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1 Introduction

We first consider the following example of nonlinear eigenvalue problems

—-u"(t) = A(u(t) +g(u®®)), tel=(-1,1), (1.1)
u(t) > 0, tel, (1.2)
u(-1) = u(l)=0. (1.3)

1
Here, g(u) := 3 sin® u(t), k > 1 is a given integer, and \ > 0 is a bifurcation parameter. We
know from [15] that the solution set of (1.1)—(1.3) consists of the set

Q = {(M(k,a),uy)| sol. of (1.1)~(1.3) with ||ualec = a} C Ry x C*(I).

Indeed, in this case, for any given o > 0, there exists a unique solution pair (X, u,) of (1.1)-
(1.3) with o = ||ualleo and X is parameterized by a. So we write as A = A\(k,a). If we

consider the asymptotic behavior of A\(k,a) as a — 00, then it seems clear that

2
4

Ak, a) = —. (1.4)

T2 A
A(2n, a)

a
o | Fig.1 ([19]) bifurcation curve for A(2n,a)

2010 AMS Subject Classifications: Primary 34F10
This work was supported by JSPS KAKENHI Grant Number JP17K05330.
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AM2n+1,0)

a
ol Fig.2 ([19]) bifurcation curve for A\(2n +1,a)

So it is natural to expect that the rate of convergence of A(2n, @) to n2/4 as a — oo is the
same as that of A(2n + 1, ). However, we will find that the following formula holds.

IA(2n; +1,a) — 72/4] < |A(2ng, @) — 72 /4| — 0, (1.5)
where n; > 1 and ny > 1 are arbitrary given integers. To show (1.5), we calculate the
asymptotic behavior of A(k, ) precisely.

Theorem 1.1 ([19]). (i) Let k =2n (n > 1). Then as a — o©

2 T (2n 2 3 _(2n
A(2n, ) = 7~ 22n+1a(n) T 92nt1,3/2 Z(_l)n (r )

=0
X \/r—zl———rsm ((2n —2r)a+ %) +0(a™?). (1.6)
(i) Let k=2n+1 (n >0). Then as a = oo

w2 w2 & nir 20+ 1

)\(2n+1,a) = Z - 22n+—1a3/22(—l) + ( r ) (17)
r=0
Y R P
22n—2r+ 1) A\ T AT AT T
+0(a7?).

We consider why this kind of difference between (1.6) and (1.7) occurs in the next section.

2 General results

The purpose in this section is to show the reason why such kind of difference between (1.6)
and (1.7) occurs. We consider (1.1)-(1.3) and we assume that g(u) satisfies the following

conditions.
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(A.1) g(u) € CY{R) and u + g(u) > 0 for u > 0.
(A.2) g(u+27) = g(u) foru e R.

Then we know from [15] that there exists a unique solution pair (), u,) of (1.1)-(1.3) with
a = ||ug | for any given o > 0 under the condition (A.1). Besides, A is parameterized by a
as A(a). Moreover, A(a) is a continuous function of a > 0. Then it is convenient for us to
write A = A(g, a), since X also depends on g. We note that the Fourier series of g converges
uniformly to g. under the conditions (A.1) and (A.2).

Now, we introduce the notion of (OP).
(OP) Xg,a) = 72/4 as a — oo, and it intersects the line A = 7% /4 infinitely many times

fora>1.

g, @)

4(1+¢'(0)

Fig. 3: A(g,a) with (OP)

Since g(u) is bounded in R by (A.2), it is clear that A(g,a) — 72/4 as a — co. Therefore,
the essential point is to find the condition whether A(g,a) intersects the line A = 7?%/4
infinitely many times for o > 1. By Theorem 1.1, if g(u) = %sinz'”'l(u), then (OP) holds.

1
On the other hand, if g(u) = §sin2"(u), then (OP) does not hold. The purpose here is
to find a simple condition, from which we understand whether (g, ) satisfies (OP) or not
immediately.

Now we state our main results.

Theorem 2.1 ([20]). Assume that g(u) satisfies (A.1)-(A.2). Then as o — oo,

2 mag 1 [T = cn -2
Mg, @) = Z_E_E\/EZIW_'_O(Q ) 2.1

where

o : % /_ " 4(0)d8, (2.2)

™

Cp = /_1r g'(6) cos (n(9 —a)+ %w) df, (neN). (2.3)
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As a corollary of Theorem 2.1, we get an interesting result for the asymptotic behavior
of A(g, @).
Corollary 2.2 ([20]). Assume that g(u) satisfies (A.1)-(A.2). If ag # 0, then (g, ) does
not satisfy (OP).

By Corollary 2.2, we understand immediately the reason that, in the case of g(u) =
%sin""‘“(u), (OP) holds, and in the case of g(u) = %sinm‘(u), (OP) does not hold.

The method to study the local behavior of A(g,a) has been already obtained in [17,
18], because the time-map method and Taylor expansion work very well to study the local

structure of A(g, a).

