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1. INTRODUCTION

In this article we study the “complete dominant” case of a migration selection
model for the solution of gene frequency at a single locus with two alleles A_{1}, A_{2}

initiated in [NNS] and [LNS]. This model is due to T.Nagylaki in 1975 [NAG]. We
shall give a brief description of this model following the more recent presentation in
[LNN] and [NNS].

Let u(x, t) be the frequency of allele A_{1} at time t and location x (thus 0\leq u\leq 1 ),
and r_{ij} be the fitness (local selection coefficient) of the genotype A_{i}, A_{j} for i,j=1 , 2
and

r_{1}=r_{11}u+r_{12}(1-u)

is the marginal selection coefficient of A_{1} , and

\overline{r}=r_{11}u^{2}+r_{12}u(1-u)+r_{21}(1-u)u+r_{22}(1-u)^{2}.

is the mean selection coefficient of the population. Now positing

r_{11}=1, r_{12}=r_{21}=1-hg(x) , r_{22}=1-g(x) , (1.1)

where g(x) reflects the “environmental variation”’ and 0\leq h\leq 1 specifies the degree

of dominance (assumed to be independent of the location). We have the selection
term:

S_{1}= $\lambda$ g(x)u(1-u)[hu+(1-h)(1-u (1.2)

where  $\lambda$ > 0 is the ratio of selection intensity to the migration rate. Therefore,
under some additional simplification assumptions, the migration‐selection model
describing the evolution of gene frequencies at a single locus with two alleles takes
the following form

\left\{\begin{array}{ll}
u_{t}=\triangle u+S_{1}(x, u) & \mathrm{i}\mathrm{n}  $\Omega$\times(0, \infty) ,\\
\partial_{ $\nu$}u=0 & \mathrm{o}\mathrm{n} \partial $\Omega$\times(0, \infty) ,
\end{array}\right. (1.3)
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where  $\Delta$ = \displaystyle \sum_{i=1}^{n}\frac{\partial^{2}}{\partial x_{i}^{2}} is the Laplace operator, the habitat  $\Omega$ is a bounded domain

with smooth boundary \partial $\Omega$ in \mathrm{R}^{n}, \mathrm{v} denotes the unit outward normal to \partial $\Omega$ and \partial_{ $\nu$}

is the normal derivative on \partial $\Omega$ . After scaling  t , we have

\left\{\begin{array}{ll}
u_{t}=d\triangle u+g(x)u(1-u)[hu+(1-h)(1-u)] & \mathrm{i}\mathrm{n}  $\Omega$\times(0, \infty) ,\\
\partial_{ $\nu$}u=0 & \mathrm{o}\mathrm{n} \partial $\Omega$\times(0, \infty) ,
\end{array}\right. (1.4)

It is clear that (1.4) has no nontrivial steady‐states if g(x) does not change sign in
 $\Omega$ , i.e. in this case a steady state  u is either  u\equiv  0 or u \equiv  1 , implying that only
one allele survives eventually. Thus, in order to sustain both alleles A_{1} and A_{2},

the environmental variation has to be so significant that the selection reverses its

direction at least once in  $\Omega$ , i.e.  g(x) changes sign at least once in  $\Omega$ (Note that if
 g(x) >0 , then r_{11} \geq r_{12}\geq r_{22} at location x ; while r_{11}\leq r_{12}\leq r_{22} where g(x)<0).
Therefore we shall require in the rest of this paper that g(x) changes sign in  $\Omega$.

As was explained in [NNS] that all previous mathematical results in literature
deal with the case 0 < h < 1 and the “complete dominant” case h = 1 was left

untouched until the publications of the papers [NNS] and [LNS] in 2010. In the case
h=1 we have that r_{12}=r_{22} , i.e. the heterozygote A_{1}A_{2} has the same fitness as the

homozygote A_{2}A_{2} , we say that A_{2} is completely dominant to A_{1} (The case h=0 is
similar). In the “completely” dominant case h=1 , (1.4) becomes

\left\{\begin{array}{ll}
u_{t}=d\triangle u+g(x)u^{2}(1-u) & \mathrm{i}\mathrm{n}  $\Omega$\times(0, \infty) ,\\
\partial_{ $\nu$}u=0 & \mathrm{o}\mathrm{n} \partial $\Omega$\times(0, \infty) .
\end{array}\right. (1.5)

This “completely dominant” case is not only mathematically challenging but also

biologically important. In fact the following conjecture (a) to (c) has existed for a
long time (See Lou and Nagylaki [LN]):

(a) If \displaystyle \int_{ $\Omega$}g(x)dx = 0 , then for every d > 0 , problem (1.5) has unique nontrivial
steady state which is globally asymptotically stable.

(b) If \displaystyle \int_{ $\Omega$}g(x)dx > 0 , then there exists d_{0} > 0 such that for every d \in (0, d_{0}) ,
problem (1.5) has a unique nontrivial steady state which is globally asymptotically
stable.

(c) If \displaystyle \int_{ $\Omega$}g(x)dx < 0 , then there exists d_{0} > 0 such that for every d \in (0, d_{0}) ,
problem (1.5) has exactly two nontrivial steady states, one is asymptotically stable
and the other is unstable.

Towards the resolution of this important conjecture, we introduce two mathemat‐

icaly rigoulous results, [NNS] and [LNS]. In [NNS], the existence of a stable steady
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state as well as its limiting behaviors (as d tends to 0 or \infty) \mathrm{a}\mathrm{r}\mathrm{e} obtained. Further‐
more, in [LNS] the existence of at least two steady states, one stable and the other
unstable, is established as well. However, the uniqueness part of the conjecture is

still left open. Therefore, in [NK1] and [NK2], we consider the uniqueness part of
(a) and (b) above, under the condition where the spatial dimension n=1 . A steady
state solution of (1.5) satisfies

\left\{\begin{array}{l}
du''+g(x)u^{2}(1-u)=0 \mathrm{i}\mathrm{n} (0,1) ,\\
u'(0)=u'(1)=0,
\end{array}\right. (1.6)

We set the following “nondegeneracy” condition on g : All zeros on [0 , 1 ] are interior
and nondegenerate; i.e.

