BRI ST R S B
#2080% 20184 25-42

Weighted Pseudo Almost Automorphy of Semilinear
Boundary Differential Equations *

Zhinan Xial

Department of Applied Mathematics,
Zhejiang University of Technology,
Hangzhou, Zhejiang, 310023, China

Abstract

In this paper, we investigate the existence and uniqueness of weighted pseudo almost
automorphic mild solutions to semilinear boundary differential equations in Banach s-
pace, where the nonlinear perturbation is weighted pseudo almost automorphic type or
weighted Stepanov-like pseudo almost automorphic type. As applications, some inter-
esting examples are presented to illustrate the main findings.
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1 Introduction

The notation of almost automorphy, introduced by Bochner [4] is related to and more general
than almost periodicity. Since then, this pioneer work attracts more and more attentions and is
substantially extended in several different directions. For more details about this topic, we refer
to the recent books [16, 17, 20], where the authors gave an important overview about the theory
of almost automorphic functions and their applications to differential equations. Recently, a
new more general type of almost automorphy called weighted pseudo almost automorphy
is proposed by Blot et al [3], which generalize various extension of almost automorphy and
almost periodicity such as asymptotic almost automorphy (periodicity) [11, 15], pseudo almost
automorphy (periodicity) [23, 24], weighted pseudo almost periodicity [7], and so on. However,
literatures concerning weighted pseudo almost automorphy, especially in the Stepanav case are

very few [14, 26, 27].

Because of the significance and applications, varieties of problems of boundary differential
equations have been addressed by several researchers. They are widely and efficiently used to
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describe many phenomena that arise in physical, biology and other subjects. Some properties
of the solutions have been studied in several contexts. Recently, the almost periodicity and
almost automorphy of boundary differential equations have been extensively explored in the
literatures [1, 2, 22]. However, to the best of our knowledge, the weighted pseudo almost
automorphic solutions to semilinear boundary differential equations with weighted pseudo
almost automorphic (or weighted Stepanov-like pseudo almost automorphic) coefficients have
not been treated in the literatures yet. This is one of the key motivations of this study.

The paper is organized as follows. In Section 2, some notations and preliminary results
are presented. Section 3 is divided into two parts. In the first one, Section 3.1, we investigate
the existence and uniqueness of weighted pseudo almost automorphic solutions to semilinear
boundary differential equations with weighted pseudo almost automorphic coefficients. In the
second part, Section 3.2, for the Stepanov-like pseudo almost automorphic perturbation, we
study the weighted pseudo almost automrophy of semilinear boundary differential equations.
In Section 4, an application to partial differential equation is given.

2 Preliminaries and Basic Results

Let (X, | - 1), (Y;]l - ||) be two Banach spaces and N, Z,R, and C stand for the set of natural
numbers, integers, real and complex numbers, respectively. In order to facilitate the discussion
below, we further introduce the following notations:

e BC(R, X) (resp. BC(RxY, X): the Banach space of bounded continuous functions from
R to X (resp. from R x Y to X) with the supremum norm.

e C(R, X) (resp. C(R x Y, X)): the set of continuous functions from R to X (resp. from
R x Y to X).

e B(X,Y): the Banach space of bounded linear operators from X to Y endowed with the
operator topology.

o LP(R, X): the space of all classes of equivalence (with respect to the equality almost
everywhere on R) of measurable functions f : R — X such that ||f|| € LP(R, R).

o L} (R,X): stand for the space of all classes of equivalence of measurable functions

f : R = X such that the restriction of f to every bounded subinterval of R is in
LP(R, X).

2.1 Extrapolation Banach Space
Definition 2.1. [10] A linear operator A : D(A) C X — X is said to be sectorial if the
following hold: there exist constants w € R, 6 € (7/2,7) and M > 0 such that

p(A) D Spp ={)€C: X #w,|arg(A —w)| < 6},

M
[R(A, A)|| < Dol A€ Sous (2.1)

where R(A, A) := (A — A)~! for each \ € S,
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For a € (0,1), we make use of the real interpolation space

RYRG

X, :=D(A) 7,
which is a Banach space endowed with the norm

[ zlla == sup |X*(A — w)R(A, A — w)||.
A>0

For convenience, we further write Xy := X, X; := D(4) and ||z||o = ||z, |lz|ls = (A — w)z]|.
On X := D(A), we introduce a new norm:

lzll-1 = llw = A)"zl, z€X.

