3.

Since K is 2-bridge, its double branched cover is a lens space, which
is a typical L-space as its name suggests. Then, how about the 3-fold
cyclic branched cover? A direct approach is to calculate its Heegaard
Floer homology. As far as we know, there are some references [9, 16]
concerning Heegaard Floer homology of cyclic branched covers. Al-
though we do not deny this approach, it would be hard to execute.
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det=13

FIGURE 2. The knot 85 is QA.

2 N
/fg K —
DN A

3-fold cover of K

FIGURE 3. The 3-fold cyclic branched cover of the knot
59 is an L-space.

However, there is a detour. Since K is 2-bridge, it admits a cyclic pe-
riod of order two. The image of K under this cyclic action is denoted
by k in Figure 3. There, A is the image of the axis. We can see that
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the factor knot k is unknotted. Hence the 3-fold cyclic branched cover
of k remains to be the 3-sphere, and the lift of A gives the knot 9.
Thus, the 3-fold cyclic branched cover of the original knot K is home-
omorphic to the double branched cover of 949. In fact, 949 is QA, so
its double branched cover is an L-space. By the same technique, the
4- and 5-fold cyclic branched covers of K are shown to be L-spaces
without any calculation of Heegaard Floer homology [26, 11].

2. CRITERIA BY (Q-POLYNOMIAL

As mentioned before, it is not easy to determine whether a given knot
or link is QA or not, in general. However, Qazaqzeh and Chbili [22]
found a very simple criterion for QA links in terms of @-polynomials.

Theorem 2.1 ([22]). If a link L is QA, then
deg @ < det L — 1,
where deg Qy, is the mazimal degree of the Q-polynomial Qr of L.

We recall the definition of Q-polynomials [4, 10]. Let L be an un-
oriented link. Then its @-polynomial Qr(z) is a Laurent polynomial
satisfying the following.

(1) Qu = 1, where U is the unknot.
(2) Qu, + QL = :c(QLm + Qr,) holds for the skein quadruple
(Ly,L_, Ly, Lo) as illustrated in Figure 4.

AKX )=

L, L. L, Lo

FIGURE 4. The skein quadruple

For knots, their Q-polynomials have no negative powers of .

Example 2.2. Let K be the knot 8;9, which is non-alternating. In
fact, K is the (3,4)-torus knot. Then deg@Qxg = 7 and det K = 3.
Hence K is not QA by Theorem 2.1.

The key of the argument of Qazaqzeh and Chbili [22] is the next
observation.

Lemma 2.3. Let L be a link, and let Lo and Lo, be two resolutions at
some crossing of a diagram of L. Then

deg Q1 < max{deg Qr,,degQr..} + 1.
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Proof of Theorem 2.1. It is an induction on determinant. Let L be a
QA link. If det L = 1, then L is the unknot. Hence Q; = 1, so the
inequality deg @1 < det L — 1 holds.

Suppose det L > 1. Let Lo and L., be two resolutions at a QA-
crossing of L. Thus these are QA, and det L, < det L for x € {0, c0}.
By Lemma 2.3,

degQr < max{degQr,,degQr,.} +1
- < max{det Lg,det Lo } + 1
< detLy+det Lo, = det L.

O

In [24], we gave an improvement of the criterion (Theorem 2.1) of
Qazaqzeh and Chbili.

Theorem 2.4 ([24]). If a link L is QA, then one of the following holds.
(1) L is a (2,n)-torus link (n # 0) and deg@p = det L — 1; or
(2) degQr < det L — 2.

Example 2.5. Here are two examples which show that the evaluation
of Theorem 2.4(2) is optimal.

(1) Let K be the figure-eight knot. It is alternating, so QA, and
degQx = 3, det K = 5.

(2) Let L be the connected sum of two Hopf links. Since L is non-
split alternating, it is QA. And degQr = 2, det L = 4. '

Example 2.6. Each of non-alternating knots 12,0025, 12,0093, 12n0115,
12n0138, 12n0199, 12n0355, 12n0374 has degQ = 10, det = 11. None of
these is QA by our criterion (Theorem 2.4). This cannot be deduced
by Theorem 2.1. :

" Here is a brief sketch of the proof of Theorem 2.4. The proof uses
an induction on determinant. Let L be a non-trivial QA link. Then
- the resolution at a QA crossing gives two QA links L., and Ly. The
argument is split into three cases.
(1) Neither Lo, nor Lg is a (2,n)-torus link. By the inductive hy-
pothesis, deg @, < det L, — 2 for x € {00,0}. Then,

degQ; < max{degQr.,degQr,}+1
degQr. +1  ({@, B} = {o0,0})

< (detL,—2)+1
= (det L —det Lg) —1
< detL -—2.
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(2) The case where one of Ly, Lo is a (2,n)-torus link is also easy.
(3) If both are (2, *)-torus links, then we need another argument
involving Dehn surgery. See [24].

