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Abstract

We apply the shrinking projection method to the convex minimization prob‐
lems on a complete geodesic space by using the notion of resolvents for convex
functions. We consider the calculation errors for metric projections onto the
closed convex sets, and obtain the upper bound of the error for the limit of
approximation sequence. We also discuss the choice of the coefficient of convex
combination used in the iterative process.

1 Introduction

In the fixed point theory, the approximation methods for fixed points is one of the
most important branches in the study of nonexpansive and other nonlinear mappings
as well as the existence of fixed points. We will focus on the shrinking projection
method, which was originally proved in 2008 by Takahashi, Takeuchi, and Kubota [3].

Theorem 1 (Takahashi, Takeuchi, and Kubota [3]). Let H be a real Hilbert space and
C a nonempty closed convex subset of H. Let T : C\rightarrow C be a nonexpansive mapping
such that the set Fix T of fixed points of T is nonempty. Let \{$\alpha$_{n}\} be a sequence in
[0 , 1[ with $\alpha$_{0}=\displaystyle \sup_{n\in \mathrm{N}}$\alpha$_{n} < 1 . For a given point u\in H , generate a sequence \{x_{n}\}
by the following iterative scheme: x_{1}\in C, C_{1}=C , and

y_{n}=$\alpha$_{n}x_{n}+(1-$\alpha$_{n})Tx_{n},
C_{n+1}=\{z\in C : \Vert y_{n}-z\Vert \leq\Vert x_{n}-z \cap C_{n},

x_{n+1}=P_{C_{n+1}}u
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for  n\in \mathbb{N} . Then, \{x_{n}\} converges strongly to  P_{\mathrm{F}\mathrm{i}\mathrm{x}T}u\in  C , where P_{K} is the metric
projection of H onto a nonempty closed convex subset K of H.

We note that the original result deals with the family of nonexpansive mappings.
In this paper, we will apply this method to the convex minimization problems on

complete CAT(I) spaces by using the notion of resolvents for convex functions. The
concept of resolvent on complete CAT(I) spaces was recently proposed by Kimura and
Kohsaka [2]. We consider the calculation errors for metric projections onto the closed
convex sets, and obtain the upper bound of the error for the limit of approximation
sequence. We also discuss the choice of the coefficient of convex combination used in
the iterative process.

2 Preliminaries

Let X be a metric space. For x, y\in X and l\geq 0 , we call a mapping c : [0, l]\rightarrow X\mathrm{a}
geodesic with endpoints x, y if it satisfies that c(0)=x, c(l)=y , and d(c(t), c(s))=
|t-s| for every t, s \in [0, l] . If a geodesic exists for every x, y \in  X, X is called
a geodesic space. In what follows, we assume that a geodesic is always unique for
every choice endpoints. The image of a geodesic c with endpoints x, y\in X is called
a geodesic segment joining x and y , and we denote it by [x, y] . For x, y \in  X and
 $\alpha$\in[0 , 1 ] , we define z= $\alpha$ x\oplus(1- $\alpha$)y as a unique point  z\in [x, y] such that

d(z, y)= $\alpha$ d(x, y) , d(x, z)=(1- $\alpha$)d(x, y) .

Let X be a geodesic space such that d(u, v) <  $\pi$/2 for all u, v \in  X . A geodesic
triangle for x, y, z \in  X is defined as \triangle(x, y, z) = [y, z]\cup[z, x]\cup [x, y] . A CAT(I)
space is usually defined by using the notion of comparison triangle defined in the
model space having the curvature 1. For the details, see [1]. We remark that we may
characterize a geodesic space X to be a CAT(I) space by that the inequality

\cos d( $\alpha$ x\oplus(1- $\alpha$)y, z)\sin d(x, y)

\geq\cos d(x, z)\sin( $\alpha$ d(x, y))+\cos d(y, z)\sin((1- $\alpha$)d(x, y))

holds for every x, y, z\in X and  $\alpha$\in[0 , 1 ] . In particular, since \sin td(x, y)\leq t\sin d(x, y)
for t\in[0 , 1 ] , it holds that

\cos d( $\alpha$ x\oplus(1- $\alpha$)y, z)\geq $\alpha$\cos d(x, z)+(1- $\alpha$)\cos d(y, z)

for any  $\alpha$\in[0 , 1 ] and x, y, z in a CAT(I) space.
Let C be a nonempty closed convex subset of a complete CAT(I) space X such that

d(u, v)< $\pi$/2 for all u, v\in X . For any x\in X , there exists a unique y_{x}\in C such that
d(x, y_{x})=d(x, C)=\displaystyle \inf_{y\in C}d(x, y) . We define the metric projection P_{C} : X\rightarrow C by
P_{C}x=y_{x} for x\in X.

