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Abstract
We apply the shrinking projection method to the convex minimization prob-
lems on a complete geodesic space by using the notion of resolvents for convex
functions. We consider the calculation errors for metric projections onto the
closed convex sets, and obtain the upper bound of the error for the limit of
approximation sequence. We also discuss the choice of the coefficient of convex
combination used in the iterative process.

1 Introduction

In the fixed point theory, the approximation methods for fixed points is one of the
most important branches in the study of nonexpansive and other nonlinear mappings
as well as the existence of fixed points. We will focus on the shrinking projection
method, which was originally proved in 2008 by Takahashi, Takeuchi, and Kubota [3].

Theorem 1 (Takahashi, Takeuchi, and Kubota [3]). Let H be a real Hilbert space and
C a nonempty closed conver subset of H. Let T : C — C be a nonexpansive mapping
such that the set FixT of fized points of T is nonempty. Let {a,} be a sequence in
[0,1[ with ap = sup,eyan < 1. For a given point u € H, generate a sequence {T,}
by the following iterative scheme: z, € C, C, = C, and

Yn = QpTp + (l - an)Txm
Cn1={2€C:|lyn — 2|l < [lzn ~ 2]} N Cp,

T+l = PCn+1u



for n € N. Then, {z,} converges strongly to Prix7u € C, where Pk is the metric
projection of H onto a nonempty closed conver subset K of H.

We note that the original result deals with the family of nonexpansive mappings.

In this paper, we will apply this method to the convex minimization problems on
complete CAT(1) spaces by using the notion of resolvents for convex functions. The
concept of resolvent on complete CAT(1) spaces was recently proposed by Kimura and
Kohsaka [2]. We consider the calculation errors for metric projections onto the closed
convex sets, and obtain the upper bound of the error for the limit of approximation
sequence. We also discuss the choice of the coefficient of convex combination used in
the iterative process.

2 Preliminaries

Let X be a metric space. For z,y € X and | > 0, we call a mapping c: [0,]] = X a
geodesic with endpoints z,y if it satisfies that ¢(0) = z, ¢(l) = y, and d(c(t),c(s)) =
|t — s| for every t,s € [0,I]. If a geodesic exists for every z,y € X, X is called
a geodesic space. In what follows, we assume that a geodesic is always unique for
every choice endpoints. The image of a geodesic ¢ with endpoints z,y € X is called
a geodesic segment joining z and y, and we denote it by [z,y]. For z,y € X and
a € [0,1], we define z = az @ (1 — @)y as a unique point z € [z,y] such that

d(z,y) = ad(z,y), d(z,2) = (1 — a)d(z,y).

Let X be a geodesic space such that d(u,v) < /2 for all u,v € X. A geodesic
triangle for x,y,z € X is defined as A(z,y,2) = [y,2] U [z,z] U [z,y]. A CAT(1)
space is usually defined by using the notion of comparison triangle defined in the
model space having the curvature 1. For the details, see [1]. We remark that we may
characterize a geodesic space X to be a CAT(1) space by that the inequality

cosd(az @ (1 — a)y, z)sind(z,y)
> cosd(z, z) sin(ad(z,y)) + cos d(y, z) sin((1 — a)d(z,y))

holds for every z,y,z € X and a € [0, 1. In particular, since sintd(z,y) < tsind(z,y)
for ¢ € [0, 1], it holds that

cosd(az & (1 — a)y, z) > acosd(z,z) + (1 — &) cosd(y, z)

for any a € [0,1] and z,y, z in a CAT(1) space.

Let C be a nonempty closed convex subset of a complete CAT(1) space X such that
d(u,v) < w/2 for all u,v € X. For any z € X, there exists a unique y, € C such that
d(z,y,) = d(z,C) = infyec d(x,y). We define the metric projection Pc : X — C by
Pozx =y, for x € X.

