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1. Introduction

We confirm various kinds of geometric characterizations of a standard normal distribution with Pearson’s finding
probabilistic point 0.612003 and its cumulative probability 0.2702678 on a standard normal distribution [1]. After Pearson
proposed that, their numbers were studied by Kelley [2, 3], Mosteller [4], Cox [5] and many researchers [6‐12]. Our studies
[13‐17] are also some ofthem. Sclove [6, 7] explained Cox’s proposal to us as the clustering ofnormal distribution. Nakamori
et al [8] also mentioned that Cox’s proposal was one of the original papers of \mathrm{K}‐means Algorisms. Kelley’s formulation,
 $\phi$( $\lambda$)=2 $\lambda \Phi$(- $\lambda$) , is also known as the 27 percent rule [9‐12]. We found the other characterizations about 0.612003 from the
parabolic curves ofthe cost ofthe repetitions game ofcoin tossing [13] and the square on a standard normal distribution with
the probabilistic point 0.612003 [14‐17].

In this paper, we confirm several characterizations based on this paper title. First, we show the geometric characterizations
both Bemoulli differential equations [18] of inverse Mills ratios [19, 20] as the hazard functions and survival functions on
standard normal distributions. At the same time, we find that Pearson’s 0.612003 should be also an important role in their
relations. Second, we clarify that variable coefficient second‐order linear homogeneous differential equations [21] are related
to a standard normal distribution. Especially, Sturm‐Liouville form [22] with a probability density function ofa standard normal
distribution is shown concisely. Moreover, we illustrate that the value 0.612003 shows the curve which is the integral form of
the cumulative distribution has the tangent lines on essential key points.

Furthermore, we also find the similar tendencies from European and Oriental historical cultures about the relations close to
theology between circles and squares. Coincidentally, we get a practical approximated value 0.612004 from an equilateral
triangle on the geometric characterization between circles, squares and a standard normal distribution instead of Pearson’s
finding true value 0.612003.
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Figure 1 Concepts of integral forms of various kinds of cumulative distribution functions and their probability density
functions. (a) Triangular distribution, (b) Uniform distribution, (c) Exponential distribution and (d) Standard normal distribution.

2. Our Concepts of This Study
Prof. Sandoh who was one oftwo referees ofthe first author’s doctoral thesis [14] advised us to reconfirm the calculations

practically about our previous research [13, 14] such as a general integral form [23]. We reconsider that as the following
equation

 E(U|U<- $\lambda$)=\displaystyle \frac{\int_{-\infty}^{- $\lambda$}u $\phi$(u)du}{\int_{-\infty}^{- $\lambda$} $\phi$(u)du}=-\frac{ $\phi$( $\lambda$)}{ $\Phi$(- $\lambda$)}=-2 $\lambda$ (1)

as well as using the regression analysis [13, 14].  $\phi$(u) is a probability density function of a standard normal distribution on
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its probabilistic point \mathrm{u}.  $\Phi$(- $\lambda$) is a calculated value of a cumulative distribution function from -\infty to - $\lambda$ on  u.  $\lambda$ that
is about 0.612003 should be an important role ofthis study on  u.  $\phi$(u)/ $\Phi$(-u) is an inverse Mills ratio [19, 20]. Prof. Oya
who was the other referee recommended us to investigate the tendencies between squares and normal distributions about our
previous research [14]. We think oftwo precious advices as the concepts such as the integral forms of cumulative distribution
functions like an idea by Nagasaka, Tsukamasa and Hashimoto [24] in Figure 1. That is, several putple 1‐dot lines are shown
in Figure 1. In this study, we clarify that the curve of an integral form ofa cumulative distribution function of standard normal
distribution has a principal role such as two types of differential equations and passes through several crucial points on their
equations in this paper. By the way, Kelley also proposed the 27 percent rule formulation about  $\lambda$=0.612003 as follows