The completion of (X, ||z||_;) is called the extrapolation space of X associated with A and
will be denoted by X_;, then A has a unique continuous extension A_; : X X_;. Since
T(t) commutes with the operator resolvent R(w, A), the extension of T'(t) to X_; exists and
defines an analytic semigroup (71 (t))s>0 which is generated by A_; with D(A_;) = X. As
above, we define the space
Xot = (X1)a = )?ll lla—1
with
[2lla-1 = sup [A*R(A, Ay = w)z|].
x>0
The restriction Ag—1 : Xa — Xa_1 of A_; generates the analytic semigroup (7,—1(t)):>0 on
Xo-1 which is the extension of T'(t) to X,—;. Observe that w — A,—1 : Xo = X, is an
isometric isomorphism. We will frequently use the continuous embeding

D(A) = X5 — D((w — A)*) = X, — X,
X — Xﬂ—l — D(((l.) - A_l)a) — Xa—l — X_l,
forall0<a<fg<1.

Definition 2.2. [10] An analytic semigroup (T'(¢)):>o is said to be hyperbolic if it satisfies the
following properties:

(i) there exist two subspace X, (the stable space) and X, (the unstable space) of X such
that X = X, ® Xy

(1) T(t) is defined on X, T(t)X, C X,, and T(t)X, C X, for all ¢ > 0.

(244) there exist constants M,d > 0 such that

|T@)Ps|| < Me™®, t>0,  ||T@#)P.|| < Me™, t<0,

where P, and P, are the projection onto X, and X, respectively.

Recall that an analytic semigroup (7'(t)):>o is hyperbolic if and only if o(A) NiR = 0.

Lemma 2.1. [2] For z € X1 and 0 < 8 <1, 0 < a < 1, then the following assertions
hold:
(%) there is a constant ¢ such that

1 To—1(t) Pua—12lls < C€5t|l$||a—1 for t<0; (22)
(%) there is a constant m such that for0 < a —€< 1

| Tae1(t)Psaerllp < me™"t*P~E1|z||qey for ¢ >0. (2.3)

27



2.2 Weighted Pseudo Almost Automorphy

First, let us recall some definitions of almost automorphic function and weight pseuso almost
automorphic function.

Definition 2.3. (Bochner [4]) A function f € C(R, X) is said to be almost automorphic
in Bochner’s sense if for every sequence of real numbers (s, ),en, there exists a subsequence
(8n)nen such that g(t) := lgn f(t+sy) is well defined for each t € R, and JLTO g(t—sn) = f(2)

for each t € R.
Almost automorphic functions (denoted by AA(R, X)) constitute a Banach space when it

is endowed with the sup norm. They naturally generalize the concept of (Bochner) almost
periodic functions.

Lemma 2.2. [16] If f, f1, f2 € AA(R, X), then
(i) fi + f2 € AAR, X),
(i) \f € AA(R, X) for any scalar A,
(i) fo € AAR,X) where fo : R = X is defined by fo(-) == f(- + @),
(iv) the range Ry := {f(t) : t € R} is relatively compact in X, thus f is bounded in norm.
(v) if fo — [ uniformly on R where each f, € AA(R, X), then f € AA(R, X) too.

Let U be the set of all functions p : R — (0, 00) which are positive and locally integrable
over R. For a given 7" > 0 and each p € U, set

T
W(T,p) = / plt)dt.
-7

Define
Uo:={peU: Tlim w(T,p) =00}, Ug:={p€ Uy : p is bounded and ireln{p(z) > 0}.
—00 z

It is clear that Ugp C Uy C U.
For p € Uy, define

T
. 1
PAAR, X, p) := {f € BC(R, X) :Th_{gom/f’(t)llf(t)lldt=0}-

-T

" TS50

T
PAAG(R x X, X,p) = { f € BOR x X, X) : lim #(T;p) / pOIf (¢, w)lldt =0
T
uniformly in u € X}.

Definition 2.4. [3] Let p € U,. A function f € C(R,X) (resp. C(R x X, X) ) is called
weighted pseudo almost automorphic if it can be decomposed as f = g + ¢, where g €
AA(R, X) (resp. AA(RX X, X)) and p € PAA((R, X, p) (resp. PAAs(R x X, X, p)). Denote
by WPAA(R, X, p) (resp. WPAA(R x X, X, p)) the set of such functions.

Definition 2.5. Let p1, pa € Ux. p; is said to be equivalent to p, (i.e., p1 ~ p2) if /% € Usp.