Let X be a complete CAT(1) space and let f : X — ]—o0,400] be a proper lower
semicontinuous convex function. Then, for z € X, the function g, : X — ]—o00,+00]



defined by g.(y) = f(y) + tand(y, z) sin d(ys, ) has the unique minimizer. We define
a resolvent Jy : X — X by

Jgx = argmin g, (y) = argmin(f(y) + tand(y, z) sind(y, z))
yeX yeX

for z € X. It is known that the set Fix J; = {z € X : Jyz = 2} of fixed points of J
coincides with the set argmin, ¢y f(y) of minimizers of f on X. We also know that
the resolvent operator is firmly spherically nonspreading in the sense that

(cosd(Jyz,x) + cos d(J sy, y)) cos® d(Jsz, Jy) > 2cosd(Jz,y) cosd(z, J5y)
for all z,y € X. In particular, it is quasinonexpansive;
d(Jysz,z) < d(z,z)

for all z € X and z € FixJy. For a nonempty closed convex subset C C X, if f is
the indicator function i¢ of C defined by

. _Joo (z€0),
zC“”)“{o (c¢0)

then, J; is the metric projection onto C. For more details of the resolvent operators,
see [2].

3 Approximation of the minimizer of the function

In this section, we prove an approximation theorem to a solution to a convex mini-
mization problem for a convex function defined on a complete CAT(1) space.

Theorem 2. Let X be a complete CAT(1) space such that d(u,v) < n/2 for any
u,v € X and that a subset {z € X : d(v,2) < d(u, 2)} is convez for any u,v € X. Let
f:X —]—00,+00] be a proper lower semicontinuous convez function such that the set
S = argmingc x f(x) of its minimizers is nonempty. Let {an} be a sequence in [0,1]
with ap = supp,enyan < 1, {e} be a sequence in [0,7/4], and ¢ = limsup,,_,, €n.
Let J; be the resolvent for f. For given u € X, generate a sequence {z,} C X and
{Cnr} as follows: z; =u, C; = X, and

Yn = anZn O (1 — 0y)J 5T,
Crn+1 = {2z € X : d(yn,2) < d(zn,2)} N Ch,
ZTpt1 € Cpy1 such that cosd(u, p4+1) > cosd(u,Cpi1)COS€nta,

for eachm € N. Then

limsup d(zn, Jrzn) < 20

n—o00 1-ao



and

flp) < linl)inff(fon) < limsup f(Jsz,)
n—oo n—oo

2
Sf(p)+7r(sec2 1_6(;0 +1) Sinljao'

Moreover, if g = 0, then {z,} converges to Psu, where Pg is the metric projection
of X onto S.

Proof. We first show that each C,, is a closed convex subset containing S by induction.
It is obvious that C; = X satisfies the conditions. Suppose that Cj is a nonempty
closed convex subset of X and S C Cy for fixed k£ € N. To show S C Ci41, let z € S.
Then, since Jy is quasinonexpansive with Fix J; = S, we have that

cos d(yk, z) = cosd(oxxr ® (1 — ar)Jszr, 2)
> ag cosd(zk, z) + (1 — ag) cosd(J5z, 2)
= cosd(zg, 2),
which implies d(yk, z) < d(zk, 2), and hence z € S C Cky1. We also get that Ci,q is
closed from the continuity of the metric d. The convexity of Ciy; is obtained from

the assumption of the space. We also know that, there exists at least one point y € Cj,
such that cosd(u,y) > cosd(u,Cy) cos €. In fact, the point Po, u € X satisfies that

cosd(u, Po,u) = cosd(u, Ck) > cosd(u, Cy) cos €k.

Consequently, we have that C,, is a closed convex subset containing S for all n € N
and thus {z,} is well defined. Since z,, € C,, we have that

cosd(u, z,) > cosd(u,Cy) cos e,

for every n € N.