\displaystyle \frac{ $\phi$( $\lambda$)}{ $\Phi$(- $\lambda$)}=2 $\lambda$ from \displaystyle \frac{d $\phi$(u)}{d\mathrm{u}}=-u $\phi$(u) and \displaystyle \frac{d $\Phi$(-u)}{du}=- $\phi$(u) . (2)

At this time, we show that the fact,  $\phi$( $\lambda$) is equal to 2 $\lambda \Phi$(- $\lambda$) from Equations (1) and (2), brings us the equilibrium points
in Figure 2. That is to say, a positive retum is equal to its standard deviation as maximal loss [16, 17] and a negative return is
equal to that as maximal profit [13‐15, 17] under the condition that has the expected value as  $\lambda$ and its standard deviation 1.0
in Figure 2. From Figure 2, we confirm that the square whose length is  2 $\lambda$ is an expected value of a truncated normal
distribution [25].
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Figure 2 Equilibriun points both positive or negative returns and their risks under the condition on a standard nonnal
distribution ( $\lambda$=0.612003, \mathrm{t}=1.0 , Original reference [17
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Especially, our concept about a negative return is similar to the meaningful insists of both Prof. Watanabe’s website [26]
and Prof Tanioka’s textbook [27] as the fee of gambling. On the other hand, the other about a positive return is similar to the
general thinking about that a capital return is greater than its growth return historically such as Piketty’s proposal [28].

3. Bernoulli Differential Equations for Inverse Mills Ratio
In section 2, we confirm that the equilibrium points on a standard nornal distribution are shown based on  $\lambda$=0.612003.

According to Isa’s research [20], we rethink of the following formulations as Bemoulli differential equation with a standard
normal distribution when we consider the tendencies of an inverse Mills ratio and a hazard function as the special cases on  $\lambda$.

The equation such as Bernoulli differential equation with a standard normal distribution is also mentioned in Prof. Kijima’s
special lecture [18]. However, since we are interested in the geometric characterizations of that, we propose two types of
homogeneous Bemoulli differential equations. That is

., \backslash 1 ( 1 ) \wedge\prime\emptyset(u)_{-} .、
 $\Phi$(-ll)=\displaystyle \int

..

 $\Phi$ =\rfloor
 y(u)=

\mathrm{q}

(1

 2 $\lambda \Phi$
 0

 $\lambda \Phi$

 u=

If u=

If u=

..  $\phi$( $\lambda$)= 0 , 1.1, 29, 30
Survival ratio \mathrm{c} |\mathrm{n}C= $\Phi$(- $\lambda$) then
standard normé

\displaystyle \frac{ $\phi$(u)}{\mathrm{D}(- $\lambda$)+ $\Phi$(-u)}=\frac{ $\phi$( $\lambda$)}{2 $\Phi$(- $\lambda$)}= $\lambda$
\displaystyle \frac{$\mu$_{u)}}{ $\Phi$(- $\lambda$)+ $\Phi$(u)}=\frac{ $\phi$( $\lambda$)}{2 $\Phi$(- $\lambda$)}= $\lambda$

 2 $\lambda \Phi$(-  2 $\lambda$  2 $\lambda \Phi$( $\iota$/)

 $\Phi$(-  $\Phi$(u),
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 $\Phi$(- $\lambda$)+ $\Phi$(-u) - $\lambda$ 0
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of a probabilistic dcnsity function 1
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of the standard normal distribution

\displaystyle \frac{dg(u)}{du}+ug(u)-g(u)^{2}=0, g(u)=\frac{ $\phi$(u)}{C+ $\Phi$(-u)} 1

\displaystyle \frac{dg(u)}{du}+\mathrm{u}g(u)+g(u)^{2}=0, g(\mathrm{u})=\frac{ $\phi$(u)}{C+ $\Phi$(u)}

2
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 2 $\lambda \Phi$(- $\lambda$)= $\phi$( $\lambda$)
 $\lambda \Phi$(- $\lambda$)

 $\phi$(u)
 $\lambda$  $\Phi$(- $\lambda$)+(\mathrm{D}(u)

