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GENERALIZED ALTERNATIVE THEOREMS
BASED ON SET-RELATIONS

YUTO OGATA, YUTAKA SAITO, TAMAKI TANAKA (NIIGATA UNIVERSITY)
GUE MYUNG LEE, JAE HYOUNG LEE (PUKYONG NATIONAL UNIVERSITY)

ABSTRACT. This paper contains generalized alternative theorems via a set scalarization
method based on set-relations. We introduce semidefinite system and its dual case as a

supplementary result.

1. INTRODUCTION

Gordan’s theorem was appeared in 1873 [2]. This theorem focuses on the geometry of
finitely many vectors and the origin. This paper is originally motivated by a generalized
Gordan’s theorem for vector-valued functions [4] in 1986. Vector-valued functions are able
to be replaced with matrices under a convex assumption. This was interestingly extended
to the case of set-valued maps [7] in 1999 and [9] in 2000. They found that set-valued
maps can be used in the form of alternative theorem with a similar convexity.

Their theorems based on some separation theorems require linear scalarizaions such as
bilinear forms. In 2005, Nishizawa, Onodsuka, and Tanaka gave generalization forms [§]
by using sublinear scalarizations for vectors inspired by ones introduced in [3]. Sublinear
separation enables to eliminate assumptions of theorems related to linearity and convexity.

Kuwano, Tanaka, and Yamada established sublinear scalarizations for sets [6] in 2009
by use of set-relations [5]. These functions are composed of six infimum types and six
supremum types. The number of the functions for set is much larger than that for vectors
which consist of just four types. This comes from the complexity of ways where we
consider a set preceding another.

In this paper, we show 12 alternative theorems by using the scalarizing functions for
sets, considering the set-relations between an image and a reference set. If the reference
set is the origin, our theorems will be the result of the previous research. This reference

set gives flexibility and let problems free themselves from the origin.
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2. PRELIMINARIES

Unless otherwise specified, we let X be a nonempty set, Y a real ordered topological
vector space with <¢ induced by a convex solid (i.e., there exists nonempty interior) cone

C as follows: z <cyify—z € C for z,y € Y, and F a set-valued map from X to 2Y.

Definition 2.1 (Kuroiwa, Tanaka, Ha (1997), [5]). Let A4, B € 2¥\{0}.

(i) A<E B EDS ACMues(b—C) & BCNyeala+0);
(i)) A <& B <5 ANMyep(b—C) #0;
(i) A<® BEL B (4+0);
(iv) A<Y BES Nyeala+C)NBA;
) A<® BEL Ac(B-0);

i) A<OBEL AN(B-C)# 0o (A+C)NB#0.

Definition 2.2 (Kuwano, Tanaka, Yamada, (2009), [6]). Let A, B € 2Y\{0} and k € intC.
For each j = 1, ..., 6, scalarizing functions I,g{l); and S,(ﬁ; from 2¥\{0} to RU{+o0} are de-
fined by IU'4(A) := inf{t € R | A <& (tk + B)}, SU3(A) := sup{t € R | (tk + B) <&’ A}.

3. GENERALIZED ALTERNATIVE THEOREMS

3.1. Infimum Types.

Theorem 3.1 (Infimum type (1)). Let X be a nonempty set, Y a topological vector
space, C' a convex solid cone in Y, F' : X — 2V a set-valued map, and V a nonempty
subset in Y. If F' is compact-valued on X and V is compact, then exactly one of the
following two systems is consistent;

(i) there exists € X such that F(z) Si(ic)c Vi

(ii) there exists k € intC such that (I, ,2,11),0 F)(z) >0forall z € X.

Proof. [(i)=not (ii)] Fix k € intC. Assume that (i) is consistent. Then, there exists
x € X such that y € (), (v —intC) for all y € F(z). Since [,y (v —intC) is open, there
exists A, > 0 such that y + Ayk € [, (v — intC). Therefore, y € Sy :=,e_y p4v (v —
intC). This implies {S,}yer(s) is a cover of F(z). Since F(z) is compact, there exists
{y1,-..,yn} C F(x) such that F(z) C U;c; Sy, where I :={1,...,n}.