(H) If g(x_{0})=0 , then x_{0}\in(0,1) and g'(x_{0})\neq 0.

The first result is on the stability of nontrivial solution.

Theorem 1.1. Suppose that g changes sign in (0,1) and that (H) holds. Then, (1.6)
has a linearly stable nontrivial solution u_{d} for d sufficiently small. Furthermore, u_{d}

has the following properties:

(i) On every compact subset \mathrm{S} of [g<0],

C_{1}d<u_{d}<C_{2}d . (1.7)

(ii) On every compact subset \mathrm{S} of [g>0],

C3 \displaystyle \exp(-\frac{C_{4}}{\sqrt{d}}) <1-u_{d}<C_{5}\displaystyle \exp(-\frac{C_{6}}{\sqrt{d}}) , (1.8)

where the constants C_{1}-C_{6} depend on S.

The facts that u_{d}\rightarrow 0 in [g<0] and u_{d}\rightarrow 1 in [g>0] were already established

earlier in [NNS] for any dimension n , however, the rates of convergence are not
obtained in [NNS]. These rates, (1.7) and (1.8) are essential to prove both stability
and uniqueness of u_{d} (For the proof see [NK1] and [NK2]).

For the uniqueness result, we need some more assumptions on g(x) . We first
consider the case where g has only one zero. Let g(x) satisfy the following condition:

(G) g(x)<0 in [0, x_{0}) and g(x)>0 in (x_{0} , 1].

In [NK1], we have proved that the following two theorems hold:

Theorem 1.2. Suppose (G) and (H) hold. If \displaystyle \int_{0}^{1}g(x)dx\geq 0 , then, a solution u_{d} of
(1.6) is a unique nontrivial solution.

The proof of Theorem 1.2 also shows the next theorem concerning conjecture (c).
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Theorem 1.3. Suppose (G) and (H) hold. If \displaystyle \int_{0}^{1}g(x)dx<0 , then, for d sufficiently
small, any nontrivial solution v_{d} of (1.6) satisfies either of the following (i) or (ii):
(i) v_{d}(x)=u_{d}(x) in [0 , 1 ] , where u_{d} is a linearly stable solution in Theorem 1.1.
(ii) v_{d}(x)\leq C_{7}d in [0 , 1 ]

We next consider the case g has more than two zeros. In this case we need

more assumptions on g(x) as follows. We introduce the following auxiliary function

p(x)\in C^{1}[0 , 1 ] satisfying the following (PO) to (P3).

(PO) z_{1} is the only zero of p(x) in [0, \displaystyle \frac{1}{m}] , and p'(z_{1})\neq 0.

(P1) p(x) is symmetric in [\displaystyle \frac{k-1}{m}, \frac{k+1}{m}] w.r.t. x=\displaystyle \frac{k}{m} (k=1,2, \cdots , m-1) .

(P2) p(x) is monotone in [\displaystyle \frac{k-1}{m}, \frac{k}{m}] (k=1,2, \cdots , m) .

(\displaystyle \mathrm{P}3)\int_{0}^{1}p(x)dx\geq 0.
Theorem 1.4. Suppose that g(x) \geq p(x) , where p(x) satisfies (P0) - (P3). Then,
for every d small, (1.6) has a unique nontrivial solution.

By the assumption g(x)\geq p(x) and the condition (P3), it holds that \displaystyle \int_{0}^{\mathrm{I}}g(x)dx\geq 0.
(PO) is a condition corresponding to nondegeneracy condition (H). The proof of
Theorem 1.4 is in [NK2].

Many results which assure Conjecture (\mathrm{a})-(\mathrm{c}) have been obtained. However, we

have found a counterexample to Conjecture (c) recently. For simplicity, we consider
the case where g(x) has 2 zeros. Let \ell>1 be a constant and x_{1}=x_{1}(\ell) , x_{2}=x_{2}(l) ,

(1-\displaystyle \frac{1}{2\ell}<x_{2}<1) be zeros of g(x) such that

(G1) g(x) is symmetric with respect to x=\displaystyle \frac{1}{2}
(G2) g(x)>0 in (0, x_{1}) , g(x)<0 in [x_{1}, x_{2}) , g'(x_{1})\neq 0,
(G3) g(x)=-g^{*} in [\displaystyle \frac{1}{2l}, 1-\frac{1}{2\ell}] (g^{*} is a positive constant)

(G4) \displaystyle \int_{0} 愛 g(x)dx<0,

As is mentioned in Theorem 1.1, there exists a linearly stable solution of (1.6),
U_{d}(x;\ell) satisfying

U_{d}\rightarrow 1 uniformly in any compact set in (0, x_{1})\cup(x_{2},1) , as d\rightarrow 0,

U_{d}\rightarrow 0 uniformly in any compact set in (x_{1}, x_{2}) , as d\rightarrow 0.
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This is supposed to be the first solution in Conjecture (c) which is stable. By
Theorem 1.3 in [LNS] and [NK1], there exists at least one solution $\omega$_{d}(x) of (1.6)
satisfying

$\omega$_{d}\rightarrow 0 uniformly in any compact set in (0,1) , as d\rightarrow 0.

This is supposed to be the second solution in Conjecture (c) which is unstable. In
addition to these two solutions, we have proved the existence of the third solution

in the following theorem.

Theorem 1.5. Let g(x) satisfy (Gl) ‐ (G4). There exists \ell > 0 such that for d

sufficiently small, (1.6) has a nontrivial solution w_{d} satisfying the following property.
(i) On every compact subset \mathrm{S} of [0, x_{2} ),

C_{1}d<w_{d}<C_{2}d . (1.9)

(ii) On every compact subset \mathrm{S} of (x_{2},1],

C3 \displaystyle \exp(-\frac{C_{4}}{\sqrt{d}}) <1-u_{d}<C_{5}\displaystyle \exp(-\frac{C_{6}}{\sqrt{d}}) , (1.10)

where the constants C_{1}-C_{6} depend on S.