)robabilistic density function
|\mathrm{f} a standard normal distribution:

 $\lambda$=0.612003

 $\phi$(u)=\displaystyle \frac{1}{\sqrt{2 $\pi$}}\exp(-\frac{1}{2}u^{2})  $\Phi$(- $\lambda$)=0.2702678
 $\phi$( $\lambda$)=2 $\lambda$

,
\neg

umulative distribution function

\mathrm{f} a standard normal distribution:
 $\eta$=0.30263084

 $\Phi$(u)=\displaystyle \int_{\rightarrow\urcorner}^{u}\frac{1}{\backslash ^{\prime'}2 $\pi$}\exp(-\frac{1}{2}u^{2})du  $\Phi$(- $\eta$)=0.3810856
 $\phi$( $\eta$)= $\Phi$(- $\eta$)

\rangle \mathrm{r}  $\Phi$(-u)=\displaystyle \int_{-\infty}^{-u}\frac{1}{\sqrt{2 $\pi$}}\exp\left(\begin{array}{l}
-u^{2}\underline{\mathrm{l}}\\
2
\end{array}\right)du
Figure 3 Bemoulli differential equation ofthe ratios ofprobability density function of standard normal distribution out ofits
cumulative distribution function with thinking of its truncated normal distribution on the probabilistic point  $\lambda$=0.612003.
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\displaystyle \frac{dg(u)}{du}+\mathrm{u}g(u)-g(u)^{2} =0, (3)g(u)=\displaystyle \frac{ $\phi$(u)}{C+ $\Phi$(-u)} .

\displaystyle \frac{dg(u)}{du}+ug(u)+g(\mathrm{u})^{2}=0, g(u)=\frac{ $\phi$(u)}{C+ $\Phi$(u)} . (4)

Based on the ideas ofasymptotic lines by Gordon [19] and Isa [20], we illustrate the Bernoulli differential equations as the
geometric curves in the upper chart \mathrm{o}\mathrm{f} $\Gamma$igure 3 with  $\lambda$=0.612003 . At this time, a constant C is changed by k from 0.0 to
3.0 by 0.1 to illustrate those curves clearly. Especially, we confirn that their tendencies are shown as the special types with
 $\lambda$=0.612003 when k=0.0 or 1.0. Moreover, 0.30263084 that is also a probabilistic point with the same values ofboth
its cumulative distribution function and probability density function is another important point because the inverse Mills ratio
is equal to 1.0. Under the condition of u=0 , we fmd the inverse Mills ratio is 2 $\phi$(0)(=2/\sqrt{2 $\pi$}) as 2 times of  $\phi$(0) . The
lower chart also ilIustrates the geometric tendencies about Equations (3) and (4) divided by u=0 symmetrically.

4. Sturm‐Liouville Differential Equations for a Standard Normal Distribution
In section 2, we mentioned our research concepts as the integral forms of a cumulative distribution of a standard normal

distribution. We searched for their several characterizations [29, 30] and their differential equations about nonnal distribution
[30, 31]. From our investigations, we propose the variable coefficient second‐order linear homogeneous differential equation
in Figure 4.

Sturn\vdashLiouville differential equation:  $\phi$(u)(h_{l}(u)-uh_{2}'(\mathrm{u})-h_{2}(u))=0
StuimLiouville form: ( $\phi$(u)h_{l}(u))'-( $\phi$(\mathrm{u})h_{2}(\mathrm{u}))=0

Tangential equation: f(u)=\left\{\begin{array}{ll}
-(1- $\Phi$(- $\lambda$))u+2 $\lambda \Phi$(- $\lambda$) & (-2\leq u\leq 0)\\
- $\Phi$(- $\lambda$)u+2I_{\vee} $\Phi$(- $\lambda$) & (0\leq u\leq 2
\end{array}\right.
Probability density function of a standard normal distnibution:  $\phi$(u) Equiliburium point
Cumulative distribution function of a standard nornal distribution:  $\Phi$(-u) of an inverse