Let X be a complete CAT(I) space and let f :  X\rightarrow ] -\infty, +\infty ] be a proper lower
semicontinuous convex function. Then, for  x\in X , the function g_{x} :  X\rightarrow ] -\infty, +\infty ]
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defined by  g_{x}(y)=f(y)+\tan d(y, x) sin d(y_{x}, x) has the unique minimizer. We define
a resolvent J_{f} : X\rightarrow X by

J_{f}x=\displaystyle \arg\min_{y\in X}g_{x}(y)=\arg\min_{y\in X}(f(y)+\tan d(y, x)\sin d(y, x))
for x\in X . It is known that the set Fix J_{f}=\{z\in X : J_{f}z=z\} of fixed points of J_{f}
coincides with the set \displaystyle \arg\min_{y\in X}f(y) of minimizers of f on X . We also know that

the resolvent operator is firmly spherically nonspreading in the sense that

(\cos d(J_{f}x, x)+\cos d(J_{f}y, y))\cos^{2}d(J_{f}x, J_{f}y)\geq 2\cos d(J_{f}x, y)\cos d(x, J_{f}y)

for all x, y\in X . In particular, it is quasinonexpansive;

d(J_{f}x, z)\leq d(x, z)

for all x \in X and  z\in Fix  J_{f} . For a nonempty closed convex subset C\subset X , if f is
the indicator function i_{C} of C defined by

i_{C}(x)=\left\{\begin{array}{ll}
\infty & (x\in C) ,\\
0 & (x\not\in C) ,
\end{array}\right.
then, J_{f} is the metric projection onto C . For more details of the resolvent operators,
see [2].

3 Approximation of the minimizer of the function
In this section, we prove an approximation theorem to a solution to a convex mini‐
mization problem for a convex function defined on a complete CAT(I) space.

Theorem 2. Let X be a complete CAT(I) space such that d(u, v) <  $\pi$/2 for any
u, v\in X and that a subset \{z\in X:d(v, z)\leq d(u, z)\} is convex for any u, v\in X . Let
f : X\rightarrow]-\infty, +\infty] be a proper lower semicontinuous convex function such that the set
S=\displaystyle \arg\min_{x\in X}f(x) of its minimizers is nonempty. Let \{$\alpha$_{n}\} be a sequence in [0 , 1[
with $\alpha$_{0} =\displaystyle \sup_{n\in \mathrm{N}}$\alpha$_{n} < 1, \{$\epsilon$_{n}\} be a sequence in [0,  $\pi$/4[ , and $\epsilon$_{0} =\displaystyle \lim\sup_{n\rightarrow\infty}$\epsilon$_{n}.
Let J_{f} be the resolvent for f . For given u\in X , generate a sequence \{x_{n}\} \subset X and
\{C_{n}\} as follows: x_{1}=u, C_{1}=X , and

y_{n}=$\alpha$_{n}x_{n}\oplus(1-$\alpha$_{n})J_{f}x_{n},
C_{n+1}=\{z\in X : d(y_{n}, z)\leq d(x_{n}, z)\}\cap C_{n},
x_{n+1}\in C_{n+1} such that \cos d(u, x_{n+1})\geq\cos d(u, C_{n+1})\cos$\epsilon$_{n+1},

for each n\in \mathrm{N} . Then

\displaystyle \lim_{n\rightarrow}\sup_{\infty}d(x_{n}, J_{f}x_{n})\leq \frac{2$\epsilon$_{0}}{1-$\alpha$_{0}}
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and

f(p)\displaystyle \leq\lim_{n\rightarrow}\inf_{\infty}f(J_{f}x_{n})\leq\lim_{n\rightarrow}\sup_{\infty}f(J_{f}x_{n})

\displaystyle \leq f(p)+ $\pi$(\sec^{2}\frac{2$\epsilon$_{0}}{1-$\alpha$_{0}}+\mathrm{I})\sin\frac{$\epsilon$_{0}}{1-$\alpha$_{0}}.
Moreover, if $\epsilon$_{0}=0 , then \{x_{n}\} converges to P_{S}u , where P_{S} is the metric projection
of X onto S.