The next result is on the fourth solution.

Theorem 1.6. Suppose that g(x) satisfy (Gl)-(G4) . (1.6) has at least two solution
satisfying (1.9) and (1.10) for d suff. small. One is stable and another i\mathcal{S} unstable.

Clearly, by reflection with respect to x=\displaystyle \frac{1}{2} , we obtain two more solutions which
are different from the above 4 solutions. The follwing theorem show that there are

also at least 3 solutions in the neighborhood of u=0.

Theorem 1.7. Suppose that g(x) satisfy (Gl) -(G4) . (1.6) has at least three solu‐
tions $\omega$_{d}^{i}(x) (i= 1,2,3) satisfying C_{7}d<$\omega$_{d}^{i}(x) < C_{8}d on every compact subset of
[0 , 1 ] , for d suff. small. Here the constants C7, C_{8} depend on S.

The proofs of Theorems 1.5‐ 1.7 are given in [NK3].

2. CONSTRUCTION 0F UPPER AND LOWER SOLUTIONS

In this section, we will construct, for every d>0 small, a pair of upper solution
u^{*} and lower solution u_{*} , both exhibit transition layer near the non‐degenerate zero
x_{0} of g and u^{*}>u_{*} on [0 , 1 ] . This will guarantee the existence of a solution U such
that u^{*} \geq  U \geq u_{*} , and thus U also exhibits desired transition layer properties at
x_{0} . Construction of upper solution and lower soltion is a key to prove Theorems 1.1
and 1.5.
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We first introduce the correct scaling near x_{0} , the zero of g , is d=$\epsilon$^{3} , and (1.6)
takes the following form:

\left\{\begin{array}{l}
$\epsilon$^{3}u''+g(x)u^{2}(1-u)=0 \mathrm{i}\mathrm{n} (0,1) ,\\
u'(0)=u'(1)=0.
\end{array}\right. (2.1)

We will first construct a lower solution of (2.1) with a transition layer of width  $\epsilon$

near  x_{0} . Letting  $\phi$ be the unique solution of (cf.[NNS]Appendix)

\left\{\begin{array}{l}
$\phi$''+z$\phi$^{2}(1- $\phi$)=0 \mathrm{i}\mathrm{n} (-\infty, \infty) ,\\
 $\phi$(-\infty)=0,  $\phi$(\infty)=1,
\end{array}\right. (2.2)

we have the following properties of  $\phi$ , whose proofs are given in Appendix A.

Lemma 2.1.  $\phi$ is monotone increasing in (-\infty, \infty) , and there wnst positive con‐

stants C_{i}, i=1, \cdots , 6, $\lambda$_{j}, j=1 , 2, 3, and R such that the following hold:

1-C_{1}\exp(-$\lambda$_{1}z^{\frac{3}{2}})< $\phi$(z)<1-C_{2}\exp(-$\lambda$_{2}z^{\frac{3}{2}}) for z>R , (2.3)

$\phi$'(z)<C_{3}\exp(-$\lambda$_{3}z^{\frac{3}{2}}) for z>R , (2.4)

‐ \displaystyle \frac{C_{4}}{z^{3}}< $\phi$(z)<-\frac{C_{5}}{z^{3}} for z<-R , (2.5)

$\phi$'(z)<\displaystyle \frac{C_{6}}{z^{4}} for z<-R . (2.6)

Let L>\displaystyle \max\{R , 1 \} be a large constant to be chosen later, and we define two C^{1}

functions as follows:

 $\eta$(z)=\displaystyle \frac{|z|^{2}}{1+|z|},
 $\theta$(z)= \left\{\begin{array}{ll}
\exp(-$\lambda$_{2}(L+1)^{\frac{3}{2}}) $\eta$(z-L) , & z\geq L,\\
0, & -L\leq z\leq L,\\
\frac{ $\kappa$}{L^{4}} $\eta$(z+L) , & z\leq-L,
\end{array}\right.

where $\lambda$_{2} is the costant in (2.3),  $\kappa$ is a constant satisfying  $\kappa$ >C5 and C5 is the
constant in (2.5).

We begin our construction of a lower solution near x_{0} . Define

\displaystyle \underline{u}(x)= $\phi$(\frac{B(x_{0})(x-x_{0})}{ $\epsilon$}-L^{4}) - $\theta$(\frac{B(x_{0})(x-x_{0})}{ $\epsilon$}-L^{4})
where B(x_{0})=(g'(x_{0}))^{\frac{1}{3}} , and let $\xi$_{1}, $\xi$_{2} satisfy

\displaystyle \underline{u}($\xi$_{1})=0, $\xi$_{1}\leq x_{0}+\frac{ $\epsilon$}{B(x_{0})}(-L+L^{4}) , (2.7)

\displaystyle \underline{u}'($\xi$_{2})=0, $\xi$_{2}\geq x_{0}+\frac{ $\epsilon$}{B(x_{0})}(L+L^{4}) . (2.8)
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We will first show that both $\xi$_{1} and $\xi$_{2} are uniquely determined for all large L.

Setting

z=\displaystyle \frac{B}{ $\epsilon$}(x-x_{0})-L^{4} , (2.9)

we have

\underline{u}(x)= $\phi$(z)- $\theta$(\mathrm{z}) (2.10)

Note that

$\theta$'(z)=-\displaystyle \frac{ $\kappa$}{L^{4}}(1-\frac{1}{(1+|z+L|)^{2}}) \leq 0 for z\leq-L.