Taking A := min{},,..., Ay, } > 0, then F(z) C U;; ﬂve_/\mHV(v—intC) = Moe—3t+v
(v —intC) C Nyeswsy (v — C). Thus, inf{t € R | F(z) C Nyeporv (v — C)} < —A <0.

[Not (i)=-(ii)] Assume that (i) is not consistent. Then, for all x € X, there exists
g € F(z) such that § & [,y (v — intC). Since ,cappry (v — C) C Nyey (v — intC) for all



k € intC and A < 0, then § & [),cpxpy (v—C). Thus, inf{t € R | F(z) C Nyeppyv (v — C)}

is non-negative. O

Remark 3.1. We let S := (,o,/(v — C). Then S+ (—C) C S so that for all z € X,
Yy € F(z), and k € intC, there exists t, > 0 such that y € [,¢; x4 (v — C). Thus, there
exists £ > 0 such that (1,93,0 F)(z) =inf{t e R | F(z) C Nyemsv(® — C)} <t < +o0.

Theorem 3.2 (Infimum type (2)). Let X be a nonempty set, Y a topological vector
space, C' a convex solid cone in Y, F : X — 2Y a set-valued map, and V a nonempty

subset in Y. If V' is compact, then exactly one of the following two systems is consistent;

(i) there exists z € X such that F(z) <, V;
(i) there exists k € intC such that (I,f‘),o F)(z)>O0forallz € X.

Proof. [(i)=rnot (ii)] Fix k € intC. Assume that (i) is consistent. Then, there exist z € X
and § € F(z) such that § € ),y (v — intC). Since (), (v — intC) is open, there exists
X > 0 such that §+ Xk € ),y (v—intC) C N,y (v—C). Therefore, § € Nye_sxsy (v—C).
Then, F(z) N (Nye_spsv(® — C) # 0. Thus, inf{t € R | F(z) NNyeppyv (v — C) # 0} <
-1 <0.

[Not (i)=>(ii)] Assume that (i) is not consistent. Then, y & [),ey (v — intC) for all
z € X and y € F(z). That means, y & [),c\ppv(v — C) for all k € intC and X < 0. Thus,
inf{t € R | F(z) N\,epesv (¥ — C) # B} is non-negative. O

Remark 3.2. We let S := [, (v — C) like Remark 3.1. For all z € X, y € F(z),
and k € intC, there exists £ > 0 such that y € ), cpqv (v — C). Thus, (I,(c,z‘),o F)(z) =
inf{t € R | F(z) N Nyepsv (v — C) # 0} < T < +o0.

Theorem 3.3 (Infimum type (3)). Let X be a nonempty set, Y a topological vector
space, C a convex solid cone in Y, F': X — 2V a set-valued map, and V a nonempty

subset in Y. If V is compact, then exactly one of the following two systems is consistent;

(i) there exists z € X such that F(z) <&, V;
(ii) there exists k € intC such that (I, ,E?‘),o F)(z)>0foral z € X.

Proof. [(i)=not (ii)] Fix k € intC. Assume that (i) is consistent. Then, there exists
x € X such that v € F(z) +intC for all v € V. Since F(z) + intC is open, there exists
Ay > 0 such that v — Ak € F(z) + intC. We let S, := Ak + F(z) + intC then, {S,}yev
is a cover of V. Since V' is compact, there exists {v,...,v,} C V such that V C |J,, S,
where I :={1,...,n}.
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Taking A :=min{A,,..., A, } >0, then V C U;.;(A\,k + F(z) +intC) = Xk + F(z) +
intC C Mk + F(z) + C. Thus, inf{t e R | (tk+ V) C (F(z) +C)} < =X < 0.