Intercept form of a linear equation for winmers : -\displaystyle \frac{1}{ $\lambda$}\mathrm{u}+\frac{1}{x\mathrm{D}(- $\lambda$)}$\phi$_{?}=1
Mills ratio : \displaystyle \frac{ $\phi$( $\lambda$)}{ $\Phi$(- $\lambda$)}=2 $\lambda$

Intercept form of a linear equation for losers : \underline{1}\mathrm{u}+$\phi$_{?}\underline{1}=1
 $\lambda$(\displaystyle \frac{1+ $\Phi$(- $\lambda$)}{1- $\Phi$(- $\lambda$)})  $\lambda$(1+ $\Phi$(- $\lambda$))

Intercept form of a lmear equation far a banker -- -\displaystyle \frac{1}{ $\lambda$}\mathrm{u}+\frac{1}{ $\lambda$}h=1 U_{W}(t)=( $\phi$( $\lambda$)- $\lambda \Phi$(- $\lambda$))\sqrt{t}= $\lambda \Phi$(- $\lambda$)\sqrt{t}
Utility fUmction for winners:

Figure 4 Geometric relationships between Sturm‐Liouville differential equation and standard normal disUibution with a
circle, squares, meaningful rectangles, their diagonals, and special tangent lines under  $\lambda$=0.612003.
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That is

\displaystyle \frac{d^{2}h_{2}(u)}{d\mathrm{u}^{2}}-u\frac{dh_{2}(u)}{du}-h_{2}(u)=0 . (5)

The way of an expression of h_{2}(\mathrm{u}) in Equation (5) is based on the descriptions of our previous research [14]. The
formulations of h_{2}(u) are shown as the following equation

h_{2}(u)=A( $\phi$(u)-u $\Phi$(-u))+B( $\phi$(u)+u $\Phi$(\mathrm{u})) . (6)

If we consider the conditions dh_{2}(u)/du=1/\sqrt{2 $\pi$} and h_{2}(u)=1/2 in Equation (5), we get the answer with A=

1.0 and B=0.0 in Equation (6). Therefore, we also confirm that the special curve in Figure 4 passes through several
fundamental points with  $\lambda \Phi$(- $\lambda$) and  $\lambda$(1+ $\Phi$(- $\lambda$)) [17] . At the same time, we fmd their points also have the crucial
tangent lines shown in Figure 4. Moreover, we illustrate a true circle with a square and a standard normal \mathrm{d}\mathrm{i}\mathrm{s} $\vartheta$ibution in Figure
4 [17]. The center ofthis circle is an intersection of meaningful rectangle diagonals. Without passing through the intersection,
we fmd the other important line to distinguish into the separated squares by the proportion  $\Phi$(- $\lambda$):1- $\Phi$(- $\lambda$) .

We reconfirm the geometric characterizations about  $\lambda$=0.612003 with considering a square, a circle and a normal
distribution. And their tendencies have a special differential equation as the following Sturm‐Liouville form [22]

( $\phi$(u)h_{2}'(u))'+( $\phi$(u)h_{2}(u))=0 . (7)

At this time, to investigate the tendencies ofthe combinations between A and B in Equation (6), A and B are changed
by the values from 0.0 to 1.0 by 0.25 respectively in Figure 5.

Probability density inction \mathrm{o}\mathrm{t}\cdot \mathrm{a} standard normal dhstnbution.  $\phi$(u)Sturni‐Liouville differential equation:
Cumulative distribution function of a standard normal distnbution:  $\Phi$(-u)