This shows

\displaystyle \underline{u}'(x)=\frac{B}{ $\epsilon$}($\phi$'(z)-$\theta$'(z))\geq 0
for z \leq -L , which is equiv. to x \displaystyle \leq x_{0}+\frac{ $\epsilon$}{B}(-L+L^{4}) . This implies that \underline{u}'(x) is

monotone increasing on this interval. Since it holds that

\displaystyle \underline{u}(x_{0}+\frac{ $\epsilon$}{B}(-L+L^{4})) = $\phi$(-L)- $\theta$(-L)= $\phi$(-L)>0,
and

\displaystyle \underline{u}(x_{0}+\frac{ $\epsilon$}{B}(-2L+L^{4})) = $\phi$(-2L)- $\theta$(-2L)<\frac{C_{5}}{8L^{3}}-\frac{ $\kappa$}{L^{4}}\frac{L^{2}}{1+L}<0,
there exists

$\xi$_{1}\displaystyle \in (x_{0}+\frac{ $\epsilon$}{B}(-2L+L^{4}), x_{0}+\frac{ $\epsilon$}{B}(-L+L^{4})) (2.11)

s.t. \underline{u}($\xi$_{1})=0 and $\xi$_{1} is unique.
For $\xi$_{2} , we remark that

$\theta$''(z)=\displaystyle \exp(-$\lambda$_{2}(L+1)^{\frac{3}{2}})\frac{2}{(1+|z+L|)^{3}}\geq 0.
and $\phi$''(x)\leq 0 holds for z\geq L . Therefore it holds that

\displaystyle \underline{u}''(x)=\frac{B^{2}}{$\epsilon$^{2}}($\phi$''(z)-$\theta$''(z))\leq 0
for z\geq L , which is equiv. to x\displaystyle \geq x_{0}+\frac{ $\epsilon$}{B}(L+L^{4}) . This shows \underline{u}'(x) is monotone
decreasing on this interval. On the other hand, it holds that

\displaystyle \underline{u}'(x_{0}+\frac{ $\epsilon$}{B}(L+L^{4})) =\frac{B}{ $\epsilon$}$\phi$'(L)>0.
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If we remark that P=2(^{ $\lambda$}$\lambda$_{3}Z) ヨ >2 , where $\lambda$_{2} > $\lambda$_{3} are in Lemma 2.1, we 。btain
$\lambda$_{3}P^{\frac{2}{3}}=2\sqrt{2}$\lambda$_{2} . Therefore,

\displaystyle \underline{u}'(x_{0}+\frac{ $\epsilon$}{B}(PL+L^{4})) =\displaystyle \frac{B}{ $\epsilon$}($\phi$'(PL)-$\theta$'(PL))
\displaystyle \leq\frac{B}{ $\epsilon$} [C3 \displaystyle \exp(-$\lambda$_{3}(PL)^{\frac{3}{2}})-\exp(-$\lambda$_{2}(L+1)^{\frac{3}{2}})(1-\frac{1}{((P-1)L+1)^{2}})

=\displaystyle \frac{B}{ $\epsilon$} [C3 \displaystyle \exp(-2\sqrt{2}$\lambda$_{2}L^{\frac{3}{2}})-\exp(-$\lambda$_{2}(L+1)^{\frac{3}{2}})(1-\frac{1}{((P-1)L+1)^{2}} ]
=\displaystyle \frac{B}{ $\epsilon$}\exp(-$\lambda$_{2}(L+1)^{\frac{3}{2}}) [C3\displaystyle \exp(-2\sqrt{2}$\lambda$_{2}L^{\frac{3}{2}}+$\lambda$_{2}(L+1)^{\frac{3}{2}})-1+\frac{1}{((P-1)L+1)^{2}}]

=\displaystyle \frac{B}{ $\epsilon$}\exp(-$\lambda$_{2}(L+1)^{\frac{3}{2}}) [C3\displaystyle \exp(-$\lambda$_{2}L^{\frac{3}{2}} (2\sqrt{2}- (\frac{L+1}{L})^{\frac{3}{2}}))-1+\frac{1}{((P-1)L+1)^{2}}]
<0,

for L large. We obtain

$\xi$_{2}\in (x_{0}+\displaystyle \frac{ $\epsilon$}{B}(L+L^{4}), x_{0}+\frac{ $\epsilon$}{B}(PL+L^{4})) (2.12)

s.t. \underline{u}'($\xi$_{2})=0 and $\xi$_{2} is unique.

Moreover, since  $\phi$ is monotone increasing, we have the estimate

\underline{u}($\xi$_{2})< $\phi$($\xi$_{2})< $\phi$(PL)<1-C_{2}\exp(-$\lambda$_{2}(PL)^{\frac{3}{2}})
(2.13)

\displaystyle \underline{u}($\xi$_{2})>\underline{u}(x_{0}+\frac{ $\epsilon$}{B}(L+L^{4}))= $\phi$(L)>1-C_{1}\exp(-$\lambda$_{1}L^{\frac{3}{2}}) .

A crucial step in our construction of a lower‐solution is the following lemma. Set

 $\Phi$(u)\equiv$\epsilon$^{3}u''+g(x)f(u) and f(u)=u^{2}(1-u) . (2.14)

Lemma 2.2. There exists L_{0} >0 such that for all L>L_{0},  $\Phi$(\underline{u}(x)) >0 holds on

the interval ($\xi$_{1}, $\xi$_{2}) for  $\epsilon$ sufficiently small.

(Proof.) By Taylor’s expansion, there exists \tilde{x} between x_{0} and x=x_{0}+\displaystyle \frac{ $\epsilon$}{B}(z+L^{4})
and \tilde{ $\phi$}\in( $\phi$- $\theta$,  $\phi$) such that

g(x)=g'(x_{0})\displaystyle \frac{ $\epsilon$}{B}(z+L^{4})+\frac{1}{2}g''(\tilde{x})\frac{$\epsilon$^{2}}{B^{2}}(z+L^{4})^{2},

f( $\phi$- $\theta$)=f( $\phi$)-f'( $\phi$) $\theta$+\displaystyle \frac{1}{2}f''(\tilde{ $\phi$})$\theta$^{2}.
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Therefore,

 $\Phi$(\underline{u}) = $\epsilon$^{3}\underline{u}_{xx}+g(x)f(\underline{u})