[Not (i)=>(ii)] Assume that (i) is not consistent. Then, for all z € X, there exists o € V
such that o € F(z)+intC. Since —\k+F(z)+C C F(z)+intC for all k € intC and X < 0,
then o € —A\k+ F(z)+C. Thus, int{t € R | (tk + V) C (F(z) + C)} is non-negative. O

Remark 3.3. We let S := F(z) + C. Then S+ C C S so that for all v € V and
k € intC, there exists £ > 0 such that tk + v € F(z) + C. Thus, (I,g,s‘),o F)(z) =
inf{teR | (tk+ V) C (F(z)+C)} <t < +oo.

Theorem 3.4 (Infimum type (4)). Let X be a nonempty set, Y a topological vector
space, C a convex solid cone in Y, F : X — 2¥ a set-valued map, and V a nonempty
subset in Y. If F' is compact-valued on X, then exactly one of the following two systems
is consistent;

(i) there exists « € X such that F(z) <, V;

(ii) there exists k € intC' such that (I,g?‘),o F)(z) >0forall z € X.

Proof. [(i)=>not (ii)] Fix k € intC. Assume that (i) is consistent. Then, there exist z € X
and ¥ € V such that 9 € ()¢, (y +intC). Since () () (y +1intC) is open, there exists
X > 0 such that =Xk + 7 € (Vyep (¥ +intC) C Nyepe @+ C).-
Thus, inf{t € R | (tk + V) Nyep@m ¥+ C) # 0} < -2 <0.

[Not (i)=>(ii)] Assume that (i) is not consistent. Then, v & () cp,(y + intC) for all
z € X and v € V. Since (Ve p()(— M +y + C) C yep(r(y + intC) for all £ € intC and
A <0, then v & (), cppy(—Ak +y + C).
Thus, inf{t € R | (tk + V) N[ ),cp@ (Y + C) # 0} is non-negative. O

Remark 3.4. We let S := () cp,y(y + C). Then S+ C C S so that for all v €
V and k € intC, there exists t, > 0 such that t,k + v € [,cpe(y + C). Then,
there exists ¢ > 0 such that (tk + V) N (\,cpry(y + C) # 0. Thus, (I,(;_"),o F)(z) =
inf{t €R | (tk + V) N(yepm ¥+ C) # 0} <T < +oo.

Theorem 3.5 (Infimum type (5)). Let X be a nonempty set, Y a topological vector
space, C a convex solid cone in Y, F : X — 2 a set-valued map, and V a nonempty
subset in Y. If F' is compact-valued on X, then exactly one of the following two systems
is consistent;

(i) there exists z € X such that F(z) <®), V;

(ii) there exists k € intC such that (I ,Es‘),o F)(z) >0 for all z € X.

114



Proof. [(i)=not (ii)] Fix k € intC. Assume that (i) is consistent. Then, there exists
z € X such that y € V — intC for all y € F(z). Since V — intC is open, there exists
Ay > 0 such that y + Ak € V —intC. We let Sy := -\ )k +V —intC, then {Sy}ycr()
is a cover of F(z). Since F(z) is compact, there exists {y1,...,y.} C F(z) such that
F(z) C U;e; Sy, where I :={1,...,n}.

Taking X := min{),,..., Ay} > 0, then F(z) C U;c;(=Ay, +V —intC) = -2k +V —
intC C —Ak+V —C. Thus, inf{t eR | F(z) Ctk+V - C} < =X <0.

[Not (i)=>(ii)] Assume that (i) is not consistent. Then, for all z € X, there exists
g € F(z) such that § € V — intC. Since Ak +V — C C V — intC for all k € intC and
A <0, then § ¢ \k+V — C. Thus, inf{t € R | F(z) C tk+V — C} is non-negative. O

Remark 3.5. Welet S := V—C. Then S+(—C) C Ssothat forallz € X,y € F(z), and
k € intC, there exists t, > 0 such that y € t,k+V —C. Then, there exists £ > 0 such that
F(z) Ctk+V — C. Thus, (I{)o F)(z) = inf{t € R | F(z) C (tk+V — C)} < < +oo.