 $\phi$(u)\langle l_{l_{2}}(u)-uh_{2}(u)-h_{2}(u))=0

\mathrm{C}\mathrm{a}\mathrm{s}\mathrm{c}:A\mathrm{S}\mathrm{t} $\iota$-\succ \mathrm{L}\mathrm{i}_{\mathrm{o}\mathrm{u}\mathrm{V}\mathrm{i}}11\mathrm{e} form: ( $\phi$(u)h_{\dot{r}_{\sim}}(\mathrm{u}))-( $\phi$(u)h_{r}.(u))=0
\prime $\varsigma$:_{\mathrm{o}} $\xi$_{r_{*}} Vanablcicoetficienl ’;ec.ond‐or \mathrm{k}1\mathrm{i}\mathfrak{n}\mathrm{e}\mathrm{a}\mathrm{r}\mathrm{h}_{\mathrm{o}\mathrm{m}()}\mathrm{g}\mathrm{c}\mathrm{n}\mathrm{C}\mathrm{O}\mathrm{t}\mathrm{L}\mathrm{s}d^{2}h(u\`{i} dh_{-}l $\iota$\ell 1 $\vartheta$^{$\Phi$^{\backslash $\vartheta$_{\sim}^{\backslash }}} //\backslash ^{\mathrm{s}\backslash }

diffcrcntial  $\eta$uation for

 h_{?}(u)=\mathrm{A}(\emptyset(u)-u $\Phi$(-1l))

\vee dh_{2}(u\underline{)}du.=-A $\Phi$(-u) \displaystyle \frac{dh_{\angle}(0)}{du}=-A $\Phi$(-0)=-
\displaystyle \frac{dh_{2}(u)}{du}=A $\phi$(u) \displaystyle \frac{dh_{2}(0)}{d\mathrm{u}}=r1 $\phi$\langle 0)=\frac{A}{\sqrt{2 $\pi$}} \mathrm{t})(u)

 $\Phi$(u)Case: B

(|- $\Phi$(-u))
h_{2}(u)=B( $\mu$ u)+u $\Phi$(u))

\displaystyle \frac{dh_{2}(u)}{du}=B $\Phi$(\mathrm{u}) \displaystyle \frac{dh_{2}(0)}{du}=B $\Phi$(0)=\frac{B}{2}  $\Phi$(-u)

\displaystyle \frac{dh\underline{},( $\iota$ r)}{du}=B $\phi$(\mathrm{u}) \displaystyle \frac{dh_{2}(0)}{du}=B $\phi$(0)=\frac{B}{\sqrt{2 $\pi$}}  $\Phi$(-u)

A=1.0,
B=0.0, 0.25, 0.5, 0.75, 1. |0.75 , 1.0

A=0.75,
Probabihty density B=0.0 , 0.25, 0.5. 0.75, 1. , 0.75, 1.0
funcbon of a trancated

normal distnbution :
A=0.5,

 $\psi$(|p)=\displaystyle \frac{ $\phi$(\mathrm{u})}{\fcircle(- $\lambda$)} B=0.0, 0.25.0.5. 0.75, 1. .0.75, 1.0

Equffiburium pomt A=025,

betwecn a bankcr, wmncrs
B=0.0 , 0.25, 0.5, 0.75, 1. , 0.75, 1.0

arid losers : Of  $\lambda$ ) =2 $\lambda \Phi$(- $\lambda$) A=0.0,
 $\lambda$=0.612003 B=0.0 , 0.25, 05, 0.75, 1. , 0.75, 1.0

Figure 5 Various geometric characterizations of Strum‐Liouville differential equations with standard normal distribution.

5. Square and Circle on Standard Normal Distribution and Approximated Vałue about Polygons
Although we confirm that there is a relationship between a circle, a square and a normal distribution, we cannot get a correct

value  $\lambda$ as well as drawing an equilateral triangle and a regular hexagon from their characterizations which are similar to the
problem of squaring the circle [32, 33]. Instead ofthat, we can get the practical approximated Pearson’s findin\mathrm{g} value. That is

 $\lambda$\displaystyle \cong\frac{1+\sqrt{3}}{1+2\sqrt{3}}=0.612004 . (8)

This approximated value is estimated by drawing equilateral triangles and regular hexagons shown in Figure 6.
By the way, there are a lot ofthinking about circles and squares for a long time all over the world religiously and historically

[32‐39]. We also show one oftheir tendencies with a standard normal distribution based on  $\lambda$=0.612003 . Coincidentally,
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since its value is close to an inverse of golden ratio, we illustrate an imitated figure like one of da Vinci’s works “Vitruvian
Man” [34.35] and based on “Mandalas” [36, 37]. According to Prof. Ida’s opinion, it is said that the proportion ofthat by da
Vinci should be less than the inverse ofgolden ratio (\cong 0.618) slightly.

