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For a fixed h>0 let U be a subset of functions  $\phi$:[-h, 0]\rightarrow \mathbb{R}^{n} , and let a map f : U\rightarrow \mathbb{R}^{n}

be given. The delay differential equation of the form

(1) x'(t)=f(x_{t})

can represent classical equations with constant delay, and equations with state‐dependent
delay as well. For given  $\phi$\in U , a solution of (1) with initial condition

(2) x_{0}= $\phi$,

is a map x : [-h, t_{ $\phi$} ) \rightarrow \mathbb{R}^{n} such that the segments x_{t} , defined by x_{t}(s) = x(t+s) for
s \in [-h, 0] , are in U for all t \in [0, t_{ $\phi$} ), the initial condition (2) is satisfied, moreover the
restriction of x to (0, t_{ $\phi$}) is differentiable, and (1) holds for all t\in(0, t_{ $\phi$}) .

If X^{0} denotes the Banach space C([-h, 0], \mathbb{R}^{n}) with the maximum norm | $\phi$|_{0}=\displaystyle \max_{-h\leq s\leq 0}| $\phi$(s)|,
U\subset X^{0} is open, and f : U\rightarrow \mathbb{R}^{n} is p‐times continuously differentiable, p\geq 1 is an integer,
then problem (1)-(2) has a unique solution x=x^{ $\phi$} , which is maximal in the sense that any
other solution is a restriction of x^{ $\phi$} . Then F(t,  $\phi$) =x_{t}^{ $\phi$},  $\phi$\in  U, 0 \leq t<t_{ $\phi$} , defines a con‐
tinuous semiflow so that the solution operators F(t, \cdot) : U\rightarrow U are C^{p}‐smooth on nonempty
domains. See [1, 2]. This is the classical framework for equations with constant delays.

For differential equations with state‐dependent delay (SDDEs) the above does not work.
H.‐O. Walther [6] developed a suitable theory to handle SDDEs: If U is an open subset of
X^{1} =C^{1}([-h, 0], \mathbb{R}^{n}) , equipped with the norm | $\phi$|_{1} = | $\phi$|+|$\phi$'|, f : U\rightarrow \mathbb{R}^{n} is C^{1}‐smooth,
and each Df( $\phi$) \in  L_{c}(X^{1},\mathbb{R}^{n}) has an extension D_{e}f( $\phi$) \in  L_{\mathrm{c}}(X^{0}, \mathbb{R}^{n}) with the continuity
property

U\times X\ni( $\phi$,  $\chi$)\mapsto D_{e}f( $\phi$) $\chi$\in \mathbb{R}^{n} is continuous,

then the set (in case it is nonempty)

X_{f}^{1}=\{ $\phi$\in U:$\phi$'(0)=f( $\phi$)\}
is a C^{1} ‐submanifold of X^{1} with codimension n . The manifold X_{f}^{1} can serve as a phase
space for SDDEs: Each  $\phi$\in X_{f}^{1} uniquely determines a maximal solution x^{\prime $\beta$} of (1)-(2) , the
map (t,  $\phi$) \mapsto  x_{t}^{ $\phi$} defines a continuous semiflow on X_{f}^{1} with C^{1}‐smooth solution operators

X_{f}^{1}\ni $\phi$\mapsto x_{t}^{ $\phi$}\in X_{f}^{1}.
It is an open problem whether, for SDDEs, better than C^{1}‐smoothness (C^{\mathrm{p}}‐smoothness

with an integer p>1 ) can be obtained for the solution operators, see [3]. In a recent paper
[5] we show that, in general, for a C^{p}‐map f : U \rightarrow \mathbb{R}^{n} on an open subset U of X^{1} with
the above extension property of Df, the solution manifold X_{f}^{1}\subset X^{1} is only C^{1} ‐smooth, not
twice continuously differentiable, no matter how large p is.

The higher smoothness (C^{p} with p>1 ) of the solution operators is a key technical property
in the qualitative theory of semiflows. For example, local bifurcation results at stationary
points often require smooth local center manifolds, and the smoothness of solution operators
play an essential role in the proofs for smooth center manifolds.
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A C^{p}‐smooth local unstable manifold is obtained in [4] without knowing higher smoothness
of the solution operators. It is expected that such a result works for local center manifolds
at stationary points as well.

The aim of this note is to present a new idea from [5] to the smoothness problem, and to
mention problems, possible new directions of research related to this approach.

The approach of [5] will be shown on the simple example

(3) x'(t)=g(x(t-r(x(t)))) ,

where g:\mathbb{R}^{n}\rightarrow \mathbb{R}^{n} and r:X^{0}\rightarrow(0, h) are C^{p}‐smooth,  p\geq  1 . Equation (3) is a particular
case of (1) with

f=g\mathrm{o} ev \circ(\mathrm{i}\mathrm{d}\times(-r))
where the evaluation map ev:  X^{0}\times [-h, 0]\rightarrow \mathbb{R}^{n} is defined by

\mathrm{e}\mathrm{v}( $\phi$, t)= $\phi$(t) .

Then the restriction of f to X^{1} is C^{1}‐smooth, and Df has the above mentioned extension
property. The framework of Walther [6] can be applied to get C^{1} ‐smooth solution operators
on the solution manifold. C^{p}‐smoothness for p>1 is not known.

The lack of smoothness in SDDEs, and in particular in (3), comes from the lack of smooth‐
ness of the map ev. However, ev has interesting smoothness properties.