=  $\epsilon$ B^{2}($\phi$_{zz}-$\theta$_{zz})+\displaystyle \frac{ $\epsilon$}{B}g'(x_{0})z(f( $\phi$)-f'( $\phi$) $\theta$+\frac{1}{2}f''(\tilde{ $\phi$})$\theta$^{2})
+(\displaystyle \frac{ $\epsilon$}{B}g'(x_{0})L^{4}+\frac{1}{2}\frac{$\epsilon$^{2}}{B^{2}}g''(\tilde{x})(z+L^{4})^{2})f( $\phi$- $\theta$)

=  $\epsilon$ B^{2}(-$\theta$_{zz}-zf'( $\phi$) $\theta$+\displaystyle \frac{1}{2}zf''(\tilde{ $\phi$})$\theta$^{2})+ $\epsilon$ B^{2}L^{4}f( $\phi$- $\theta$)
+\displaystyle \frac{1}{2}\frac{$\epsilon$^{2}}{B^{2}}g''(\tilde{x})(z+L^{4})^{2}f( $\phi$- $\theta$)

Since z\in(-2L, PL) by (2.11) and (2.12), we have

B^{2}L^{4}+\displaystyle \frac{1}{2}\frac{ $\epsilon$}{B^{2}}g''(\tilde{x})(z+L^{4})^{2}>\frac{1}{2}B^{2}L^{4}
for  $\epsilon$>0 suff. small. Therefore,

 $\Phi$(\displaystyle \underline{u})\geq $\epsilon$ B^{2}(-$\theta$_{zz}-zf'( $\phi$) $\theta$+\frac{1}{2}zf''(\tilde{ $\phi$})$\theta$^{2}+\frac{1}{2}L^{4}f( $\phi$- $\theta$ (2.15)

The rest of the proof is devided into three steps.

Step 1. For  x\in [x_{0}+\displaystyle \frac{ $\epsilon$}{B}(-L+L^{4}), x_{0}+\frac{ $\epsilon$}{B}(L+L^{4})] , we have  $\theta$=0 . Thus (2.15)
implies that

 $\Phi$(\displaystyle \underline{u})\geq\frac{1}{2} $\epsilon$ B^{2}L^{4}f( $\phi$)>0.
Step 2. For  x\in [$\xi$_{1}, x_{0}+\displaystyle \frac{ $\epsilon$}{B}(-L+L^{4}) ), we have  $\phi$- $\theta$\geq 0 , and -2L<z< -L

(by (2.11)). The estimte (2.5) shows

 f'( $\phi$)-\displaystyle \frac{1}{2}f''(\tilde{ $\phi$}) $\theta$ = (2 $\phi$-3$\phi$^{2})-\frac{1}{2}(2-6\tilde{ $\phi$}) $\theta$
= ( $\phi$-3$\phi$^{2})+( $\phi$- $\theta$)+3\tilde{ $\phi$} $\theta$ (2.16)

\displaystyle \geq  $\phi$-3$\phi$^{2}\geq\frac{C_{1}'}{L^{3}}-\frac{C_{2}'}{L^{6}}\geq\frac{C_{1}'}{2L^{3}},
if L is large enough s.t. L > (_{c_{1}}^{2C'}\rightharpoonup ) ユ Hereafter, we will den。te th。se c。nstants
depending only on the constants in Lemma 2.1 by  C_{j}', j=1 , 2, \cdots . Since -z>L,

(2.15) now gives

 $\Phi$(\displaystyle \underline{u}) \geq  $\epsilon$ B^{2}(-$\theta$_{zz}-\frac{C_{1}'}{2L^{3}}z $\theta$)
\displaystyle \geq \frac{ $\epsilon$ B^{2} $\kappa$}{L^{4}}(-\frac{2}{(|z+L|+1)^{3}}+\frac{C_{1}'}{2L^{2}}\frac{(z+L)^{2}}{|z+L|+1}) \geq 0

if

(z+L)^{2}(|z+L|+1)^{2}>\displaystyle \frac{4L^{2}}{C_{1}'},
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which is guaranteed to hold for  x\in [$\xi$_{1}, x_{0}+\displaystyle \frac{ $\epsilon$}{B}(-L^{\frac{2}{3}}-L+L^{4}) ) and L> (\displaystyle \frac{4}{c_{1}})^{\frac{3}{2}}
as |z+L| >L^{\frac{2}{3}} for all x in this interval.

For the remaining part, i.e. for  x\in [x_{0}+\displaystyle \frac{ $\epsilon$}{B}(-L^{\frac{2}{3}}-L+L^{4}), x_{0}+\frac{ $\epsilon$}{B}(-L+L^{4})),
we have

 $\phi$(z)- $\theta$(z)\displaystyle \geq\frac{C_{3}'}{L^{3}}-\frac{C_{4}' $\kappa$}{L^{4}}\frac{L^{\frac{4}{3}}}{L^{\frac{2}{3}}+1}>\frac{C_{3}'}{2L^{3}} (2.17)

if L is sufficiently large. On the other hand,

 $\phi$(z)- $\theta$(z)\displaystyle \leq $\phi$(z)\leq-\frac{C_{5}}{z^{3}}\leq\frac{C_{5}}{L^{3}},
we choose L large enough so that \displaystyle \frac{C_{5}}{L^{3}}<\frac{2}{3} . Since f is monotone increasing in (0, \displaystyle \frac{2}{3}) ,
we have

f( $\phi$- $\theta$)>f(\displaystyle \frac{C_{3}'}{2L^{3}})>\frac{C_{5}'}{L^{6}}
in view of (2.17). From (2.15) and (2.16) we see that

 $\Phi$(\displaystyle \underline{u}) \geq  $\epsilon$ B^{2}(-$\theta$_{zz}+\frac{1}{2}L^{4}f( $\phi$- $\theta$))
\displaystyle \geq  $\epsilon$ B^{2}(-\frac{ $\kappa$}{L^{4}}\frac{2}{(|z+L|+1)^{3}}+\frac{L^{4}}{2}\frac{C_{5}'}{L^{6}}) \geq 0

if L is sufficiently large.