28



29

It is trivial to show that “ ~ ” is a binary equivalence relation on U,. The equivalence
class of a given weight p € U,, which is denoted by cl(p) = {0 € U : p ~ g}. It is clear that

U = U cl(p).
pEU
Let p € Uy, s € R, defined p; by ps(t) = p(t + s) for t € R and

Ur={p€Uyx:pn~ ps for each s €R}.

It is trivial to see that Uy contains various kinds of weights such as 1, (1+t2)/(2 +t2),¢*, and
1+ |t/ with n € N et al.

It is obvious that WPAA(R, X, p) (resp. WPAA(R x X, X, p)), p € Ur is a Banach space
when endowed with the supremum norm || - ||.

Lemma 2.3. [25] PAAW(R, X, p) with p € Ur is translation invariant, that is, ¢ € PAA(R, X, p)
and s € R implies that o(- — s) € PAA(R, X, p).

2.3 Weighted Stepanov-like Pseudo Almost Automorphy

Let p € [1,00). The space BSP(R, X) of all Stepanov bounded functions, with the exponent
p, consists of all measurable functions f : R — X such that f* € L®(R, L?([0,1]; X)), where
f° is the Bochner transfom of f defined by f°(¢,s) := f(t +s),t € R,s € [0,1]. BSP(R, X) is
a Banach space with the norm

t+1 %
I£lls> = I £*|l (g L) = sup (/ lIf(T)II”dT) .
teR ;

It is obvious that LP(R,X) Cc BSP(R,X) C L} (R,X) and BSP(R,X) C BSYR,X) for
p=2g=>1

Definition 2.6. [8] The space SPAA(R, X) of Stepanov-like almost automorphic functions (or
SP-almost automorphic functions) consists of all f € BSP(R, X) such that f> € AA(R, LP([0, 1], X)).

In other words, a function f € L} (R, X) is said to be Stepanov-like almost automorphic
if its Bochner transform f* : R — LP([0,1],X) is almost automorphic in the sense that for
every sequence of real numbers (s, )ncn, there exist a subsequence (s,)nen and a function

g € L} (R, X) such that

t+1 % t+1 %
Jim | [ [f(s+sn) - Q(S)II”dS) =0, lim ( llg(s — sn) — f(S)II"dS) =0
y /

pointwisely on R. The collection of all such functions will be denoted by SPAA(R, X).
It is clear that if 1 < p < ¢ < o0, f € L} (R, X) is S%almost automorphic, then f is

SP-almost automorphic. Also if f € AA(R, X), then f is SP-almost automorphic for any
1 <p<oo.

Definition 2.7. [8] A function f : R x X — X, (t,u) — f(t,u) with f(-,u) € L} (R, X)
for each u € X is said to be SP-almost automorphic in ¢ € R uniformly for v € X if for
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every sequence of real numbers (s, )nen, there exist a subsequence (s,)nen and a function
g:Rx X — X with g(-,u) € L} (R, X) such that

loc

3=

1
Tim ( S+ 5+ 50,0 - ot + s,u)npds) =0,
0

and

3 =

1
lim ( / Ilg(t+s—sn,u)—f(t+s,u)||”ds) =0,
0

for each t € R and for each v € X. We denote by SPAA(R x X, X) the set of all such functions.

Definition 2.8. Let p € Uy. A function f € BSP(R,X) is said to be weighted Stepanov-
like pseudo almost automorphic (or weighted SP-pseudo almost automorphic) if it can be
decomposed as f = g+ ¢, where g° € AA(R, L?([0,1], X)) and ¢* € PAAy(R, L?([0, 1], X), p)-
Denote by SPWPAA(R, X, p) the collection of such functions.

In other words, a function f € L} (R, X) is said to be weighted SP-pseudo almost auto-

morphic if its Bochner transform f*: R — L?([0,1], X) is weighted pseudo almost automor-
phic in the sense that there exist two functions g, : R — X such that f = g + ¢, where
g" € AA(R, LP([0,1], X)) and ¢* € PAAy(R, L*([0,1], X), p), i.e.,

1

||<p(a)]|”da) dt = 0.

| I t+1
Jim /L(_T,p—)_l p(t) (/

Definition 2.9. Let p € Uy. A function f: R x X — X, (t,u) — f(t,u) with f(,u) €
BS?(R, X) for each v € X is said to be weighted SP-pseudo almost automorphic if it can
be decomposed as f = g + ¢, where ¢® € AA(R x X, LP([0,1],X)) and ¢®* € PAA(R x
X, L*([0,1], X), p). The collection of such functions will be denoted by SPWPAA(R% X, X, p).