3. CRITERIA BY KAUFFMAN POLYNOMIAL

The previous argument in Section 2 works for Kauffman polynomial,
which is a two-variable generalization of Q-polynomial [13].

Theorem 3.1. For a QA link L, either
(1) L is a (2,n)-torus link (n #0), and deg, F, =det L — 1; or
(2) deg, F, < det L — 2.

For a diagram D of an oriented link L, Ap(a,z) is defined with
forgetting its orientation as follows:
(1) Ap is a regular isotopy invariant;
(2) For the unknot diagram without crossing U, Ay = 1,
(3) A.L+ + A= Z(AL°O + AL0)§
(4) Ab’ =a A\/ AB = a'lAV

If D has writhe w, then the Kauffman polynomial of L is defined as
Fi(a,z) = a ¥Ap(a,2).

Since F1(1,2) = Qr(z), we have deg @, < deg, Fr, where deg, FJ, is
the maximal degree of variable z.

For alternating ones among QA links, a classical fact by R. Crowell
[6] implies the following.

Theorem 3.2. For a non-split alternating link L, either
(1) L is a (2,n)-torus link (n # 0), and deg, F, = det L — 1;
(2) L is the figure-eight knot or Hopf link # Hopf link, and deg, Fj, =
det L — 2; or
(3) deg, Fy, < det L — 3.

For non-alternating QA links, we have the following.

Theorem 3.3 ([25]). For non-alternating QA link L, either
(1) deg, Fr, < det L — 3; or
(2) L has exactly 3 components, each of which is unknotted. More-
over, L is obtained from the Hopf link by a banding on one
component.

We expect that the second possibility of Theorem 3.3 would not hap-
pen, but we could not erase it. As an immediate corollary of Theorem
3.3, we have the following criterion for non-alternating QA knots.
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Cdrollary 3.4. For a non-alternating QA knot K, we have
deg Qx < deg, Fx < det K — 3.

Example 3.5. The evaluation of Corollary 3.4 is sharp. Let K be
the (—3,2,n)-pretzel knot, n > 3 odd. This knot has the following
properties.

e K is non-alternating QA.

e det K =n+6.

o deg Qg = deg, Fx =n+3.

Example 3.6. Let K = 9,4, which is the (-3, 3, 3)-pretzel knot. Then
it satisfies:

e Kis non-alternatmg.

e det K = 9.

o degQx =deg, Fx =7.
Hence, K is not QA by Corollary 3.4. This fact was known by its thick
Khovanov homology (see [5, page 2456]).

Finally, we propose a problem on the a-span, denoted by span,Fy,
of the Kauffman polynomial Fy(a,z) for QA link L. If L is non-split
alternating, then span, F7, is equal to its crossing number by [27]. Hence
the inequality span,F;, < det L holds. We expect that this would hold
for QA links.

Problem 3.7. Let L be a QA link.
(1) Show that span, Fy, < det L.
(2) Show that span,F; < spanVy < det L, where VJ, is the Jones
polynomial of L.

These are verified for all QA knots up to 11 crossings. The second
inequality spanV}, < det L of Problem 3.7(2) is mentioned in [22].

4. ()-POLYNOMIAL VERSUS KAUFFMAN POLYNOMIAL

It is possible that deg Q1 < deg, F1. Hence there is a chance that the
criterion (Theorem 3.3) by the Kauffman polynomial is strictly stronger
than one (Theorem 2.4) by the Q-polynomial. The next shows that it
can happen

Theorem 4.1. There exist infinitely many hyperbolic knots and links
L, such that

(1) L, is not QA;

(2) deg @y, = det L, — 4; and

(3) deg, Fr, = det Ly,.
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FIGURE 5. The link L,

In fact, it can be shown ([25]):
e L, is a knot if n is odd, has two components if n is even.
e det L, = n+ 10.
e degQr, =n+6(n>3).
edeg, F;, =n+10 (n>1).
Thus L, is detected to be non-QA by Theorem 3.3, but not by
Theorem 2.4.

5. QA LINKS WITH SMALL DETERMINANT

Greene [7] conjectures that there are only finitely many QA links
with a given determinant. He determined all QA knots and links with
determinant < 3 as shown in Table 1.

det | quasi-alternating knot/link

1 unknot
2 Hopf link
3 trefoil

TABLE 1. QA links with determinant < 3

We proved in [24, 25] the followings.