Theorem 3.6 (Infimum type (6)). Let X be a nonempty set, Y a topological vector
space, C a convex solid cone in Y, F : X — 2Y a set-valued map, and V a nonempty

subset in Y. Then, exactly one of the following two systems is consistent;

(i) there exists € X such that F(z) <, V;
(ii) there exists k € intC such that (I,g?‘),o F)(z)>0forallz € X.

Proof. [(i)=not (ii)] Fix k € intC. Assume that (i) is consistent. Then, there ex-
ist z € X and § € F(z) such that § € V — intC. Thus, there exists A > 0 such
that §+ Ak € V —intC € V — C. Then, F(z) N (=Xk +V — C) # 0. Therefore,
inf{t R | F(z)N(tk+V —-C)#0} < - <0.

[Not (i)=>(ii)] Assume that (ii) is not consistent. Then, y € V —intC for all z € X and
y € F(z). Since \k+V —C C V —intC for all k € intC and XA < 0, then y € \k+V —C.
Thus, inf{t € R | F(z) N (tk +V — C) # 0} is non-negative. O

Remark 3.6. We let S := V — C like Remark 3.5. For all z € X, y € F(z), and
k € intC, there exists ¢, > 0 such that y € t,k +V — C. Then, there exists £ > 0 such
that F(z)N(tk+V—C) # 0. Thus, (I)eF)(z) = inf{t € R | F(z) N (tk +V — C) # 0} <
t < +o0.

3.2. Supremum Types. We obtain supremum types conversely by replacing an ordering
cone C in Infimum types with —C. In addition, just like six remarks described above,
(S,(c{‘),o F)(z)> -ooforallze€ X and j =1,...,6.
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Theorem 3.7 (Supremum type (1)). Let X be a nonempty set, Y a topological vector
space, C a convex solid cone in Y, F : X — 2Y a set-valued map, and V a nonempty
subset in Y. If F' is compact-valued on X and V is compact, then exactly one of the
following two systems is consistent;

(i) there exists z € X such that V <\ F(z);

(ii) there exists k € intC' such that (S,(:‘),o F)(z)<0foralze€ X.

Theorem 3.8 (Supremum type (2)). Let X be a nonempty set, Y a topological vector
space, C' a convex solid cone in Y, F' : X — 2V a set-valued map, and V a nonempty
subset in Y. If V is compact, then exactly one of the following two systems is consistent;
(i) there exists z € X such that V <), F(x);
(ii) there exists k € intC' such that (S,(f‘),o F)(z)<0foralze X.

Theorem 3.9 (Supremum type (3)). Let X be a nonempty set, Y a topological vector
space, C a convex solid cone in Y, F : X — 2Y a set-valued map, and V a nonempty
subset in Y. If V is compact, then exactly one of the following two systems is consistent;
(i) there exists z € X such that V Si(:c)c F(z);
(ii) there exists k € intC such that (S{yo F)(z) < 0 for all z € X.

Theorem 3.10 (Supremum type (4)). Let X be a nonempty set, Y a topologieal vector
space, C a convex solid cone in Y, F' : X — 2¥ a set-valued map, and V a nonempty
subset in Y. If F' is compact-valued on X, then exactly one of the following two systems
is consistent;

(i) there exists z € X such that V < F(z);

(i1) there exists k € intC such that (S,(f‘),o F)(z) <0forallz € X.

Theorem 3.11 (Supremum type (5)). Let X be a nonempty set, Y a topological vector
space, C a convex solid cone in Y, F' : X — 2Y a set-valued map, and V a nonempty
subset in Y. If F' is compact-valued on X, then exactly one of the following two systems
is consistent;

(i) there exists z € X such that V <0 F(z);

(ii) there exists k € intC' such that (S,f‘),o F)(z) <O0foralze X.