Theorem 2.1. [21] Assume that p € U, f = g+ ¢ € SPWPAAR x X, X, p) with g°* €
AAR x X, LP([0,1], X)), 9* € PAAN(R x X, L?([0,1], X), p) and

(i) there exist constants L¢, Ly > 0 such that
If(t,u) = fE 0 < Lellu—oll, llg(t,u) — gt v)l| < Loflu—vll, w,veX, teR
(ii) h = a+B € SPWPAA(R, X, p) witha® € AA(R, L?([0,1], X)), B> € PAAL(R, L?([0, 1], X), p)
and K = {a(t) : t € R} is compact in X.
Then f(-, h(-)) € SPWPAA(R, X, p).

Theorem 2.2. [21] Assume that p € Uy,p > 1,f = g+ ¢ € SPWPAAR x X, X, p) with
9" € AAR x X, L7([0, 1], X)), ¢* € PAAg(R x X, L*([0, 1], X), p) and

(i) there exist nonnegative functions Ly, Ly € STAA(R, R) with r > max {p,p/(p — 1)} such
that

£t w) — FE ) < Le@llw—vll, Nlg(t,w) — g(t,v)| < Lg(t)lu—vll, u,veX,teR
(ii) h = a+B € SPWPAA(R, X, p) with o® € AAR, L?([0, 1], X)), B* € PAA.(R, L*([0, 1], X), p)
and K = {a(t) : t € R} is compact in X.
Then there ezists a q € [1,p) such that f(-,h(-)) € STWPAAR, X, p).
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3 Existence and Uniqueness of WPAA Solutions to (3.1)

Consider the semilinear boundary differential equations

z'(t) = Apz(t) + f(t,2(t)), teER, 3.1)
Lz(t) = g(t,z(t)), teR. ’
The first equation stands in a Banach space (X, || - ||) and the second one is in the boundary

space 0X, (Am, D(Ay)) is a densely defined linear operator on X, L : D(A,) = 0X is a
bounded linear operator, and f, g are continuous functions.

In this section, we make the following assumptions.

(H,) There exists a new norm | - | which makes the domain D(A,,) complete and then
denoted by X,,. The space X, is continuous embedded in X and A,, € B(Xpn, X).

(H,) The restriction A := Ap|ker(z) is sectorial operator such that o(A) NiR = 0.

(H3) L € B(Xp,0X) is surjective.

(Hy) Xm — X, for some 0 < @ < 1.

Definition 3.1. A mild solution of (3.1) is a continuous function z : R — X satisfying
t t t
Q) / a(r)dr € X, (i) 2(t) — 2(5) = Am / a(r)dr + / f(r,2(r)dr,
¢ ¢
(iii) L / 2(r)dr = / o(r, 2(r))dr,
forallt > s,t,s € R.
As in [2], we transform (3.1) to the equivalent semilinear differential equations
2'(t) = Aa-13(t) + f(t,2(2)) — Aa-1Log(t,z(t), tER, 3.2)

where Lo := (L|ker(am)) "

3.1 Weighted Pseudo Almost Automorphic Perturbation

In this subsection, we deal with the case that the nonlinear perturbation in (3.1) is weighted
pseudo almost automorphic, i.e. the following condition is satisfied:

(Hs) feWPAAR x Xg,X,p),g € WPAAR x Xp,0X,p),p €Ur for 0 < B < .

We study the existence and uniqueness of weighted pseudo almost automorphic solutions
for the inhomogeneous differential equations

2(t) = Aq_1z(t) + h(t,z(t), teR. (3.3)

where the function h : R x Xz — X, satisfies the globally Lipschitzian condition, i.e., there
exists a constant k > 0 such that

|h(t, ) — At Y)|lam1 < kllz —yllg for all z,y € Xp,t €R.
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Definition 3.2. A mild solution of (3.3) is a continuous function z : R — X satisfying
t
2(t) = T(t — s)a(s) + / Toos(t — 7)h(r, 2(r))dr, (3.4)

for all t > s,t,s € R.