Let p, = Pc,u, where Pg, is the metric projection of X onto C), for n € N, and let
Co = ey Cyr. Then, since each C,, is convex, we have that ap, ® (1 — a)z, € C,
for « € 10, 1[. Therefore,

sind(pn, Tn) cos d(pn, u)
> sind(pp, n) cos d(app, & (1 — @)xn,u)
> sin(ad(pn, n)) cos d(pn, u) + sin((1 — a)d(pn, Tn)) cos d(xn, )

and thus we have that

sin d(pp, ) — sin(ad(pn, Tn))
cosd(zn,u)

2 sin((1 ~ a)d(pn,2n))



cosd(zn,u)
cos d(pp,u)

= 2cos (L;gd(pn,zn)> sin <l_Tad(pn,wn))

We also have that

1 —
sin d(pn, Zr) — sin(ad(pn, Tn)) = 2 cos (%d(pmxn)) sin (1—2Ed(pn,mn)) .

Suppose that p, # z,. Then these inequalities imply that

14+« l-a cos d(Ln,u
cos( 5 d(pn,:z:n)) > cos (Td(pn,zn)> W.
Tending o — 1, we have that
o8 d{pr, ) > cosd(Tn,u)  cosd(Tn,u) > cose,,

cosd(pn,u)  cosd(u,Ch)

and it follows that d(p,,z,) < €, for every n € N. If p, = z,, this inequality
is trivially true. Thus it holds for all n € N. Since pp+1 € Cnt1, d(Yn,Zn) =
(1 = an)d(Jszn, zn), and ap = sup, ey @ < 1, we have that

1
1—oa,

1

< 1—(d(ympn+1) + d(pn+1,$n))
— ap

d(Yn, Tn)

d(JfZn, Tn) =

<

d(zn,pn+1)

1 Qo

2
1—0[0

2
(én + d(Pn; Pnt1))
Qo

<

(d(mmpn) + d(pn;pn-H)

<
=71_

for every n € N. Tending n — 0o, we obtain that

2¢g

limsup d(JfZn, zn) <
n—0o 1—-ap

Let p= Psu € S and 2z, = aJfz, ® (1 — a)p for @ €]0,1[. Then, we have that
F(Jszn) + tand(Jfxp, z,) sind(Jfzp, 2n)

< f(za) +tand(zq, zn) sind(zq, Tn)
<af(Jrza)+ (1 - ) f(p) + tand(zy, ,) sind(24, Tn).

Since tantsint = sect — cost = 1/ cost — cost, we have that

(1 =) (f(J5zn) — £(p))



<tand(za, Tn)sind(za, zn) — tand(Jzn, z,) sind(J¢zp, p)

1 1
= (cosd(za,:cn) — cosd(Jf:vn,z‘n)) — (cosd(2a,Zn) — cos d(Jfn, Tn))

1
= (cos i 2 cos ATz 7] + 1> (cosd(J§zn,Tn) — cosd(zq,Zn))

= Eq n(cosd(JfZn, Tn) — cosd(2q4,Tn)),
where
1

= 1.
O™ cosd(zq, Tn) c0s d(JTn, Tn) +

Let D, = d(Jfzn,p) for n € N. If D,,, = 0 for some ng € N, then
JiTn, =p € S =Fix Jy.

This implies that , = z,, = p for all n > ny and hence {z,} converges to p = Psu,
the conclusions of the theorem obviously hold. Therefore, we suppose that D, > 0
for all n € N. We have that

(cosd(Jfzn,zn) — cosd(zq, Tr))sin Dy,
= cos d(JfZn, Tn)sin D, — cosd(asz, & (1 — @)p, z,) sin D,
< cosd(Jfxp, Ty)sin Dy,
—cosd(Jfxn, xp)sin(aDy,) — cosd(p, z,,) sin((1 — a)Dy,)
= cos d(Jfzn, Zn)(sin D, — sin(aD,)) — cosd(p, z,) sin((1 — a)D,)
< (sin Dy, — sin(aDy,)) — cos d(p, z,,) sin((1 — a)D,,)
(1 +;1)Dn sin (1 —;)D