Proof. We first show that each C_{n} is a closed convex subset containing S by induction.
It is obvious that C_{1} =X satisfies the conditions. Suppose that C_{k} is a nonempty
closed convex subset of X and S\subset C_{k} for fixed k\in \mathrm{N} . To show S\subset C_{k+1} , let z\in S.

Then, since J_{f} is quasinonexpansive with Fix J_{f}=S , we have that

\cos d(y_{k}, z)=\cos d($\alpha$_{k}x_{k}\oplus(1-$\alpha$_{k})J_{f}x_{k}, z)
\geq$\alpha$_{k}\cos d(x_{k}, z)+(1-$\alpha$_{k})\cos d(J_{f}x_{k}, z)
=\cos d(x_{k}, z) ,

which implies d(y_{k}, z)\leq d(x_{k}, z) , and hence z\in S\subset C_{k+1} . We also get that C_{k+1} is
closed from the continuity of the metric d . The convexity of C_{k+1} is obtained from
the assumption of the space. We also know that, there exists at least one point y\in C_{k}
such that \cos d(u, y)\geq\cos d(u, C_{k})\cos$\epsilon$_{k} . In fact, the point P_{C_{k}}u\in X satisfies that

\cos d(u, P_{C_{k}}u)=\cos d(u, C_{k})\geq\cos d(u, C_{k})\cos$\epsilon$_{k}.

Consequently, we have that C_{n} is a closed convex subset containing S for all n\in \mathbb{N}

and thus \{x_{n}\} is well defined. Since x_{n}\in C_{n} , we have that

\cos d(u, x_{n})\geq\cos d(u, C_{n})\cos$\epsilon$_{n}

for every n\in \mathrm{N}.

Let p_{n}=P_{C_{n}}u , where P_{C_{n}} is the metric projection of X onto C_{n} for n\in \mathrm{N} , and let
C_{0}=\displaystyle \bigcap_{n=1}^{\infty}C_{n} . Then, since each C_{n} is convex, we have that  $\alpha$ p_{n}\oplus(1- $\alpha$)x_{n} \in C_{n}
for  $\alpha$\in]0 , 1[. Therefore,

\sin d(p_{n}, x_{n})\cos d(p_{n}, u)

\geq\sin d(p_{n}, x_{n})\cos d( $\alpha$ p_{n}\oplus(1- $\alpha$)x_{n}, u)

\geq\sin( $\alpha$ d(p_{n},x_{n}))\cos d(p_{n}, u)+\sin((1- $\alpha$)d(p_{n}, x_{n}))\cos d(x_{n}, u)

and thus we have that

\sin d(p_{n}, x_{n})-\sin( $\alpha$ d(p_{n}, x_{n}))

2 \displaystyle \sin((1- $\alpha$)d(p_{n},x_{n}))\frac{\cos d(x_{n},u)}{\cos d(p_{n},u)}
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=2\displaystyle \cos(\frac{1- $\alpha$}{2}d(p_{n}, x_{n}))\sin(\frac{1- $\alpha$}{2}d(p_{n}, x_{n})) \frac{\cos d(x_{n},u)}{\cos d(p_{n},u)}.
We also have that

\displaystyle \sin d(p_{n}, x_{n})-\sin( $\alpha$ d(p_{n}, x_{n}))=2\cos(\frac{1+ $\alpha$}{2}d(p_{n},x_{n}))\sin(\frac{1- $\alpha$}{2}d(p_{n}, x_{n})) .