Step 3. For  x\in (x_{0}+\displaystyle \frac{ $\epsilon$}{B}(L+L^{4}), $\xi$_{2}]: First, we choose L large such that \exp(-$\lambda$_{2}L^{\frac{3}{2}})\leq
\exp(-$\lambda$_{1}L^{\frac{3}{2}})\ll 1 , then  $\phi$ is close to 1 and  $\theta$ is close to  0 by Lemma 2.1, and therefore

-f'( $\phi$)+\displaystyle \frac{1}{2}f''(\tilde{ $\phi$}) $\theta$=-(2 $\phi$-3$\phi$^{2})+\frac{1}{2}(2-6\tilde{ $\phi$}) $\theta$>\frac{1}{2}.
From (2.15) it follows that

 $\Phi$(\displaystyle \underline{u})\geq $\epsilon$ B^{2}(-$\theta$_{zz}+\frac{1}{2}z $\theta$+\frac{1}{2}L^{4}f( $\phi$- $\theta$ (2.18)

For  x\in (x_{0}+\displaystyle \frac{ $\epsilon$}{B}(L+L^{4}), x_{0}+\frac{ $\epsilon$}{B}(L+1+L^{4})] , we have

f( $\phi$- $\theta$)\geq f( $\phi$)\geq C_{6}'\exp(-$\lambda$_{2}z^{\frac{3}{2}})

since f is decreasing near 1. Note that z $\theta$\geq 0 and

-$\theta$''=-\displaystyle \exp(-$\lambda$_{2}(L+1)^{\frac{3}{2}})\frac{2}{(|z-L|+1)^{3}}<0.
Substituting these into (2.18) we obtain

 $\Phi$(\displaystyle \underline{u})\geq $\epsilon$ B^{2}(-2\exp(-$\lambda$_{2}(L+1)^{\frac{3}{2}})+\frac{L^{4}}{2}C_{6}'\exp(-$\lambda$_{2}z^{\frac{3}{2}})) >0.
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Finally, for  x\in (x_{0}+\displaystyle \frac{ $\epsilon$}{B}(L+1+L^{4}), $\xi$_{2}], again from (2.18) we deduce

 $\Phi$(\displaystyle \underline{u}) \geq  $\epsilon$ B^{2}\exp(-$\lambda$_{2}(L+1)^{\frac{3}{2}}) [-\frac{2}{(1+|z-L|)^{3}}+\frac{z}{2}\frac{(z-L)^{2}}{(1+|z-L|)}]
= \displaystyle \frac{ $\epsilon$ B^{2}\exp(-$\lambda$_{2}(L+1)^{\frac{3}{2}})}{(1+|z-L|)^{3}} [-2+\frac{z}{2}(z-L)^{2}(1+|z-L|)^{2}],

Since L^{4}f( $\phi$- $\theta$)>0 . On this interval z\geq L+1 , thus

z(z-L)^{2}(1+|z-L|)^{2}\geq 4(L+1) ,

which implies that  $\Phi$(\underline{u})>0 for L large. This completes our proof of Lemma 2.2.

Lemma 2.2 tells us that \underline{u} is a lower solution for (2.1) in the interval ($\xi$_{1}, $\xi$_{2}) . We
now extend it to the entire interval (0,1) . Set \underline{u}($\xi$_{2})=1-$\alpha$_{1} and

u_{*}(x)= \left\{\begin{array}{ll}
0 & \mathrm{i}\mathrm{f} 0\leq x\leq$\xi$_{1},\\
\underline{u}(x) & \mathrm{i}\mathrm{f} $\xi$_{1}\leq x\leq$\xi$_{2},\\
1-$\alpha$_{1} & \mathrm{i}\mathrm{f} $\xi$_{2}\leq x\leq 1.
\end{array}\right. (2.19)

See (2.13). $\alpha$_{1} is close to 0 for L suff. large.

Proposition 2.3. There exists L_{0} > 0 such that for all L > L_{0}, u_{*} is a lower

solution for (2.1) for  $\epsilon$>0 sufficiently small.

(Proof. )First, observe that u_{*}\in C^{0}([0,1]) and  $\Phi$(u_{*})>0 on [$\xi$_{1}, $\xi$_{2}] . Note that
(i)  $\Phi$(0)=0 , i.e. 0 is a solution for (2.1), and \underline{u}'($\xi$_{1})>0 ;
(ii)  $\Phi$(1-$\alpha$_{1}) = $\Phi$(\underline{u}($\xi$_{2})) > 0 . i.e. the constant \underline{u}($\xi$_{2}) is also a lower solution for
(2.1), and \underline{u}'($\xi$_{2})=0.
By (i) and (ii), it follows from standard arguments that u_{*} is a lower solution for
(2.1) on [0 , 1].

An upper solution may be constructed in a similar fashion as the lower solution,
thus we shall be brief.

Let

\hat{ $\theta$}(z)= \left\{\begin{array}{ll}
\frac{C_{2}}{2}\exp(-$\lambda$_{2}(L+1)^{\frac{3}{2}}) $\eta$(z-L) , & z\geq L,\\
0, & -L\leq z\leq L,\\
\frac{\hat{ $\kappa$}}{L^{4}} $\eta$(z+L) , & z\leq-L,
\end{array}\right. (2.20)

and

\displaystyle \overline{u}(x)= $\phi$(\frac{B(x-x_{0})}{ $\epsilon$}+L^{4}) +\hat{ $\theta$}(\frac{B(x-x_{0})}{ $\epsilon$}+L^{4}) . (2.21)

Similarly, let $\xi$_{3} and $\xi$_{4} satisfy

君'($\xi$_{3})=0, $\xi$_{3}\displaystyle \leq x_{0}+\frac{ $\epsilon$}{B}(-L-L^{4}) , (2.22)
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\overline{u}($\xi$_{4})=1 $\xi$_{4}\displaystyle \geq x_{0}+\frac{ $\epsilon$}{B}(L-L^{4}) . (2.23)

