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ABSTRACT. When investigating truncated Toeplitz operators, the question of
considering two different model spaces naturally appears. The goal of this
paper is to present asymmetric truncated Toeplitz operators with L? symbols
between two different model spaces given by inner functions such that one
divides the other. Asymmetric truncated Toeplitz operators can be character-
ized in terms of operators of rank at most two. Mainly, the results from [u] are
presented.

1. INTRODUCTION

Toeplitz operators on the Hardy space H?, which are compositions of a multi-
plication operator and the orthogonal projection from L? onto H?, constitute a
classical topic in operator theory. In the important paper ([20]) Sarason inves-
tigated truncated Toeplitz operators, thus generating huge interest in this class
of operators; see, for example [1, 7, 9, 10, 11, 12, 13, 15]. Instead of the classical
Hardy space H?, they act on a model space Kz = H? © §H? associated with a
given nonconstant inner function 6, and a multiplication operator is composed
with the orthogonal projection from H? onto KZ.

Asymmetric truncated Toeplitz operators involve the composition of a multi-
plication operator with two projections from H? onto a model space, associated
with (possibly different) nonconstant inner functions o and 6. They are natural
generalizations of rectangular Toeplitz matrices, which appear in various con-
texts, such as the study of finite-time convolution equations, signal processing,
control theory, probability, approximation theory, diffraction problems (see for
instance [2, 3, 4, 17, 18, 1, 21]).

Asymmetric truncated Toeplitz operators were introduced (in the context of
the Hardy space HP on the half-plane, with 1 < p < co) and studied in the case
‘of bounded symbols in [&]. The following review paper presents properties of an
asymmetric truncated Toeplitz operator on the unit disc and is mainly based on
the results from [65]. This work was inspired by the work of Sarason ([20]), where
many interesting properties of truncated Toeplitz operators were given.

Here we consider bounded asymmetric truncated Toeplitz operators with L?
symbols, defined between two model spaces K? and K2, where a divides 6
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(@ < 6). We study various properties of these operators and their relations
with the corresponding symbols, and we present a necessary and sufficient con-
dition for a bounded operator between two model spaces to be an asymmetric
truncated Toeplitz operator in terms of rank two operators, thus generalizing a
corresponding result of Sarason for the case where o = 8. In the asymmetric case,
however, a more complex connection between the operators and their symbols is
revealed, which is not apparent when the two model spaces involved are the same.

2. MODEL SPACES AND DECOMPOSITIONS

Let L? denote the space L*(T,m), where T is the unit circle and m is the
normalized Lebesgue measure on T, and let /2 be the Hardy space on the unit
disc D, identified as usual with a subspace of L2. Similarly, L = L*°(T,m) and
we denote by H® the space of all analytic and bounded functions on D. Denoting
by HZ the subspace consisting of all functions in H? which vanish at 0, we have
L?>© H? = HZ, and we denote by P and P~ the orthogonal projections from L?
onto H? and Hg, respectively.

With any given inner function 6 we associate the so called model space KZ,

defined by K2 = H? © H?. We also have K7 = H? N0 HZ, and thus
fekK? ifandonlyif 6f € HZ and f e H2

In particular, if f € KZ, then 6f € HZ. Let P, be the orthogonal projection
Py: L* - K. '
- Model spaces are also equipped with conjugations (antilinear isometric invo-
lutions), which are important tools in the study of model spaces and truncated
Toeplitz operators (see for example [1-{, 15, 14]). For a given inner function 6,
the conjugation Cy is defined by Cy: L2 — L2,
Cof(2) = 02f(2).

It is worth noting that Cy preserves the space KZ? and maps 6H? onto L2 © HZ.

Recall that for A\ € D the kernel function in H? denoted by k, is given by
ka(z) = 1—_1;\; Similarly, for an inner function 6, in K? the kernel function &§ is
given by k§ = Pk, i.e., k§ = ka(1 — 0()\)6). The set {k§ : X\ € D} is linearly
dense in KZ. Since k§ € Kg°, where K§° denotes the subspace H® N KZ, the
space Kg° is dense in K7 (see [20]).

Defining k§ = Cyk{, we have in particular

K) = 1-0006(), K =2(6() - 6(0).
It is easy to see that, for all f € KZ,
(f ko) = f(0), (f,kg) = (Col)(0).