Suppose that p_{n}\neq x_{n} . Then these inequalities imply that

\displaystyle \cos(\frac{1+ $\alpha$}{2}d(p_{n}, x_{n})) \geq\cos(\frac{1- $\alpha$}{2}d((p_{n}, x_{n})) \frac{\cos d(x_{n},u)}{\cos d(p_{n},u)}.
Tending  $\alpha$\rightarrow 1 , we have that

\displaystyle \cos d(p_{n},x_{n})\geq\frac{\cos d(x_{n},u)}{\cos d(p_{n},u)}=\frac{\cos d(x_{n},u)}{\cos d(u,C_{n})}\geq\cos$\epsilon$_{n},
and it follows that d(p_{n}, x_{n}) \leq $\epsilon$_{n} for every n \in \mathbb{N} . If p_{n} = x_{n} , this inequality
is trivially true. Thus it holds for all n \in \mathbb{N} . Since p_{n+1} \in  C_{n+1}, d(y_{n}, x_{n}) =

(1-$\alpha$_{n})d(J_{f}x_{n}, x_{n}) , and $\alpha$_{0}=\displaystyle \sup_{n\in \mathrm{N}}$\alpha$_{n}<1 , we have that

d(J_{f}x_{n}, x_{n})=\displaystyle \frac{\mathrm{I}}{1-$\alpha$_{n}}d(y_{n}, x_{n})
\leq\underline{1}(d(y_{n},p_{n+1})+d(p_{n+1}, x_{n}))

1-$\alpha$_{0}

\leq\underline{2}d(x_{n},p_{n+1})
1-$\alpha$_{0}

\leq\underline{2}(d(x_{n},p_{n})+d$\omega$_{n},p_{n+1})
1-$\alpha$_{0}

\displaystyle \leq \frac{2}{1-$\alpha$_{0}}($\epsilon$_{n}+d(p_{n},p_{n+1}))
for every n\in \mathrm{N} . Tending  n\rightarrow\infty , we obtain that

\displaystyle \lim_{n\rightarrow}\sup_{\infty}d(J_{f}x_{n}, x_{n})\leq\frac{2$\epsilon$_{0}}{1-$\alpha$_{0}}.
Let p=P_{S}u\in S and z_{ $\alpha$}= $\alpha$ J_{f}x_{n}\oplus(1- $\alpha$)p for  $\alpha$\in ]  0 , 1[. Then, we have that

f(J_{f}x_{n})+\tan d(J_{f}x_{n}, x_{n})\sin d(J_{f}x_{n}, x_{n})
\leq f(z_{ $\alpha$})+\tan d(z_{ $\alpha$}, x_{n})\sin d(z_{ $\alpha$}, x_{n})

\leq $\alpha$ f(J_{f}x_{n})+(1- $\alpha$)f(p)+\tan d(z_{ $\alpha$}, x_{n})\sin d(z_{ $\alpha$}, x_{n}) .

Since \tan t\sin t=\sec t-\cos t=1/\cos t-\cos t , we have that

(1- $\alpha$)(f(J_{f}x_{n})-f(p))
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\leq\tan d(z_{ $\alpha$}, x_{n})\sin d(z_{ $\alpha$}, x_{n})-\tan d(J_{f}x_{n}, x_{n})\sin d(J_{f}x_{n}, x_{n})

= (\displaystyle \frac{1}{\cos d(z_{ $\alpha$},x_{n})}-\frac{1}{\cos d(J_{f}x_{n},x_{n})}) -(\cos d(z_{ $\alpha$}, x_{n})-\cos d(J_{f}x_{n}, x_{n}))
= (\displaystyle \frac{1}{\cos d(z_{ $\alpha$},x_{n})\cos d(J_{f}x_{n},x_{n})}+1)(\cos d(J_{f}x_{n}, x_{n})-\cos d(z_{ $\alpha$}, x_{n}))
=E_{ $\alpha$,n}(\cos d(J_{f}x_{n}, x_{n})-\cos d(z_{ $\alpha$}, x_{n}

where

E_{ $\alpha$,n}=\displaystyle \frac{1}{\cos d(z_{ $\alpha$},x_{n})\cos d(J_{f}x_{n},x_{n})}+1.
Let D_{n}=d(J_{f}x_{n},p) for n\in \mathrm{N} . If D_{n_{0}}=0 for some n_{0}\in \mathrm{N} , then

J_{f}x_{n_{0}}=p\in S= Fix J_{f}.

