On the number of independent orders

Akito Tsuboi

Institute of Mathematics, University of Tsukuba

Abstract

In this note, we present and prove some lemmas that are useful when studying the number of independent orders. We can show $\kappa_{srd}^m(T) = \infty \Rightarrow \kappa_{srd}^1(T) = \infty$, using these lemmas. Its proof will be given in a forthcoming paper. (The details are not given in this note.)

We fix a complete theory T, and we work in a very saturated model of T. Letters x, y, \ldots are used to denote finite tuples of variables. X is a set of x-tuples and Y is a set of y-tuples. In many cases, they have the form

$$X = (x_{\eta})_{\eta \in \omega^n}$$
 and $Y = (y_{\nu})_{\nu \in n \times \omega}$,

where $n \in \omega$. For sets Z, W of finite tuples of variables and a set $\Gamma(Z, W)$ of formulas, the set of all formulas $\exists z_0 \ldots \exists z_{m-1}(\gamma_0(z, w) \land \ldots \land \gamma_{m-1}(z, w))$, where $m \in \omega, \gamma_i(z_i, w_i) \in \Gamma, z_i \subset Z, w_i \subset W$, is denoted by $\exists Z\Gamma(Z, W)$.

Definition 1. Let $n \in \omega$.

- 1. Let $X = (x_{\eta} : \eta \in \omega^n)$ be a set of variables. Let $\Delta(X)$ be a set of formulas whose free variables are in X. We say that Δ has the subarray property if there is a set $A = (a_{i_0,\dots,i_{n-1}} : \langle i_0,\dots,i_{n-1} \rangle \in \omega^n)$ such that for any strictly increasing functions $f_i : \omega \to \omega$ (i < n), $A_{f_0,\dots,f_{n-1}} = (a_{f_0(i_0),\dots,f_{n-1}(i_{n-1})} : \langle i_0,\dots,i_{n-1} \rangle \in \omega^n)$ realizes Δ .
- 2. Let $Y = (y_{\nu})_{\nu \in n \times \omega}$. Let $\mathcal{E}(Y)$ be a set of formulas whose free variables are in Y. We say that \mathcal{E} has the (*n*-dimensional) subsequence property if there is a set $B = (b_{i,j})_{\langle i,j \rangle \in n \times \omega}$ such that for any strictly increasing functions $f_i : \omega \to \omega$ $(i < n), B_{f_0,\dots,f_{n-1}} = (b_{i,f_i(j)})_{\langle i,j \rangle \in n \times \omega}$ realizes $\mathcal{E}(Y)$.

Lemma 2. Suppose that $\Delta(X)$, where $X = (x_{\eta} : \eta \in \omega^n)$, has the sub-array property. Then a realization $A = (a_{\eta} : \eta \in \omega^n)$ of Δ can be chosen as an indiscernible array in the following sense:

(*) For finite subsets F, F' of ω^n , if F and F' are isomorphic as $\{\leq_0, \ldots, \leq_{n-1}\}$ -structures then a_F and $a_{F'}$ have the same L-type.

Proof. For simplicity, we assume n = 2. We write X as $X = (X_0, X_1, ...)$, where $X_i = (x_{i,j})_{j \in \omega}$. For each i, let $X_i = (x_{ij})_{j \in \omega}$ be the *i*-th row vector of X. Then

$$\Delta = \Delta((X_i)_{i \in \omega}) = \Delta(X_0, X_1, \dots)$$

has the subsequence property. So, for $A = (A_i)_{i \in \omega}$ realizing Δ , we can assume the A_i 's form an indiscernible sequence. Similarly, we can also assume $(A'_j)_{j \in \omega}$, where $A'_j = (a_{i,j})_{i \in \omega}$, is an indiscernible sequence. So A is an indiscernible array.

For $A = (a_{\eta})_{\eta \in \omega^n}$ and a subset F of ω^2 , a_F will denote the set $(a_{\eta})_{\eta \in F}$.