First, for the linear inhomogeneous differential equations
Z'(t) = Ag—1z(t) + h(t), teR. (3.5)

Lemma 3.1. Leth € WPAA(R, X,_1, p), then (3.5) has a unique mild solution z € WPAA(R, X, p)
given by

t 00
o(t) = / T s(t = 7)Pyash(r)dr — / Ty s(t - T)Pyash(r)dr, tER.
t

—00

Proof. Similarly as the proof in [2], it is clear that € BC(R, Xg) and z is a mild solution
of (3.5). Since h € WPAA(R, X,-1,p), let h = hy + hy, where by € AA(R,X,1), by €
PAAYR, Xq-1,p). Then z(t) := z,(t) + z2(t), where

t e’}
a(t) = / Tu s(t = 7)Pyashy(r)dr — / Toor(t = 7)Paprha(r)dr, tER,
t

-0

i o0
za(t) = / Taor(t — 7)Pyo_sha(r)dr — / Tor(t = 7)Paprha(r)dr, tER
t

Let (s])nen be any sequence of real numbers, then hy € AA(R, X,—1) implies that there
exists a subsequence (S,)nen Of (8, )nen such that

I'Lm hi(t + sn) = k(t), llfgo k(t — sp) = hi(t), in X,y for teR.

Define . -
H(t) = / Toa-1(t = 7) Py q1k(T)dT — / To1(t = 7) Py a1k(T)dr.

—00

Let 0<€+ 8 <aand 0<a-£&<1, by Lemma 2.1,
0 < [lza(t +sa) — H(t)|ls

t+sn 00
.y / Taos(t+ 8n— ) Pyotha(T)dr — [ Tas(t+ sn — 7)Puasha(r)dr
—o0

t+3sn

t o0
- / Toor(t = 7)Pask(7)dr + / Tos(t — ) Pyask(r)drlls
- t

oo

t+8n t
< / Toos(t + 8 — 7) Pasha (r)dr — / Toos(t = 7)Paacsk(r)drll5

[o<]

+ | Toe1(t + 8n — T)Py g1 (7)dT — / To1(t = T) Py o—1k(7)d7|
¢

t+8n

<| / Tos(t = 7)Pucr [l (7 + 50) — K(D)ldr]l5
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+ / Toos(t — 7)Page[ba(r + 5) — k(7)]drl5
t
t
< m/ e~ (8 — 7)==+ D| |y (7 + 5,) — k(7)||acrdr

+e / 5O hy (1 + 50) = k(r)l|ardr
t
< (P00 — B — &) + 57O [a(r + 50) — (1) o,

where T'(a) = [;°t'e~*dt is the gamma function. Therefore, by the Lebesgue dominated
convergence theorem, li_>m lz1(t + sn) — H(t)||sg = 0 for each t € R. Similarly, lim ||H(t -
n—oo n—oo

$n) — z1(t)||g = 0 for each t € R. So z; € AA(R, Xp).
To complete the proof, we show that zo € PAAy(R, X5, p). In fact, for T > 0, one has

1 T
05— [ pOlla(t)sc
1 T t
< Lo “/w Taca(t =) Prsha(r)dr | i
1 T 00
T uT0) /—T () /t Tar(t = 7) Pua-rha(T)d7 ﬂdt

m T/t _
< e (8 — 7)=B=o+ED (1) hy(7) || g drdt
= (T, p) /_T oo (t-7) p(E)]1h2(T) [l -1

c T o
* e~ p(t) ||ha(7) || a-1drdt
M(T,m/_T / ()27 |1

m T foo -
T, p) / Tfo e ™D (1) [hat — 0) la-rdordt

c T/oo s
+ — e 7 p(t)||he(t + 0)||az1dodt
= [ [ e a0linate+ o)l

00 _ 1 T
=m | e 19 (FratE) (—/ t)||h2(t — 0)]la- dt) do
/ 5 [ Ot = )

+ c/ow e % (ﬁ /_: p(t)|lha(t + a)||a_1dt) do,

Since p € Ur, from Lemma 2.3, it follows that ho(- — 0), ho(- + 0) € PAA(R, X,-1,p) for
s € R, then

1 T 1 T
lim—/ t)||he(t — 0)||a=1dt =0, lim—/ )ha(t + 0)||o_rdt = 0,
1% o) J g PN = Ol Jim s | pOlRa(t+ 0)llas

so by Lebesgue dominated convergence theorem,

1 T
lim—/ t)||z2(t)|l gdt = 0,
Jim s | o0l

then zo € PAA(R, X3, p), hence z € WPAA(R, Xg, p). O
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For (3.3), by the fixed point theorem, one obtains the following conclusion.

Lemma 3.2. Let 0< B <aand &> 0 such that0 <a—2<1 and 0 < f+& < a. Assume
that h € WPAAR x X, Xo-1,p),p € Ur, and satisfies

b, 2) = h(t, W)lla1 < Kllz —ylls, 2,y € X,tER

IfkfmyP=oT(a—B—£)+671c] < 1, then (3.3) has a unique mild solutionz € WPAA(R, X, p),
which satisfies

o(t) = / Tt = 7)Prash(r, 2(r))dr — /t Tt = T)Pansh(r,o(r))dr, tER.