This implies that x_{n}=x_{n_{0}}=p for all n\geq n_{0} and hence \{x_{n}\} converges to p=P_{\mathcal{S}}u,
the conclusions of the theorem obviously hold. Therefore, we suppose that D_{n} >0

for all n\in \mathrm{N} . We have that

(\cos d(J_{f}x_{n}, x_{n})-\cos d(z_{ $\alpha$}, x_{n}))\sin D_{n}
=\cos d(J_{f}x_{n}, x_{n})\sin D_{n}-\cos d( $\alpha$ J_{f}x_{n}\oplus(1- $\alpha$)p, x_{n})\sin D_{n}
\leq\cos d(J_{f}x_{n}, x_{n})\sin D_{n}
‐ \cos d(J_{f}x_{n}, x_{n})\sin( $\alpha$ D_{n})-\cos d(p, x_{n})\sin((1- $\alpha$)D_{n})

=\cos d(J_{f}x_{n}, x_{n})(\sin D_{n}-\sin( $\alpha$ D_{n}))-\cos d(p, x_{n})\sin((1- $\alpha$)D_{n})
\leq(\sin D_{n}-\sin( $\alpha$ D_{n}))-\cos d(p, x_{n})\sin((1- $\alpha$)D_{n})

\displaystyle \leq 2\cos\frac{(1+ $\alpha$)D_{n}}{2}\sin\frac{(1- $\alpha$)D_{n}}{2}-\cos d(p, x_{n})\sin((1- $\alpha$)D_{n}) ,

and therefore

(f(J_{f}x_{n})-f(p))\displaystyle \frac{\sin D_{n}}{D_{n}}
=\displaystyle \frac{E_{ $\alpha$,n}}{(1- $\alpha$)D_{n}}(\cos d(J_{f}x_{n}, x_{n})-\cos d(z_{ $\alpha$}, x_{n}))\sin D_{n}
\displaystyle \leq\frac{E_{ $\alpha$,n}}{(1- $\alpha$)D_{n}}2\cos\frac{(1+ $\alpha$)D_{n}}{2}\sin\frac{(1- $\alpha$)D_{n}}{2}-\cos d(p, x_{n})\sin((1- $\alpha$)D_{n})
=E_{ $\alpha$,n}(\displaystyle \frac{\sin((1- $\alpha$)D_{n}/2)}{(1- $\alpha$)D_{n}/2}\cos\frac{(1+ $\alpha$)D_{n}}{2}-\frac{\sin((1- $\alpha$)D_{n})}{(1- $\alpha$)D_{n}}\cos d(p, x_{n})) .

Since E_{ $\alpha$,n}\rightarrow 1/\cos^{2}d(J_{f}x_{n}, x_{n})+1=\sec^{2}d(J_{f}x_{n}, x_{n})+1 as  $\alpha$\uparrow 1 , we have that

(f(J_{f}x_{n})-f(p))\displaystyle \frac{\sin D_{n}}{D_{n}}
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\leq (sec2  d(J_{f}x_{n}, x_{n})+1 ) (\cos D_{n}-\cos d(p, x_{n}))

=(\sec^{2}d(J_{f}x_{n}, x_{n})+1)(\cos d(J_{f}x_{n},p)-\cos d(x_{n},p)) .

Further we have that

\cos d(J_{f}x_{n},p)-\cos d(x_{n},p)

=2\displaystyle \sin\frac{d(x_{n},p)+d(J_{f}x_{n},p)}{2}\sin\frac{d(x_{n},p)-d(J_{f}x_{n},p)}{2}
\displaystyle \leq 2\sin\frac{d(x_{n},p)-d(J_{f}x_{n},p)}{2}
\displaystyle \leq 2\sin\frac{d(J_{f}x_{n},x_{n})}{2}.

Since \sin D_{n}/D_{n}\geq 2/ $\pi$ for all  n\in \mathbb{N} , we get that

\displaystyle \frac{2}{ $\pi$}(f(J_{f}x_{n})-f(p))\leq(f(J_{f}x_{n})-f(p))\frac{\sin D_{n}}{D_{n}}
\displaystyle \leq 2(\sec^{2}d(J_{f}x_{n}, x_{n})+1)\sin\frac{d(J_{f}x_{n},x_{n})}{2}.

Tending  n\rightarrow\infty , we have that

\displaystyle \frac{2}{ $\pi$} (\lim_{n\rightarrow}\sup_{\infty}f(J_{f}x_{n})-f(p))
\displaystyle \leq 2\lim_{n\rightarrow}\sup_{\infty}(\sec^{2}d(J_{f}x_{n}, x_{n})+1)\sin\frac{d(J_{f}x_{n},x_{n})}{2}
\displaystyle \leq 2(\sec^{2}\frac{2$\epsilon$_{0}}{1-$\alpha$_{0}}+1)\sin\frac{$\epsilon$_{0}}{1-$\alpha$_{0}}.