Again, we first show that $\xi$_{3} and $\xi$_{4} are uniquely determined for large L . Setting

z=\displaystyle \frac{B}{ $\epsilon$}(x-x_{0})+L^{4} , (2.24)

we have

\overline{u}(x)= $\phi$(z)+\hat{ $\theta$}(z) . (2.25)

Note that z in (2.24) is similar to but different from (2.9). By the fact that \overline{u}''(x)=

\displaystyle \frac{B^{2}}{$\epsilon$^{2}}($\phi$''(z)+\hat{ $\theta$}''(z)) \geq 0 for z\leq-L, \overline{u}' is monotone increasing on this interval. Now

we compute, by Lemma 2.1,

\displaystyle \overline{u}'(x_{0}+\frac{ $\epsilon$}{B}(-L-L^{4})) =\frac{B}{ $\epsilon$}($\phi$'(-L)+\hat{ $\theta$}'(-L))=\frac{B}{ $\epsilon$}$\phi$'(-L)>0
and

\displaystyle \overline{u}'(x_{0}+\frac{ $\epsilon$}{B}(-3L-L^{4})) = \displaystyle \frac{B}{ $\epsilon$}($\phi$'(-3L)+\hat{ $\theta$}'(-3L))
< \displaystyle \frac{B}{ $\epsilon$} (\frac{C_{6}}{(3L)^{4}}-\frac{\hat{ $\kappa$}}{L^{4}} [1- (\frac{1}{1+2L})^{2}])<\frac{B}{ $\epsilon$}(\frac{C_{6}}{(3L)^{4}}-\frac{\hat{ $\kappa$}}{2L^{4}})<0

if \hat{ $\kappa$}>C_{6} and L>1 . Therefore we obtain

$\xi$_{3}\in (x_{0}+\displaystyle \frac{ $\epsilon$}{B}(-3L-L^{4}), x_{0}+\frac{ $\epsilon$}{B}(-L-L^{4})) (2.26)

s.t. \overline{u}'($\xi$_{3})=0 and $\xi$_{3} is unique. Moreover, by Lemma 2.1 and (2.26) we have

\overline{u}($\xi$_{3})> $\phi$($\xi$_{3})> $\phi$(-3L)>\underline{C_{4}}
(3L)^{3}

’

(2.27)

\displaystyle \overline{u}($\xi$_{3})<\overline{u}(\frac{ $\epsilon$}{B}(-L-L^{4}))= $\phi$(-L)<\frac{C_{5}}{L^{3}}.
For $\xi$_{4} , we remark that \overline{u}'(x) = \displaystyle \frac{B}{ $\epsilon$}($\phi$'(z)+\hat{ $\theta$}'(z)) \geq  0 for z \geq  L , therefore \overline{u} is

monotone increasing on this interval. We set \hat{P}=2(_{$\lambda$_{1}}^{ $\lambda$}A)^{\frac{2}{3}} and observe that \hat{P}>2

by Lemma 2.1. Now,

\displaystyle \overline{u}(x_{0}+\frac{ $\epsilon$}{B}(L-L^{4})) =  $\phi$(L)+\hat{ $\theta$}(L)= $\phi$(L)<1,

\displaystyle \overline{u}(x_{0}+\frac{ $\epsilon$}{B}(\hat{P}L-L^{4})) =  $\phi$(\hat{P}L)+\hat{ $\theta$}(\hat{P}L)

> 1-C_{1}\displaystyle \exp(-$\lambda$_{1}(\hat{P}L)^{\frac{3}{2}})+\exp(-$\lambda$_{2}(L+1)^{\frac{3}{2}})\frac{(\hat{P}-1)^{2}L^{2}}{1+(\hat{P}-1)L}>1
if L is sufficiently large. Thus we obtain

$\xi$_{4}\in (x_{0}+\displaystyle \frac{ $\epsilon$}{B}(L-L^{4}), x_{0}+\frac{ $\epsilon$}{B}(\hat{P}L-L^{4})) (2.28)

such that û(  $\xi$4) =1 and $\xi$_{4} is unique.
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Next, we will show that  $\Phi$(\overline{u}) <0 on [$\xi$_{3}, $\xi$_{4}] . We proceed in a similar manner as

in the lower solution case. There exist \tilde{x} between x_{0} and x , and \tilde{ $\phi$}\in [ $\phi$+\hat{ $\theta$}] such
that

g(x)=g(x_{0})+g'(x_{0})\displaystyle \frac{ $\epsilon$}{B}(z-L^{4})+\frac{1}{2}g''(\tilde{x})\frac{$\epsilon$^{2}}{B^{2}}(z-L^{4})^{2},
f( $\phi$+\displaystyle \hat{ $\theta$})=f( $\phi$)+f'( $\phi$)\hat{ $\theta$}+\frac{1}{2}f''(\tilde{ $\phi$})\hat{ $\theta$}^{2}.

Substituting into  $\Phi$(\overline{u}) , we obtain

 $\Phi$(\overline{u}) =  $\epsilon$ B^{2}($\phi$_{zz}+\displaystyle \hat{ $\theta$}_{zz})+\frac{ $\epsilon$}{B}g'(x_{0})z(f( $\phi$)+f'( $\phi$)\hat{ $\theta$}+\frac{1}{2}f''(\tilde{ $\phi$})\hat{ $\theta$}^{2})
+[-\displaystyle \frac{ $\epsilon$}{B}g'(x_{0})L^{4}+\frac{1}{2}\frac{$\epsilon$^{2}}{B^{2}}g''(\tilde{x})(z-L^{4})^{2}]f( $\phi$+\hat{ $\theta$})

=  $\epsilon$ B^{2}[\displaystyle \hat{ $\theta$}_{zz}+zf'( $\phi$)\hat{ $\theta$}+\frac{1}{2}zf''(\tilde{ $\phi$})\hat{ $\theta$}^{2}]+ [- $\epsilon$ B^{2}L^{4}+\displaystyle \frac{1}{2}\frac{$\epsilon$^{2}}{B^{2}}g'' (髭) (z-L^{4})^{2}]f( $\phi$+ $\theta$
Since  z\in(-3L,\hat{P}L) , we have