-0

Proof. Define the operator ' : WPAA(R, X3, p) - WPAA(R, Xz, p) by

(Tz)(t) = /t To-1(t — 7) Py q—1h(r,z(7))d7T — /too To1(t — 7)Pya1h(r,z(7))dr, tER.

—0Q0

By Lemma 3.1, I is well defined.
For z,y € WPAA(R, X, p),

(Tz)(t) - (Cy)@)]ls < m /_ e (¢ — )"t (7, 2(7)) — W7, y(7))la-rdT

N C/oo e_é(‘r—t) ”h(T, I(T)) — h(T, y(T))“Q_ldT
t
< k[my? (@ - B - &) + 67|z — ylls-

By the Banach contraction mapping principle, I' has a unique fixed point in WPAA(R, Xz, p),
which is the unique W PAA mild solution to (3.3). The proof is complete. O

Next, we obtain the main result of this section.

Theorem 3.1. Let 0 < f < a and € > 0 such that 0 < a—€ <1 and 0 < B+£& < a. Assume
that (H,)-(Hs) are satisfied, the functions f € WPAAR x X, X,p), g € WPAA(R x
Xg,0X, p) are globally Lipschitzian with small constants. Then (3.1) has a unique mild €
WPAA(R, X3, p).

Proof. Tt is clear that A,_;Lg is a bounded operator from 0X to X,—;. Hence the function
h(t,z) := f(t,2)—Aa—1Log(t,z) € WPAA(RX Xp, Xo-1,p) and h(t, z) is globally Lipschitzian
with a small constant. Hence by (3.2) and Lemma 3.2, there exists a unique mild solution

z € WPAA(R, Xg, p) of (3.1).
0O

3.2 Weighted Stepanov-like Pseudo Almost Automorphic Pertur-
bation

In this subsection, we deal with the case that the nonlinear perturbation in (3.1) is weighted
SP-pseudo almost automorphic, i.e., the following condition is satisfied:

(Hy) feSPWPAAR x Xg,X,p),9 € SSWPAAR x Xg,0X,p),peUrfor0 < g <a.

For (3.5), one obtains the following results.



35

Lemma 3.3. Let h € SPWPAA(R, Xq-1,p), then (3.5) has a unique mild solution z €
WPAA(R, Xz, p) given by

t 00
o(t) = / Toos(t — 7)Py o 1h(r)dr — / Toos(t — 7)Pumsh(r)dr, teR.
—00 t

Proof. Let h(t) = hy(t)+ha(t), where b} € AA(R, LP([0,1], X,—1)) and h% € PAAG(R, LP([0,1], X4-1), p)-
Consider the integrals

t—n+1 t+n
vn(t) = / Tos(t = 7)Pyo_1h(r)dr — / Tar(t — 7)Punsh(r)dr
t—n t+n—1

= Xn(t) + Yn(t)a n €N,

where
t-n+1 tin
X, () = / Tas(t = 7)Pypyha (7)dr — / Ty s(t = 7)Pyashs (7)dr,
t—n t+n—1
t—n+1 t+n
Ya(t) = / T s(t — 7)Py osha(r)dr / Ty s(t = 7)Py s ha(r)dr.
t—n t+n—1

Using (2.2), (2.3) and the Holder inequality, it follows that

t—n+1 t+n
olls < [ 1Tars(t = 1) Puacsta(@ldr + [ ITacs(t = 7)Paacsba(r)adr
t—n t+n—1
t—n+1 t+n
<m / e ") (¢ — 1)~ B=FED | By (1) || qordT + € / e~ by (1) || o1 dT
t—n t+n—1
1 1
t—n+1 3 /t-n+l H
Sm(/ e-q‘r(t-r)(t_T)-q(ﬁ~a+3+1)d7.) (/ ||h1(‘r)||”_1d'r)
t—n t—n

t+n é t+n %
+c( / e-fﬂ‘(f-t)df) ( / ||h1(7)||1’-1d¢)
+ 1

n—1 +n—

n
< m"h‘l"a—l,SP (/ e‘q‘Yf’g-q(B—a+E+1)da)

-1

1 1

q n H
+ cllhlla-1,s0 (/ e""s"da) , (3.6)