Hence we obtain that

f(x_{0})-f(p)\displaystyle \leq\lim_{n\rightarrow}\sup_{\infty}f(J_{f}x_{n})-f(p)\leq $\pi$(\sec^{2}\frac{2$\epsilon$_{0}}{1-$\alpha$_{0}}+\mathrm{I})\sin\frac{$\epsilon$_{0}}{1-$\alpha$_{0}},
and therefore

f(p)\displaystyle \leq\lim_{n\rightarrow}\inf_{\infty}f(J_{f}x_{n})\leq\lim_{n\rightarrow}\sup_{\infty}f(J_{f}x_{n})

\displaystyle \leq f(p)+ $\pi$(\sec^{2}\frac{2$\epsilon$_{0}}{1-$\alpha$_{0}}+1)\sin\frac{$\epsilon$_{0}}{1-$\alpha$_{0}},
which is the desired result.

For the latter part of the theorem, suppose $\epsilon$_{0} = 0 . Then, since d(x_{n},p_{n}) \leq  $\epsilon$

and \displaystyle \lim_{n\rightarrow\infty}$\epsilon$_{n} =$\epsilon$_{0} =0 , we get that both \{x_{n}\} and \{p_{n}\} converges to p_{0}=P_{C_{0}}u
Moreover, since

\displaystyle \lim_{n\rightarrow}\sup_{\infty}d(J_{f}x_{n}, x_{n})\leq\frac{2$\epsilon$_{0}}{1-$\alpha$_{0}}=0,
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\{J_{f}x_{n}\} also converges to p_{0} . Using the lower semicontinuity of f , we have that

f(p)\leq f(p_{0})

\displaystyle \leq\lim_{n\rightarrow}\inf_{\infty}f(J_{f}x_{n})
\leq f(p)+ $\pi$ (sec20 + 1) \sin 0

=f(p) .

Therefore p_{0} \in \displaystyle \arg\min_{x\in X}f(x) = S . Since S \subset  C_{0} and p_{0} = P_{C_{0}}u , we have that
p_{0}=P_{S}u , which completes the proof. \square 

Let us consider the values

\displaystyle \frac{2$\epsilon$_{0}}{1-$\alpha$_{0}} and  $\pi$(\displaystyle \sec^{2}\frac{2$\epsilon$_{0}}{1-$\alpha$_{0}}+1)\sin\frac{$\epsilon$_{0}}{1-$\alpha$_{0}}
of the upper bounds for \displaystyle \lim\sup_{n\rightarrow\infty}d(x_{n}, J_{f}x_{n}) and \displaystyle \lim\sup_{n\rightarrow\infty}|f(p)-f(J_{f}x_{n})|=
\displaystyle \lim\sup_{n\rightarrow\infty}|\min_{x\in X}f(x)-f(J_{f}x_{n})| . It is easy to see that these values are increasing
with respect to $\alpha$_{0}\in[0, 1[. Therefore, if we wish to make them as small as possible,
the best choice is $\alpha$_{0} to be 0 . Letting simply $\alpha$_{n} =0 for all  n\in \mathrm{N} , we obtain the
following iterative scheme: x_{1}=u, C_{1}=X , and

C_{n+1}=\{z\in X : d(J_{f}x_{n}, z)\leq d(x_{n}, z)\}\cap C_{n},
x_{n+1}\in C_{n+1} such that \cos d(u, x_{n+1})\geq\cos d(u, C_{n+1})\cos$\epsilon$_{n+1},

for each n\in \mathrm{N} . Then, by the main result, we obtain that \displaystyle \lim\sup_{n\rightarrow\infty}d(x_{n}, J_{f}x_{n}) \leq

 2$\epsilon$_{0} and

 f(p)\displaystyle \leq\lim_{n\rightarrow}\inf_{\infty}f(J_{f}x_{n})\leq\lim_{n\rightarrow}\sup_{\infty}f(J_{f}x_{n})\leq f(p)+ $\pi$ (sec2 (2$\epsilon$_{0})+1 ) \sin$\epsilon$_{0},

which is much simpler consequence and the best choice of the coefficients \{$\alpha$_{n}\} from
the view of error estimate.
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