- $\epsilon$ B^{2}L^{4}+\displaystyle \frac{1}{2}\frac{$\epsilon$^{2}}{B^{2}}g''(\tilde{x})(z-L^{4})^{2}<-\frac{1}{2} $\epsilon$ B^{2}L^{4}.
for  $\epsilon$ sufficiently small(depending on  L). Therefore,

 $\Phi$(\displaystyle \overline{u})\leq $\epsilon$ B^{2}(\hat{ $\theta$}_{zz}+zf'( $\phi$)\hat{ $\theta$}+\frac{1}{2}zf''(\tilde{ $\phi$})\hat{ $\theta$}^{2}-\frac{L^{4}}{2}f( $\phi$+ $\theta$ (2.29)

Step 1. For  x\in [x_{0}+\displaystyle \frac{ $\epsilon$}{B}(-L-L^{4}), x_{0}+\frac{ $\epsilon$}{B}(L-L^{4})] , we have \hat{ $\theta$}=0 . Thus

 $\Phi$(\displaystyle \overline{u})\leq-\frac{1}{2} $\epsilon$ B^{2}L^{4}f( $\phi$)\leq 0.
Step 2. On the interval [$\xi$_{3}, x_{0}+\displaystyle \frac{ $\epsilon$}{B}(-L-L^{4}) ), we have

f'( $\phi$)+\displaystyle \frac{1}{2}f''(\tilde{ $\phi$})\hat{ $\theta$} = (2 $\phi$-3$\phi$^{2})+\frac{1}{2}(2-6\tilde{ $\phi$})\hat{ $\theta$}>0
by Lemma 2.1. Since z < 0 and f( $\phi$) < f( $\phi$+\hat{ $\theta$}) (as f is increasing near 0), we
deduce, from (2.29)

 $\Phi$ (⑰) \leq $\epsilon$ B2 (\displaystyle \hat{ $\theta$}_{zz}-\frac{L^{4}}{2}f( $\phi$)) \displaystyle \leq $\epsilon$ B^{2}(\frac{\hat{ $\kappa$}}{L^{4}}\frac{2}{(1+|z|)^{3}}-\frac{L^{4}}{2}\frac{C_{6}'}{L^{6}}) \leq 0

for L large, as -3L\leq z\leq-L by (2.26).
Step 3. On the interval  x\in (x_{0}+\displaystyle \frac{ $\epsilon$}{B}(L-L^{4}), $\xi$_{4}], we have L\leq z\leq\hat{P}L and  $\phi$ is

close to 1 for  L large. Thus,

f'( $\phi$)+\displaystyle \frac{1}{2}f''(\tilde{ $\phi$})\hat{ $\theta$}=(2 $\phi$-3$\phi$^{2})+\frac{1}{2}(2-6\tilde{ $\phi$})\hat{ $\theta$}<-\frac{1}{2}.
and it holds that

 $\Phi$(\displaystyle \overline{u})\leq $\epsilon$ B^{2}(\hat{ $\theta$}_{zz}-\frac{1}{2}z\hat{ $\theta$}-\frac{L^{4}}{2}f( $\phi$+ $\theta$ (2.30)
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For  x in the interval (x_{0}+\displaystyle \frac{ $\epsilon$}{B}(L-L^{4}), x_{0}+\frac{ $\epsilon$}{B}(L+1-L^{4})) , we have

1- $\phi$-\displaystyle \hat{ $\theta$}\geq\frac{C_{2}}{2}\exp(-$\lambda$_{2}(L+1)^{\frac{3}{2}}) .

Therefore f( $\phi$+\hat{ $\theta$})\geq C_{7}'\exp(-$\lambda$_{2}(L+1)^{\frac{3}{2}}) holds. This and (2.30) shows

 $\Phi$(\overline{u}) \leq  $\epsilon$ B^{2} [\displaystyle \frac{C_{2}}{2}\exp(-$\lambda$_{2}(L+1)^{\frac{3}{2}})\frac{2}{(1+|z|)^{3}}-\frac{C_{7}'L^{4}}{2}\exp(-$\lambda$_{2}(L+1)^{\frac{3}{2}})]
\displaystyle \leq  $\epsilon$ B^{2}(C_{2}-\frac{C_{7}'L^{4}}{2})\exp(-$\lambda$_{2}(L+1)^{\frac{3}{2}})\leq 0

for L large. On the interval (x_{0}+\displaystyle \frac{ $\epsilon$}{B}(L+1-L^{4}), $\xi$_{4}], we have z\geq 1 and thus

\displaystyle \frac{2}{(1+z)^{3}}-\frac{z}{2}\frac{z^{2}}{(1+z)}\leq 0
i.e. \displaystyle \hat{ $\theta$}_{zz}-\frac{1}{2}z\hat{ $\theta$}\leq 0 and  $\Phi$(\overline{u})<0 follows from (2.30). This establishes our assertion
that  $\Phi$(\overline{u})<0 on [$\xi$_{3}, $\xi$_{4}].

Set \overline{u}($\xi$_{3})=$\alpha$_{2} . (2.27) shows that $\alpha$_{2} is close to 0 for L suff. large. We define our
upper solution u^{*}\mathrm{a}\mathrm{e} follows:

u^{*}(x)= \left\{\begin{array}{ll}
$\alpha$_{2} & \mathrm{i}\mathrm{f} 0\leq x\leq$\xi$_{3},\\
\~{u}(x) & \mathrm{i}\mathrm{f} $\xi$_{3}\leq x\leq$\xi$_{4},\\
1 & \mathrm{i}\mathrm{f} $\xi$_{4}\leq x.\leq 1.
\end{array}\right. (2.31)

As in the lower solution case, standard arguments show that u^{*} is an upper solution

in the entire interval (0,1) . Fhrom our definitions of u_{*} and u^{*} , (2.19) and (2.31), and
the estimates for $\xi$_{1} and $\xi$_{4} , (2.11) and (2.28), it follows immediately that u_{*} <u^{*}

on the entire interval (0,1) .
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