Theorem 5.1. If L is a QA link with det L = 4, then L 1is the (2, +4)-
torus link, or L has 3 components, each of which is unknotted, and
deg, F1, < 2. ‘

Theorem 5.2. If L is a QA link with det L = 5, then L is either the
figure-eight knot or the (2, +5)-torus knot.
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After that, Lidman and Sivek [18] classified all QA links with det < 7
based on the determination of all formal L-spaces with order at most
7. ‘

Theorem 5.3 ([18]). QA links with det < 7 are 2-bridge or a connected
sum of 2-bridge links.

Thus all QA links with det < 7 are determined as in Table 2.

det quasi-alternating knot/link

unknot

Hopf link
trefoil
(2, £4)-torus link, Hopf  Hopf
(2, £5)-torus knot, figure-eight knot
(2, £6)-torus link, trefoil § Hopf link
(2, £7)-torus knot, 5,

N OO RN

TABLE 2. QA links with determinant < 7

Problem 5.4. (1) Solve Greene’s conjecture.
(2) Determine QA links with det = 8.

We remark that the pretzel link P(—3,2,2) is non-alternating QA
and det = 8.

6. WEAKLY QUASI-ALTERNATING LINKS

In the remaining two sections, we mention two recent generalizations
of QA links. The first one is weakly quasi-alternating links introduced
by D. Kriz and I. Kriz [15].

Weakly quasi-alternating links (abbreviated as WQA links) are de-
fined recursively as follows.

(1) The unknot and unlinks are WQA. ,
(2) If a link L has a diagram with WQA-crossing, then L is WQA.
Here, a WQA-crossing is a crossing where two resolutions
Lo, Ly satisfy
(a) both L, and Ly are WQA, and
(b) det'L = det L, + det L.

For a split link, its determinant is 0. Hence, any split link is WQA.
Thus we think that this class would be too wide.

Kriz-Kriz [15] showed:

Theorem 6.1 ([15]). (1) Any WQA link is BOS thin.
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(2) The double branched cover of a WQA knot is an L-space.

Baldwin-Ozsvath-Szabo6 cohomology Hgos is an 1nvar1ant of oriented
links. A link L is BOS thin if

rank Hyog(L) = {

For QA links, Greene conjectures that there are only finitely many
QA links with a given determinant, but the same thing does not hold
for WQA links.

Theorem 6.2. Let d > 0 be a multiple of 4 or a square (> 1). Then
there exist infinitely many WQA, non-QA links with det = d.

Example 6.3. The (-2, 2, n)-pretzel link P, has det = 4 for any inte-
ger n. For example, Py is Hopf link # Hopf link, P, is the (2,4)-torus
link. Also, deg @p, = |n| + 2. Hence P, is not QA if |n| > 2, but P, is
WQA as illustrated in Figure 6.

det L, ifi= U(L)/Q,
0, otherwise.

5 <00

“n2 00
Tn 00

Py =QA

FIGURE 6. WQA links P, with det =4

Although we do not give the proof of Theorem 6.2, the pretzel link
P(=l,l,m) (3 <1 < m) gives an example for a square determinant.
Let L = P(—1,1,m). Then det L = I?, and any crossing in the m-twist
strand is WQA. By [7], L is not QA.

Also, any Kanenobu knot is shown to be WQA. They have determi-
nant 25, and it is known that there are only finitely many QA Kanenobu
knots [22]

Question 6.4. Let 1 < d < 3. Is there a WQA, non-QA link with
det = d?
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7. TWO-FOLD QUASI-ALTERNATING LINKS

Scaduto and Stoffregen [23] introduced two-fold quasi-alternating
links. We will not give full details (see [23]). For a link, a marking
w assigns 0 or 1 to each component of L. The weight 1 is expressed as
one dot on the component. The total number of dots is required to be
even. After a resolution, the dots are carried in the natural way.

Two-fold quasi-alternating links (abbreviated as TQA links) are de-
fined recursively as follows.

(1) The unknot with trivial marking is TQA.

(2) A split union of two odd-marked links is TQA.

(3) Lis TQA if it has TQA crossing where two resolutions Lo, and
Lg satisfy
(a) both of L., and L, are TQA,
(b) det L = det Ly, + det Ly.

It is not hard to see that QA = TQA = WQA, in general. As a
typical example, Figure 7 shows that the non-QA knot 11,50 is TQA.
(Dots on the same component is counted mod 2.)

m
Q

T,
L m

/5

FIGURE 7. The non-QA knqt 11,50 is TQA.

It is shown in [23] that a TQA link is mod 2 Khovanov thin. Also,
the framed instanton homology of the double branched cover of a TQA
link is examined there.
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