Now let us consider two nonconstant inner functions a and 6. If @b is an inner
function, we say that a divides § and we write o < 6.

Proposition 2.1. Let o, 8 be nonconstant inner functions such that a < 6. The
following holds:
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(1) K§ = K ®aKj,

(2) Py = Pa+aPed,

(3) kg = kg +al0)oks

(4) B = 2(0)fg + okg,

(5) Puk§ = kg, Puk§ = £(0)kg.

The following proposition describes some relations between decompositions and
conjugations. Note that, if & < 6, any f € K2 can be uniquely decomposed as
f=fi+af; for some f; € K2 and some f, € K2, 0ras f = fo + gfl, for some
f1 € K? and some f, € K%. Then the conjugati(:n Cp can be seen as Cy: K3 =
K!®aKi - K}=K3 @%Kg, oras Cp: K2 = K3 EB%K?, - K} =K2®aK3i.
Now we have:

Proposition 2.2. Let o, 8 be nonconstant inner functions such that a < 8. Then,
if L € K and f, € K3,

(1) Co(fr +afs) =Cefr+ 8Cafr,

(2) Co(f2+ £f1) = Cafy + aCs f2.

Let S be the unilateral shift on the Hardy space H? and, for a nonconstant
inner function 6, let Sp = PS5, K2 be the compression of S to KZ. The space K

is invariant for S*, thus (Sg)* = 5" k2. Note that, for any f € K2,

(2.1) Sof = zf = (Cof)(0)6 = Sf — (f,k3)6,
(2.2) Syf = 2(f - £(0)).

In particular,

(2.3) Syk8 = —0(0) kS, Spkl = —0(0)KS.

The function k¢ is a cyclic vector for Sy and k¢ is a cyclic vector for S} (see
[20, Lemma 2.3]). We can define the defect operators Iz — SpSy = k§ ® kg and
Iz — 5550 = k8 ® k8, using the notation (z ® y)z = (z,y)z for any z,7,z in a
Hilbert space H ([20, Lemma 2.4]).

3. ASYMMETRIC TRUNCATED TOEPLITZ OPERATORS

Let a,  be nonconstant inner functions. For ¢ € L? we define an operator
Al D C K — K2, as AL>f = Pu(pf) having domain D = D(A%*) = {f €
Kj: of € L*}. The operator A%® is closed and densely defined in K. Note
that Kg° C D(A%*). The operator A%* will be called an asymmetric truncated
Toeplitz operator. If this operator is bounded, then it admits a unique bounded
extension to K3, A%*: K7 — K2. By T (6, a) we denote the space of all bounded
asymmetric truncated Toeplitz operators. For a = 6 we will write Ag instead of
A%? (such operators are called truncated Toeplitz operators and were studied by
Sarason in [20]) and 7(#) instead of 7(9,0).
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It is easy to see that the following holds.
Proposition 3.1. Let «, § be any inner functions and ¢ € L. Then
(A5°f,9) = (£, A3°9) Jor all [ e D(A}?), g€ D(AZ").
Moreover, D(A3®) = D((A%*)") and (A%*)" = AZ°.
The following shows the first difference between asymmetric truncated and
truncated Toeplitz operators

Proposition 3.2. Let a, 8 be nonconstant inner functions such that o < 6. Let
AM be an asymmetric truncated Toeplitz operator with 1 € H?. Then

So AL f = A%°Sef  forall f € K.

Remark 3.3. Theorem 3.1.16 [5] implies that for nonconstant inner functions «, 8
such that @ < 6, if a bounded operator A: KZ — K2 intertwines S,, Sy, i.e.,
SoA = ASg, then A = Ai’a for some ) € H™.
Example 3.4. One can ask, whether a similar result as in Proposition 3.2 can
be obtained for A:Z’s with a < fand ¢ € H 2, but the answer is negative. For
example, let o = 22, 0 = 2", n > 5,9 = 2% and f = 2. Then SoAg’af = 2° but
AS’Sof =0.

The next theorem shows a necessary and sufficient condition for a bounded

asymmetric truncated Toeplitz operator to be the zero operator in terms of its
symbol.