From oriental areas to western areas, there are many theological cultures about circles and squares. And from Egyptian
civilization to Greek era and Roman era, the normal distribution had not been known before De Moivre (1733), Laplace (1812),
Legendre (1805), and Gauss (1809) studied it [38,39]. At that time of Renaissance era, it is said that da Vinci was interested in
the golden ratio, the Fibonacci number, and theology about squares and circles.

Originally, mathematics and statistics have been developed in search of scientific evidences for the development ofbusiness,
politics, sociology, life science, technology and any other fields for happiness of human beings. In order to pursue that, we
propose their geometric characterizations ofthe standard normal distribution in this paper.

We estimate the practical approximated value such as “Squaring the circle” which is simmilar to a problem
proposed by ancient geometers. https: //\mathrm{e}\mathrm{n} .wikipedia.org wiki /\mathrm{S}\mathrm{q}\mathrm{u}\mathrm{a}\mathrm{n}\mathrm{n}\mathrm{g}_{-}\mathrm{t}\mathrm{h}\mathrm{e}_{-}circle (Access date: November 18th, 2017)

Our concept ofthe integration of standard normal disribution with a square and a circle is similar to “Mandala” and
\mathrm{c}

‘Vitruvian Man” which is one of da Vinci’s works coincidentally. The oniginal reference websites are
\mathrm{h}0\mathrm{p}\mathrm{s}://\mathrm{e}\mathrm{n} .wihpedia.org /\mathrm{w}\mathrm{i}\mathrm{h}/Mandala,
\mathrm{h}\mathfrak{n}\mathrm{P}\mathrm{s}://\mathrm{i}\mathrm{a} .wihpedia.org/\dot{\mathrm{w}}\mathrm{k}\mathrm{i}/ 曼茶羅,
https: ljen.wihpedia.orywikifViffuvian-\mathrm{M}\mathrm{a}\mathrm{n} (Access date: July, 3\mathrm{t}\mathrm{h} , 2017).

Moreover, we are able to refer the idea and figure of Prof. Ida’s website which is discribed that the ratio
should be less than the inverse number of the golden ratio.

Reference: Ida, \prime 1^{\backslash }. , “Vitmvian Man by Leonardo da Vinci and the Golden Ratio
http: //\mathrm{w}\mathrm{v}\cap \mathrm{v} . crl.nitech. ac.\mathrm{j}_{\mathrm{P}^{f'}}\prime .html (Access date: July,  3\mathrm{t}\mathrm{h} , 2017).

Figure 6 Approximated value of  $\lambda$=0.612003 on the standard normal distribution which associates with the equilateral
triangles and hexagons based on the squaring the circle with da Vinci’s work.

6. Conclusions

In this paper, we deal with the geometric characterizations about a standard normal distribution.
First, we clarify that the inverse Mills ratio shown by Pearson’s finding value 0.612003 is formulated as Bernoulli differential

equations. Second, we confirm that the integral form of a cumulative distribution function of standard normal distribution is
expressed as Sturm‐Liouville differential equation. Third, although we admit we cannot draw a equilateral triangle correctly,
we estimate the approximated value 0.612004 and illustrate the similar chart which is our mathematical concept about da
Vinci’s art “Vitruvian Man”’ and “Mandalas.” Finally, we realize that the true height of densities of a standard normal
distribution is much smaller than we thought of that shown in many textbooks under the aspect ratio is 1.0 throughout this
study.
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