Lemma 3. Suppose that $\Delta(X)$ is realized by an indiscernible array $A = (a_{\eta} : \eta \in \omega^n)$. Let $X^* = (x_{\eta})_{\eta \in I^n}$, where I is an arbitrary ordered set. We define $\Delta^*(X^*)$ by: For all φ and $F^* \subset_{fin} I^n$,

$$\varphi(x_{F^*}) \in \Delta^* \iff \varphi(x_F) \in \Delta, \text{ for some } F \subset \omega^n \text{ with } F \cong_{\leq_0, \dots, \leq_{n-1}} F^*$$

Then Δ^* is consistent and is realized by an indiscernible array.

Proof. It is sufficient to show the consistency, since the indiscernibility condition can be added to Δ^* . Let $\varphi_i(x_{F_i^*}) \in \Delta^*$ (i < m). Choose $F_i \subset \omega^n$ (i < m) witnessing the definition of Δ^* . Then $\varphi_i(a_{F_i})$ holds for all i < m. We can also choose $F'_i \subset \omega^n$ such that $F_0^* \ldots F_{n-1}^* \cong F'_0 \ldots F'_{n-1}$. By the indiscernibility, $\varphi_i(a_{F'_i})$ holds for all i < m. This shows that $\bigwedge \varphi_i(x_{F_i^*})$ is satisfiable. \Box

Lemma 4. Suppose that $\mathcal{E}(Y)$, where $Y = (y_{\langle i,j \rangle} : \langle i,j \rangle \in n \times \omega)$, has the *n*-dimensional subsequence property. Then $\mathcal{E}(Y)$ is realized by $B = (b_{\langle i,j \rangle} : \langle i,j \rangle \in n \times \omega \}$ with the following property:

(**) By letting $B_i = (b_{i,j})_{j \in \omega}$ (i < n), B_i is an indiscernible sequence over $\bigcup_{k \neq i} B_k$.

Proof. Easy.

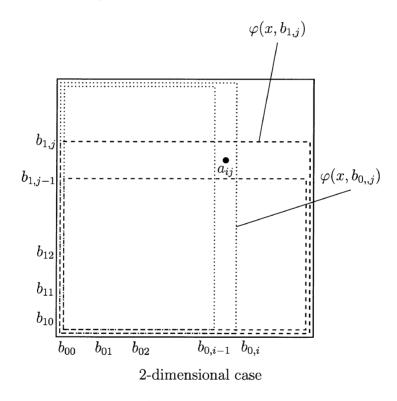
Example 5. Let $\varphi(x, y)$ be a formula. We say that T has n independent orders uniformly defined by φ if there are $A = (a_{\eta} : \eta \in \omega^n)$ and $B = (b_{i,j})_{\langle i,j \rangle \in n \times \omega}$ such that, for all $\eta \in \omega^n$ and $\langle i, j \rangle \in n \times \omega$,

 $\varphi(a_{\eta}, b_{ij})$ holds iff $j \ge \eta(i)$.

Let

$$\Gamma(X,Y) := \{\varphi(x_{\eta}, y_{i,j}) \text{ if } j \ge \eta(i) : \eta \in \omega^{n}, \langle i, j \rangle \in n \times \omega\}$$

Then T has n independent orders iff $\Gamma(X, Y)$ is consistent (with T). The set $\Delta(X) := \exists Y \Gamma(X, Y)$ has the subarray property and $\mathcal{E}(Y) := \exists X \Gamma(X, Y)$ has the n-dimensional subsequence property. (Notice that Δ and \mathcal{E} are sets of first-order formulas.)



From now on, $\Gamma_{\varphi,n,\omega}(X,Y)$ denotes the set described by the above example. By Lemma 3 (or by a direct argument), $\Gamma_{\varphi,n,\mathbb{Q}}$ is naturally defined. In particular, if T has n independent orders defined by φ , then $\Gamma_{\varphi,n,\mathbb{Q}}(X,Y)$ is consistent, and $\Delta(X) := \exists Y \Gamma_{n,\varphi,\mathbb{Q}}(X,Y)$ has the subarray property. We simply write $\Gamma_{\varphi,n}$ if we are not interested in the ordered set (ω or \mathbb{Q}).