Theorem 3.5. Let «, 8 be nonconstant inner functions such that o < 6. Let

A‘Z;o‘: K3 — K2 be a bounded asymmetric truncated Toeplitz operator with ¢ € L?.

Then AZ"" =0 if and only if p € aH?* + 6H2.

Corollary 3.6. Let o < 6 be nonconstant inner functions and let A%* € T (0, ).

For ¢ € L? there are functions ¥ € K2 and x € K“,2 such that A% = Aowix

Moreover, Azix Azf‘ﬂl iff =+ ck§, x1 = x — kb for some gonstant ¢.
The following properties can be immediately obtained from the previous results

by taking adjoint.

Corollary 3.7. Let A2?: K — K3, A%’ € T(a.6), a < 0, p € L?. Then

A2 =0 iff o € OH? + aH>.

Corollary 3.8. Let A°‘9' K2 — Kj, A%® € T(,6), a <0, p € L*. Then there

are functions ¢ € K2, x € K? such that A°‘9 Azfx

4. CHARACTERIZATIONS IN TERMS OF RANK—TWO OPERATORS

In [20, Theorem 4.1] a characterization of truncated Toeplitz operators in 7(f)
was presented using rank two operators defined in terms of the kernel function k3.
Following [6], an analogous result for asymmetric truncated Toeplitz operators
T (6, @) using the kernel functions k¢ and k§ can be presented.
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Theorem 4.1 (Theorem 5.1 [5]). Let a,8 be nonconstant inner functions such
that a < 0 and let A: K7 — K2 be a bounded operator. Then A € T(6, ) if and
only if there are ¢ € K2, x € Kj such that

(4.1) A— S, AS; =Y ®ky + kS ® X

It can be obtained a similar characterization for operators from 7 (a,6) by
taking adjoints in (4.1).

Corollary 4.2 (Corollary 5.2 [6]). Let o, 0 be nonconstant inner functions such
that o < 6 and let A: K2 — KZ be a bounded operator. Then A € T(«a,0) if and
only if there are Y € K2, x € K? such that

A—SASL =k @Y+ x @ kS

Sarason obtained also a characterization for truncated Toeplitz operators be-
longing to 7 (6) using the function k§ = Cyk{ instead of kS, by a simple application
" of the conjugation Cj to the result of Theorem 4.1 in the case o = 6. Here, follow-
ing [6] we will present that an analogous result holds for operators belonging to
T(8,a), a < 6. However, in the case of asymmetric truncated Toeplitz operators
the situation is more complex. The relation between a symbol of an asymmetric
truncated Toeplitz operator and a rank two operator appearing in (4.2) is more
involved.

Theorem 4.3 (Theorem 6.1 [(]). Let a,8 be nonconstant inner functions such
that o < 0, and let A: Kf — K2 be a bounded operator. Then A € T(0,a) if
and only if there are p € K2 and v € K2 such that

(4.2) A—S:ASy =p®k§+ ki Q.
Moreover, if A = AZ,’_‘:‘_X with ¥ € K% and x € KZ, then A satisfies (4.2) with
(4.3) p=CaPa(lx), v=Cup+S (aPox).

By taking adjoints in (4.2) we obtain a similar characterization for operators
from T (e, 6):

Corollary 4.4 (Corollary 6.2 []). Let a, 8 be nonconstant inner functions such
that a < 0, and let A: K2 — K be a bounded operator. Then A € T(a,0) if
and only if there are p € K2, v € K such that

A—-S;AS, =k @u+veks

It is clear that if an asymmetric truncated Toeplitz operator A satisfies equation
(4.2) with some p, v, then that equation is also satisfied if p, v are replaced by

(4.4) pWo=p+bkS, vV =v—bk
respectively, for any b € C.. On the other hand, it is also true that the symbol of

A= Af,;i)-( € T (9, a) is not unique, and by Corollary 3.6 we can replace ¥ € K2

and x € KZ by
(4.5) W =1 +ckd € K2, X' =x—ckd € KZ,
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respectively, for any ¢ € C. Using (4.3), it is easy to see that the following relation
between the freedom of choice of u, v on the one hand, and v, x on the other,
holds.