< 2cos % — cosd(p, z,)sin((1 — a)D,),

and therefore

(Fgan) = S0 T

= (I_E%(COS d(J§Zn,Tn) — cosd(2a, Tn)) sin D,

< ! _EZ;DnQCOS u +;)Dn sin c _;)Dn — cosd(p, z,)sin((1 — a)Dy)
- sin((1-a)D,/2) (14+a)D, sin((1-a)D,)

=FEan ( (=)D, 2 cos 5 T -a)D, cosd(p,zn)> .

Since By .y — 1/ cos® d(Jzn, Tn) + 1 = sec? d(Jfzn, Ts) + 1 as a 1 1, we have that

sin Dy,

(f(fon) — f(p)) D,




< (sec® d(J 2, Ts) + 1)(cos Dy, — cos d(p, z,))
= (sec? d(J§Tn,zn) + 1)(cos d(Jfz,,p) — cosd(zn, p)).
Further we have that

cos d(JfZn,p) — cosd(zn, D)
d(2n,p) + d(Jfzpn,p) . d(@n,p) — d(Jfzn, D)

= 2sin 5 sin 3
< 25in HJ5Tn )

2
Since sin D, /Dy, > 2/7 for all n € N, we get that

sin D,,

~(FTsan) = £0)) < (Ug2n) = FB) 0"

d n
< 2(sec® d(JfTn, n) + 1) sin %

Tending n — 0o, we have that

; <1iTILIL sup f(Jszn) = f (P))
d(J5Tn,Tn)

< 2limsup(sec? d(J;Zn, z,) + 1) sin
n—+o0 2

2
< 2 [ sec? < +1)sin ©_
1—qg 1—qag

Hence we obtain that

f(wo) = f(p) < limsup f(Jyzn) ~ f(p) < (sec2 - 2_“;0 + 1) sin - ‘ ~

and therefore

f(p) < liminf f(J;zn) < limsup f(Jyzn)

2
<fle+n (sec2 1 _6(;0 + 1) sin 1 foao’
which is the desired result.
For the latter part of the theorem, suppose ¢g = 0. Then, since d(z,,pn) < €
and lim, 00 €, = €9 = 0, we get that both {z,} and {p,} converges to pp = Pc,u.

Moreover, since
2
limsup d(J¢zp, zn) < ©_ _ 0,
n—00 1—-og




{Jszn} also converges to pg. Using the lower semicontinuity of f, we have that

f(p) < f(po)

< lhn_ligf f(Jszn)

< f(p) +m (sec?0+ 1) sin0

= (o).
Therefore py € argmin,x f(z) = S. Since S C Cyp and py = Pc,u, we have that
po = Psu, which completes the proof. O

Let us consider the values

260

2
and (sec2 I € + 1) sin 1 i

1— o —ap — ap

of the upper bounds for limsup,,_, ., d(2n, Jyz,) and limsup,,_,, |f(p) — f(Jrzn)| =
lim sup,,_, o, |mingex f(z) — f(Jpzn)|. It is easy to see that these values are increasing
with respect to ap € [0,1[. Therefore, if we wish to make them as small as possible,
the best choice is ag to be 0. Letting simply a, = 0 for all n € N, we obtain the
following iterative scheme: z; = u, C; = X, and

Crnt1={z€ X :d(Jszpn,2) < d(Zn,2)} N Chy,
Zn+t1 € Cry1 such that cosd(u, Tpe1) > cosd(u, Cpi1) COS €nta,

for each n € N. Then, by the main result, we obtain that limsup,,_,., d(zn, J5zn) <
260 and

f(p) < liminf f(Jsz,) < limsup f(J5zn) < f(p) + 7 (sec?(2€0) + 1) sineo,
n—oo n—o0

which is much simpler consequence and the best choice of the coefficients {a,} from
the view of error estimate.
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