Let X^{k}=C^{k}([-h, 0], \mathbb{R}^{n}) denote the Banach spaces of the k‐times continuously differen‐
tiable functions  $\phi$ : [-h, 0] \rightarrow \mathbb{R}^{n} equipped with the usual norm | $\phi$|_{k} = \displaystyle \sum_{j=0}^{k}|$\phi$^{(j)}|_{0} . Now
define the map \mathrm{e}\mathrm{v}_{k} as the restriction of ev to  X^{k}\times [-h, 0] . It is shown in [5] that \mathrm{e}\mathrm{v}_{k} is
C^{k}‐smooth, and it is not C^{k+1}‐smooth.

We will use the well known millification technique. If  $\eta$:\mathbb{R}\rightarrow \mathbb{R} is a C^{\infty}‐smooth function
with supp  $\eta$ \subset [-1, 1] , and \displaystyle \int_{\mathbb{R}} $\eta$(s)ds= 1 , then for  $\epsilon$ > 0 define $\eta$_{ $\epsilon$}(t) = (1/ $\epsilon$) $\eta$(t/ $\epsilon$) , t\in \mathbb{R}.

Clearly, supp $\eta$_{ $\epsilon$}\subset[- $\epsilon$,  $\epsilon$] and \displaystyle \int_{\mathrm{R}}$\eta$_{ $\epsilon$}(s)ds=1 . For  $\phi$\in X^{0} define \hat{ $\phi$} : \mathbb{R}\rightarrow \mathbb{R}^{n} as the extension
of  $\phi$ so that \hat{ $\phi$}(t)= $\phi$(-h) for t<-h , and \hat{ $\phi$}(t)= $\phi$(0) for t>0 . Let

\displaystyle \hat{ $\phi$}*$\eta$_{ $\epsilon$}(t)=\int_{\mathbb{R}}\hat{ $\phi$}(t-s)$\eta$_{ $\epsilon$}(s)ds=\int_{\mathbb{R}}\hat{ $\phi$}(s)$\eta$_{ $\epsilon$}(t-s)ds, t\in \mathbb{R},
and define the mollification m  $\epsilon$ (￠) of  $\phi$ as the restriction of \hat{ $\phi$}*$\eta$_{ $\epsilon$} to the interval [-h, 0] . The
linear map m_{ $\epsilon$} : X^{0}\rightarrow X^{0} is called a mollifier.

It is easy to see that, for each  $\phi$\in X^{0} , the function m_{ $\epsilon$}( $\phi$) : [-h, 0] \rightarrow \mathbb{R}^{n} is C^{\infty}‐smooth,
and thus m_{ $\epsilon$}(X^{0})\subset X^{k} for all integers k\geq 0 . In addition, the linear maps

m_{ $\epsilon$,k}:X\ni $\phi$\mapsto m_{ $\epsilon$}( $\phi$)\in X^{k}
are continuous for all integers k\geq 0.

Assume that there exists  $\delta$>0 with r(X^{0})\subset( $\delta$, h- $\delta$) Choose  $\epsilon$\in(0,  $\delta$) , and consider the
map

 f_{ $\epsilon$}=g\circ ev \circ(m_{ $\epsilon$}\times(-r))
and the equation

(4) x'(t)=f_{ $\epsilon$}(x_{t}) .
Observe that

f_{ $\epsilon$}( $\phi$)=g\circ \mathrm{e}\mathrm{v}_{p}\circ(m_{ $\epsilon$,p}\times(-r))( $\phi$)
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for all  $\phi$ \in  X^{0} . Combining that the map m_{ $\epsilon$,p} : X^{0} \rightarrow  X^{p} is linear continuous, the maps
g : \mathbb{R}^{n}\rightarrow \mathbb{R}^{n}, r : X^{0} \rightarrow (0, h) and \mathrm{e}\mathrm{v}_{p} :  X^{p}\times [-h, 0] \rightarrow \mathbb{R}^{n} are C^{p}‐smooth, it follows that
f_{ $\epsilon$} : X^{0}\rightarrow \mathbb{R}^{n} is C^{p}‐smooth. Therefore, for equation (4) with initial condition x_{0}= $\phi$\in X^{0},
the classical theory, developed for equations with constant delay, can be applied to get C^{\mathrm{p}_{-}}

smooth solution operators on the phase space X^{0}.

By the definition of m_{ $\epsilon$} , equation (4), the so called mollified version of equation (3), can
be written as

(5) x'(t)=g(-\displaystyle \int_{-r(x_{\mathrm{t}})- $\epsilon$}^{-r(x_{t})+ $\epsilon$}x(t+u)$\eta$_{ $\epsilon$}(-r(x_{t})-u)du) .

This form of the mollified equation shows that equation (5) is obtained from (3) so that the
term x(t-r(x_{t})) with a discrete delay is changed by the the term with distributed delay

-\displaystyle \int_{-r(x_{t})- $\epsilon$}^{-r(x_{t})+ $\epsilon$}x(t+u)$\eta$_{ $\epsilon$}(-r(x_{t})-u)du.
The above idea works in a more general context, see [5]. In [5] several other examples can
be found.

The lack of smoothness disappears for the mollified equation. However, we changed the
original equation. Thus, several new problems arise. What is the relation between the
dynamics of equations (3) and (4)? It is expected that, by letting  $\epsilon$\rightarrow 0+ , equation (4) will
give useful information on the dynamics of equation (3). For equation (4) Hopf bifurcation
results are available to get information on the direction of the bifurcation and on the stability
of the obtained periodic orbits. What properties can be preserved from equation (4) to
equation (3) as  $\epsilon$\rightarrow 0+ ? It is also an interesting problem, how the results depend on the
smooth function  $\eta$ used to define the mollifier  m_{ $\epsilon$}.

In several applications, the discrete delay, like in equation (3), is considered only for the
sake of simplicity. A term with distributed delay is often more realistic.
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