Definition 6 (The Number of Independent Orders). Let $m, n \in \omega$. We write

- 1. $\kappa_{ird}^m(T) \ge n$ if $\Gamma_{\varphi(x,y),n}$ is consistent for some $\varphi(x,y)$ with |x| = m.
- 2. $\kappa_{ird}^m(T) = n$ if $\kappa_{ird}^m(T) \ge n$ and $\kappa_{ird}^m(T) \not\ge n+1$.

3.
$$\kappa_{ird}^m(T) = \infty$$
 if $\kappa_{ird}^m(T) \ge n \; (\forall n)$.

Definition 7 (The Number of Independent Strict Orders). Let $\Gamma^s_{\varphi(x,y),n}(X,Y)$ be the set:

$$\Gamma_{\varphi(x,y),n}(X,Y) \cup \bigcup_{j < n} \{ \forall x (\varphi(x,y_{i,j}) \to \varphi(x,y_{i+1,j})) : i \in \omega \}.$$

We write

- 1. $\kappa^m_{srd}(T) \ge n$ if $\Gamma^s_{\varphi(x,y),n}$ is consistent for some $\varphi(x,y)$ with |x| = m.
- 2. $\kappa_{srd}^m(T) = n$ if $\kappa_{srd}^m(T) \ge n$ and $\kappa_{srd}^m(T) \ge n+1$.
- 3. $\kappa_{srd}^m(T) = \infty$ if $\kappa_{srd}^m(T) \ge n \; (\forall n)$.

The definition of above invariants are due to Shelah, but with a slight modification.

- **Remark 8.** 1. Suppose that T has the independence property. Then $\kappa_{ird}^1(T) = \infty$: Since T has the independence property, there is a formula $\varphi(x, y)$ with |x| = 1 and $I = (b_i)_{i \in \omega}$ such that $\{\varphi(x, b_i)^{\text{ if } i \in F} : i \in \omega\}$ is consistent for any $F \subset \omega$. Choose an indiscernible sequence $I^* = (b_i)_{i \in \omega^2}$ extending I. Then I^* realizes $\exists X \Delta_{\varphi,\omega}(X, Y)$. By compactness, this shows $\kappa_{ird}^1(T) = \infty$.
 - 2. Let T_{rg} be the theory of random graphs. Then $\kappa_{ird}^1(T_{rg}) = \infty$ and $\kappa_{srd}^m(T) = 1$.
 - 3. If T has the order property, then $\kappa_{ird}^m(T) \ge m+1$. If T has the strict order property, then $\kappa_{srd}^m(T) \ge m+1$: Both can be proven similarly. For the case of strict order property, choose $\psi(x, y)$ with |x| = 1 and $I = (b_i)$ witnessing the property. For $u = u_0, \ldots, u_{m-1}$, let $\varphi_i(u, y) := \psi(u_i, y)$ (i < m). Then $\{\varphi_i(u, b_j)^{\text{if } j \ge \eta(i)} : i < m, j \in \omega\}$ is consistent, for any $\eta \in \omega^m$. This shows $\kappa_{srd}^m(T) \ge m+1$, since there is a formula with additional variables such that each φ_i is a specialization of the formula.

References

- [1] Saharon Shelah, Classification Theory: And the Number of Non-Isomorphic Models, North Holland, 2012 (paperback).
- [2] Vincent Guingona, Cameron Donnay Hill, Lynn Scow, Characterizing Model-Theoretic Dividing Lines via Collapse of Generalized Indiscernibles (Submitted on 23 Nov 2015)
- [3] Kota Takeuchi and Akito Tsuboi, On the Existence of Indiscernible Trees, Annals of Pure and Applied Logic/163(12)/pp.1891-1902, 2012-12