Corollary 4.5 (Corollary 6.3 [6)]). Let p € K2 and v € K3 be defined by (4.3) for
given i) € K2 and x € K3, and let i/ € K? and V' € K} be defined analogously
for ¢/ € K2 and X' € Kj. If (4.5) holds, then
W=p—c %(O)IES‘ ,V=v+¢e 5(0)123.

The examples below illustrate the result of Theorem 4.3 in the case of Toeplitz
matrices.
Example 4.6 (Example 6.4 [6]). Let us consider o = 22, 6 = 25 ‘and a Toeplitz
operator A = Af;ﬂ-( Assume that 1) = ag + a;2 and x = by + b_12 + b_p2% +
5_323 + 6_424 = (Eo + l-)_lz + 5_22_2) +_'23(l-)_3_+ (-)_42). _Then_ Cpt = a; + apz,
Cp2Ppz% = b_g+b_3z and S*(2%(bp +b_12+b_22?)) = bpz +b_12% +b_223. Note
that A — 57, AS,s has a matrix representation

0 0 0 0 by
ay ap+by by by b3 /)’

which can be expressed as
(b_4 + b-gZ) ® 2z ® (C_ll + (L_lo + Bo)z + 5_132 + 5_223).

On the other hand, let A — S}, AS,s have a matrix representation

0O 0 0 o bo
ag ay az az as+by )’

which can be expressed as

pR2* +2Qv = (by+b2) ®2* + 2 ® (G + 12 + 822” + Gz2® + Gaz?).
Note that v = v,2 + 2%v,3 = (Gg +812) +2%(83 + 832+ @42%). Then ¢ = C,2P2v =
a1 + apz and x = G2 + @32® + (b +@4)2* + boz*. Hence by Theorem 4.1 we have
(4.6) A—Sp2AS% = (a1 +apz) ® 1+ 1® (Gg2 + G32% + (by + G4) 2> + boz*)

Requiring that v,s is orthogonal to z? (see Theorem 6.3) determines that ay = 0.

On the other hand, we have some freedom in defining ¥ and x; namely ¥, =
s+apz and x; = E+ Ggz + G322 + (by +@4) 2% + bp2* also satisfy (4.6) if we assume
that t +s = q;.

Example 4.7 (Example 6.5 [(]). Let us now take a.= 23, 8 = z3((A — 2)/(1 —
Xz))2, A € D and consider the operator A = Afb’ii, where ¢ = ap+a;2+a2% € K2
and x = (by + b1z +bp2? + b3z® + by2%) (1 — Az)~2 € K3 (see [13, Corollary 5.7.3]).
Then by Theorem 4.3

A-S:AS; =p® (V22 —2228 + 241 - X2) 2+ 22 ®v,
where p = by + (bg + 2Xby)z + (by + 3A%bg + Ab3)2? and v = ((‘12 + (@) — 2)\a@p)z +
(Bo + 8o — 2Ad1 + Ad2)2? + (b1 + A%@ — 2Xdo)2° + N%@p2?) (1 — Az) 72
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5. CHARACTERIZATIONS IN TERMS OF RANK—ONE OPERATORS

Our aim now is to describe the classes of symbols of an operator A € 7 (6, @)
for which the right hand side of (4.2) is a rank one operator. The corresponding
question regarding the equation (4.1) is trivial by Corollary 3.6, since the right
side of (4.1) is a rank one operator if and only if ¢ = c- k§ or x = c- kS with
¢ € C. In the case a = 8 the question regarding the equality (4.2) also has an
easy answer, since the relation between the symbols in (4.1) and (4.2) is ¢ = Cypv
and x = Cyp.

Theorem 5.1 (Theorem 7.2 [6]). Let a < 6 be nonconstant inner functions and
let AS%. € T(6,a), where ¢ € K2 and x € K2. Then

P+X
(1) A¢+x S*Afping p® kS for u € K2 if and only if there is s € C such

that ¥ = sk§, Pex = —§k6%,

(2) Afiix S*Aﬁ,ing I}(‘,"@u for v € KZ if and only if Pa(xg) = const - k.