-1

1
t+1 P

/ ||h1<r>uf;_1d7)

t

where ||h1|g—1,s» = sup (
teR



n 5 n H
o _ 0o
Let n:= E (/ e-quo.-q(ﬂ—a+e+1)do.) =3 (v/ e—q&'dd) , then
n=1 n=1

-1

1 - n
n= (/ e—qvaa—q(B—a+E+1)d0) + Z (/ e—q'yag—q(B—a+§+1)da)
0 =2 \J,

<w+ Z / e~ "%do <w+ Vo Z (e—q“/(n—l) _ e-q-yn) 7

n=2 1 q n=2

Q-

1
q

<w+{len-DjgyY e <w+ e +1)/grY e, (3.7)
n=2 n=1

1

q

1
where @ = ( / e_q7”0"q(ﬂ_“+g+1)da) , and
0

[o <]

1

’;’7:

D

R R (G \T) DU R RS ) DU

n=1 n=1

Since the series ¢/(e? +1)/gy 3" e™™, ¢/(e® +1)/qd 3 e*" are convergent, by the Weier-
n=1 n=1
strass test, > X,(t) is uniformly convergent on R. Let X(t) = > X,(t),t € R, then
n=1 n=1
t 0o
X(t) = / Toos(t = 7)Pagsha(7)dr — / Toor(t = 7) Pagrbis (7).
. t
Fix n € N and ¢ € R, one has
0 < [|Xa(t +€) — Xa(B)lls

t—n+1
<| [ Test-DPansliatr +) = m(rlar
t—n B8
t+n
+ To-1(t = T)Pya-1lha(T + &) — hy(7)]dr
t+n—1 B
t—n+1
< [ Wanslt =) Puacslba(r +.€) = (o)l
t—n
t+n
+ / 1 Ta-1(t = 7)Pua—1[h1(7 +€) = ha(7)]l| , dT
t+n—1

t—n+1
< / me~ T (t — 7)=E=a+E Db (7 4 ) — hy (1) erdr
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t+n
+c / e hy (1 + €) — ha(7) || a—1dT
t+n—-1
t—n+1 q t—n+1 %
<m ( / e~ (¢ T)—q(ﬂ—a+e'+1)d7.) ( / lhi(T +€) — hl(‘r)ll’;_ld‘r)
t-n t-n
t+n H t+n x%
+c ( f e“"’(r‘t)dT) ( / [A(r +€) — h1(7')|[§-1d7') )
+n—1 +n—1

In view of hy € L} (R, X,-1), one has

Jim | Xa(t +€) = Xa()lls =0,

this means that X, € C(R, X;). Moreover, for any t € R, from (3.6), (3.7), (3.8), we have
1Xa@®lls < D 1Xa®)lls < mallhalla-1,50 + cillhalla-1,57 < oo.

n=1

Next, we prove that X, € AA(R, X;). Since h® € AA(R, LP([0, 1], Xo-1)), then there exist
a subsequence (Sm, )ken and a function v; € L} (R, X) such that, for any t € R,

t+1 3
(/ h1(s + Smy) — vi(S)I2_; ds) -0 as k— oo,
t

for any t € R. Note that

t—n+1 t+n
Xn(t) = / To-1(t — 7)Ps a1ha (7)dr — / To-1(t — T)Pya—r1hi(T)dT
t—-n t+n—1
n -n+1
- / Ty 1(0)Pyaiha(t — 0)do — / Ty 1(6) Py shi(t — 0)do,
n-1 -n
and define
n —n+1
wn(t) = / sz—l(a)Ps,a—lvl (t - O')d(T - / Ta—l(a)Pu.a—lvl(t - U)dU,
n—1 —-n

then, by Hélder inequality and (2.2), (2.3), we have

0 < (1 Xn(t + 5m,) — wa(t)ls

< | |NTa=1(0)Psa-1[h1(t — 0 + 8m,) — v1(t — 0)]||gdo

n—-1



-n+1
+ / 1 Ta=1(0)Pua-1[h1(t — 0 + Sm,) — v1(t — 0)]||gdo

—-n

n
< / me=17g= =4 b (£ — g + 5. ) — v1(t — ) ac1do

n—1
—-n+1

+ / ce®||hy(t — 0 + 8m,) — V1(t — 0)|la-1do

1 1

-n
L 1
<m e~ e —q(ﬁ a+e+l)d0.
—1

(/ ”h‘l(t —0o+ Smk) - vl(t - a)"z—ldo)
~-1

—n+1 % —n+1 ’_l’
( / eqévdg) ( / [1hi(t — 0 + Sm,) —v1(t — 0>I|Z—ld0)

1

<m¥ ( hi(t — 0 + Sm,) — vi(t = a)IIZ_ldU)

-

—-n+l

+cd /||h1(t—a+smk)—vl(t—a)||’;_1da) ,

n 2]; —-n+1 %
where 9 := (/ e‘q""a_"(ﬁ‘”g“)do) <00, = ( / e"‘s"do) < 00, 50

—1 -n

lim || X (t + Sme) — wa(t)]lg = 0.
k—o0

Similarly, one has lim lwn(t — Sm,) — Xn(t)|lg = 0, therefore X, € AA(R, Xp) for n € N. By
Lemma 2.2, we have X (¢ 2 Xa(t) € AA(R, Xp).