Theorem 3.12 (Supremum type (6)). Let X be a nonempty set, ¥ a topological vector
space, C' a convex solid cone in Y, F : X — 2Y a set-valued map, and V a nonempty

subset in Y. Then, exactly one of the following two systems is consistent;

(i) there exists z € X such that V' §§§30 F(z);
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(ii) there exists k € intC such that (S,f) oF)(z)<OforalzeX.

4. POSITIVE SEMI-DEFINITE SYSTEM

Let S™ be the set of n X n symmetric matrices, S the set of n x n positive semidefinite
symmetric matrices, ST, the set of n x n positive definite symmetric matrices, F': X —
25" a set-valued map, and V a nonempty subset in S”. We denote the trace of A € S”

by tr(A) := Y, a;. Some notions are from pp.9-10 of [1].

Theorem 4.1. Exactly one of the following two systems is consistent;
(i) There exists x € X such that F(z) N (V — S%,) #0;
(ii) There exists K € S7, such that
inf{teR|F(z)N(tK+V —S?) #0} >0forallz € X.

This theorem is simply verified by ST = intS}.

Corollary 4.1. Let f : R™ — 5" be a function. Then, exactly one of the following two
systems is consistent;
(i) There exists z € R™ such that f(z) € —S7_;
(ii) There exists B € S%, such that
inf{t e R | f(z) €tB— St} > 0 for all z € R™.

Let A € S" and B € S7, be given. Consider the following semidefinite optimization
problem and its dual problem:
(SDP)  inf{tr(—AX) | tr((—B)X) = -1, X € S}}.
(SDD) sup{—t|—-tB+S=—-A, Se St} »
Notice that inf{t c R | A€ tB - St} = —sup{-teR | —tB+S=—-A, S€ 8} for
all A€ S" and B € S}, and we can calculate inf{t € R | A € tB — S}} with Matlab as

a semidefinite optimization problem.

Lemma 4.1. Problems (SDP) and (SDD) are strictly feasible, that is, there exists X €
S7, such that tr((—B)X) = —1, and there exist f € R and S € S, such that —iB+ 5 =
-A.

Proof. Let X =37 uigiqf € S, where u; are positive and {g;}i=1,...» is a base of R".
Then, tr(BX) = tr(B(} 1, wigigl)) = Yooy witr(Bgigy) = Yo, uigFBg; > 0. Thus,
X := (1/tr(BX))X € 87, satisfies tr(BX) = 1.

Let B € S7,. If A = 0gs, we have —tB + S = 0« by letting S := ¢B for all ¢t > 0.

Now we assume that A # 6g». Since S}, is open, there exists an open neighborhood



U € N(fs~) such that B+ U C S7?,. There exists { > 0 such that (—1/{)A € U.
Therefore, we can find S :=t{B — A =1{#(B - (1/f)A) € S7.. O

Lemma 4.2. The optimal values of (SDP) and (SDD) coincide and their optimal solutions

are nonempty.

Proof. Since (SDP) and (SDD) are strictly feasible, it follows from Corollary 2.1 in p.28
of [10] that the optimal values of (SDP) and (SDD) coincide and their optimal solutions

are nonempty. O

Remark 4.1. Let A € S™ and B € S}, be given. Then, hsn(A;B) :=min{t e R | A €
tB — St} = max{tr(AX) | tr(BX) =1, X € S©}.

From Corollary 4.1, Lemma 4.2, and Remark 4.1, we obtain the following corollary.

Corollary 4.2. Let f : R™ — S™ be a map. Then, exactly one of the following two
systems is consistent;
(i) There exists z € R™ such that f(z) € —S7,;
(ii) There exists B € S%, such that
max{tr(f(z)X) | tr(BX) =1,X € S1} > 0 for all z € R™.

This implies a test giving a criterion for satisfaction or dissatisfaction of Slater’s con-

dition.

5. CONCLUSION

We have extended some concepts of alternative theorems to set-valued case. Our theo-
rems give a natural generalization to ones having been researched since before. In addition,
these result can be used when we are to make sure a set precedes another. Note that there

are several ways of reduction of scalarizing functions to ease calculation of their values.
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