Remark 5.2 (Remark 7.3 [6]). When the right hand side of the characterization
(4.1) reduces to a rank one operator const - k¢ ® kY it is immediate that this
operator can be expressed in terms of the symbol 9 + ¥ as

const - kg ® ko Fergd ® ko +ki® PCk"X (¢(0)||ko 7%+ X(O)”ko"_z)ko ® ko

It might be of independent interest to consider the case when the right hand side
in the equation (4.2) reduces to a rank one operator const - k§ ® k§. In fact this
operator can be expressed in terms of the symbol ¥ + ¥ as

const - k& @ k§ = Fergn ® kS + kS ® Perev =
(Xa(OMESI1* + £(0)(0) - X OIRIID)) ks @ RS,

A similar question can be asked regarding the case when the right hand side of
the equation (4.2) reduces to a rank one operator const - k§ ® k§. We have

const - k& @ kg = Pcicgﬂ Rk +EE® Pcicg’/ =
(X — X2 @O +$(0)) keI~ ks @ k.
6. FROM THE OPERATOR TO THE SYMBOL

In the case of a classical Toeplitz operator T, on H?, the (unique) symbol
¢ can be obtained from the operator by the formula lim,_,., 2"T,2". In the
case of a truncated Toeplitz operator, i.e., of the form Ag"’ with a = 4, one

can obtain a symbol belonging to H? + H? from the action of Ag on kY and

¢ ([4]). A similar result can be obtained for an asymmetric truncated Toeplitz
operator A € T (6, @) by considering the action of the operator A and its adjoint
on reproducing kernel functions of the same kind, see [6]. Here we concentrate
on the question wether the characterizations of asymmetric truncated Toeplitz
operators in terms of operators of rank two at most, presented in the previous
sections, allow us also to obtain a symbol for the operator.



C. CAMARA, K. KLIS-GARLICKA, and M. PTAK

Regarding the first characterization, it follows from Theorem 4.1 that, if Ais a
bounded operator and satisfies the equality (4.1), then A = Az;i).(. Remark that
by Corollary 3.6 we know that i and x are not unique and we can adjust the
value of either ¥ or x at the origin.

For a = 6 the characterization (4.2) of truncated Toeplitz operators in Theorem
4.3 reduces to Sarason’s ([20, Remark, p. 501]). In that case the relation between
¥, x in the symbol of A% +5 and p, v is given by the conjugation Cp, namely
u = Cpx and v = Cyyp. Thus one can also immediately associate a symbol of
the form % + X to a truncated Toeplitz operator satisfying that equality. In
the asymmetric case, however, Theorem 4.3 unveils a more complex ¢onnection
between the rank-two operator on the right-hand side of (4.2) and the symbols
of Az;i)_(, and finding a symbol in terms of y and v for an operator A satisfying
equality (4.2) is more difficult.

To solve that problem in the case of asymmetric truncated Toeplitz operators
we start with two auxiliary results.

Lemma 6.1 (Lemma 8.3 [t]). Let ¢ € K2, x € K§. Assume that X = xo + £xa
according to the decomposition K = K3 ® 2K2. If
U= CaPa(g X) +5128‘, v=Cub+ S*(aPs x) — bl~cg

for fited b € C, then

¥ = Cava — (x2(0) ~55(0))K5.
Xo = Catt —bKg, o = Sava + (xo(0) — b(0)) k¢,

where v = v, + ave according to the decomposition K = K2 ® aK3.

%

Lemma 6.2 (Lemma 8.4 [6]). Let A € T (6, a) satisfy the equation

A-SiASy =pRk+ki v
forp € K2, v € K2. Then u and v can be chosen such that Ps (@v) is orthogonal
to I.cog. In this case, p and v are uniquely determined.

When investigating symbols of the asymmetric truncated Toeplitz operator, it
is worth to have in mind Corollary 3.6 saying that it is enough to find one of
them. Following [6] we have

Theorem 6.3 (Theorem 8.5 [6]). Let a,0 be nonconstant inner functions such
that a < 6 and let A be a bounded operator satisfying

(6.1) A-SiASy=pRk+k®v
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forpe K2, ve K2. Then A= Azi , where

% =CoPalv — ckl) = CoParv — 2L(0)kg € K2 and
x =SePea(v — cko) + —Ca(,u + k)

—(SePaau-i—c (O)k0 )+ %(Cap,-l-ckg‘) €eK; =Ko ng with
_8
¢ =(Poav, K§)IRF 12
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