By carrying out similar arguments as above, we know that Y,, € BC(R, X;) and the series
2 Y,(t) is uniformly convergent on R. Let Y (¢) = z Y,(t), then

Y(t) = / Tt = )Py thy(r)dr — /t L 1(t — 7)Pn1ha(r)dr-

It is obvious that Y (t) € BC(R, X;). So, we only need to show that

T

Jim. ml POIY (8)llsdt = 0.
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In fact, one has

t—-n+1 t+n
Ya®lls < / N Tacr(t = 7)Pyacsha(r) | pdr + / | Tas(t = 7)Paasha(r) 5
t—n t+n—1
t—n+1 t+n
<m / e — 7)) () oy + ¢ / €5 () lacrdlr

t+n~1

t—-n+1 % t=ntl ?
( —tn(t—f)(t_T)“I(B“"”g*'l)d‘r) (/ ||h2(7')”p-1d7)
t—n
1 1
t+n 7 t+n P
e300 ) ( / llha(T)IIZ_ldT)
+n 1 +n—1

t—n+1 t+n l_l>
( |h2(T)||ﬁ_1dT) +05</ ||h2(T)H’;_1dT) )
1

+n—
1 T 9 T t—n+1 H
T ) / p()[Yn(t)|pdt < (T; ) / p(t)( / ||h2(r)u"_1d7) dt

3=

then

- =T t—-n
P 7. ﬂU( / uhzmur_ldf) "

and hence Y,(t) € PAAo(R, X, p) since h} € PAAy(R, L?([0,1], X,—1),p). From Y,(t) €
PAAo(R,Xﬂ, p) and

T T N
1 1
(T, p)_l pOIIY (B)llgdt < T _[ pMNY () - §n=l:Yn(t)]|,3dt

N 1 T
+3 ml PO [Ya(t) 5,

it follows that Y (t) € PAAo(R, Xg, p). Therefore, z € WPAA(R, Xz, p). O
By Lemma 3.3 and similarly as the proof Theorem 3.1, one has

Theorem 3.2. Let 0 < S <aand € > 0 such that 0 < a—€< 1l and 0 < B+ ¢ < a.
Assume that (H1)-(Hy) and (H}) are satisfied, the functions f € SPWPAAR x Xg, X, p),
g € SPWPAAR x Xg,0X,p) are globally Lipschitzian with small constants. Then (3.1) has
a unique mild x € WPAA(R, Xg, p).
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4 Examples

Consider the following partial differential equation

2u(t,:c) = Au(t,z) + au(t,z), teR,z€Q
65 (4.1)
%u(t, z) = ¥(t,m(z)u(t,z)), t€ R,z €N,

where @ € R* and m is a C'-function, (2 is a bounded open subset of R® with smooth boundary
0.

Let X = L), X, = H%(Q) and the boundary space X = H3(dQ). Consider the
operator Ay, 1 X = X App = Ap+apand L: X, —» 80X, Ly = %‘S. By [2], the operator
A = Ap|kerr generates an analytic semigroup, and for a < %, Xm C X, The eigenvalues of
the operator A is a decreasing sequence () with A\g = 1 and A; < 0. If one takes a = 1)y,
then o(A) NiR = @, so the analytic semigroup generated by A is hyperbolic.

Let ¢(t,¢)(z) = U(t,m(z)u(t, ) = Tmiemy t € R,z € 0Q and b(t) € WPAA(R, Q).
One can see that ¢ is continuous on R x H?'(Q) for some 1 < B < B/ < a < £ which
is embedded in R x X. It is not difficult to see that ¢(t,¢)(-) € H2(8Q,09) for all ¢ €
H?' () — HY(Q). Moreover, ¢ is weighted pseudo almost automorphic in ¢t € R for each
¢ € Xp, and globally Lipschitzian. Then for a small constant k, (4.1) exists a unique weighted
pseudo almost automorphic mild solution u € Xg.
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