Theorem 2.3 ([20]). Assume (A.1)-(A.2). Furthermore, assume that g € C? near u =0.
(i) Assume that g(0) # 0. Then as a — 0,

Mg, @) = % {1+ Aro+ Ard? +0(a?)}, (2.4)

where
5 _R0+00)? 1g0)
STTO N A A O PO
(%) Assume that g(0) = 0 and ¢’(0) > —1. Then as a — 0,

= L ™ __rd'0) a+o(a
Moo = o (5 - st oty o) 29

(2.5)

3 Global behavior of \(g, @)

The proof of Theorem 2.1 is given by the combination of time-map method, Fourier expansion
and the asymptotic formulas for some special functions. The proof is given by several steps.
In this section, let a >> 1. For simplicity, we write A = A(g, ). Moreover, we denote by C

the various positive constants independent of a. Let

Glu) = /O " g(s)ds. (3.1)

We know that if (ua, ) € C2(I) x R, satisfies (1.1)~(1.3), then the following properties hold.

Ua(t) = ua(-t), 0<E<1, 3.2)
ua(0) = _max ua(t) = , (3.3)

up(t) >0, -1<t<0. (3.4)
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Step 1. The well known time-map (3.7) below is constructed as follows. By (1.1),
{ua(®) + X (ua(t) + 9(ua(t)))} ua(t) = 0.
By this and putting ¢ = 0, we have
%u;(t)2 +A (%uc.,(t)2 + G(ua(t))) = constant = A (%az + G’(a)) .
By this and (3.4), for —1 <t < 0, we have
U (t) = VAV —ua(8)? + 2(G(a) — G(ua(?)))- (3.5)

It is clear from (A.2) that |g(u)| < C for u € R. Then for 0 < s <1,
G(a) — G(as) Jo g(t)dt < Ca(l —s) <

a?(1—s?) a?(1—-8%) |~ a?(1—s%) —
By (3.5), (3.6), putting s := u4(t)/a and Taylor expansion, we have

\/X _ 0 ’u':x(t) d 37
/_1 V@2 —ua(t)? + 2(G(a) — G(ua(t))) t o0

Ca™t. (3.6)

= /1 ! ds
0 V1—82+2(G(a) — G(as))/a?
_ /1 1 1 ds
o V1-5/1+2(G(a) - G(as))/(a?(1 - s?))
1 1 G(a) — G(as
= /0 1—s2 { - (az>(1 _ 3(2) ) +O(Ol—2>}ds
= 2- %K(a) +0(a"?).

Here,
1
. G(a) — G(as)
K(a) == /0 sy s (3.8)
Step 2. We calculate K(a) by the asymptotic formulas for several special functions as
a — 0o. We know that under the conditions (A.1)-(A.2),

g(z) = %ao + g Qn, COSNT + g b, sinnz (3.9
holds for z € R and the right hand side o; (3.9) converge; to g(z) uniformly on R. Here,
a, = %/_7; 9(6) cosnfdf = _niw /-: g'(0) sinnddf (3.10)
= —%dn (n € Ny),
b, = % /_ : g(6) sinnfdf = % -: g'(6) cosnddf (3.11)

1-
ﬁbn (n € N).
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Step 3.
Lemma 3.1 ([20]). As a — oo,

K(a) = aoa += \/EZ —5t O(a™%?). (3.12)

Proof. We put s =sin 6 in (3.8). Then we obtain

/2
K(a)=« / g{asin ) sin 6d6. (3.13)
0
We use here the integration by parts and ’'Hopital’s rule. For n = N, let
/2
U, = / cos(nasin 6) sin 6d6, (3.14)
0
/2
Ve = / sin(na sin ) sin 6d6. (3.15)
0
By (3.13)—(3.15),
K(a) = asin 0) sin 6d6 (3.16)

o
/ { Zao + Z a,, cos(nasin §)

+ Z by, sin(nasin 6) } sin 0df

n=1

1 ad w/2
= @950 + Z Qn / cos(na sin 6) sin 6d6
oo /2

+an/

sin(na sin ) sin 0d0}
- Jo

1 1, © 1-
= a{éao—gganUn+§Eann}

Put 6 = /2 — ¢ in (3.22). Then by (3.9)-(3.12), (3.14), (3.15) and [9, p.425], we obtain

Un

/ " cos(na cos @) cos ¢ do (3.17)
0

= %(El(na) —E_i(na))

= %(—Yl(na) +Y_i(na) + O((na)™?)

= T(- —-2—sm na—§7r + isin na+l7r
T4 V e 4 V nra 4



+ O((na)=3/%)

_ _\/;%: sin (na - %n) +O((na)=2).

Here, E,(z) are Weber functions and Y, (z) are Neumann functions. Moreover,

Va

/ i sin(na cos ¢) cos ¢ do (3.18)
0
= % {J1(na) — I_1(na)}
= %{Jl(na) - J_1(na)}

T) [ 2 3 v/ 2 1
= Z { %cos (na — Zw) - %cos (na+ Zw)}
+0((na)™*?)

_ \/% cos (noz - gn) +0((na)™%?).

Here, J,(2) are Anger functions and J,(z) are Bessel functions) By (3.14)—(3.18), we obtain

{—ao+‘/ Z(anmn(na—gw)
i 3 1
-+0,, cos ’na—zﬂ' W
PR
+O(a 1/2ZW>
n=1

1 1 [T = ¢ 12
= a{§a0+; %;W}-'_O(a )

Thus the proof is complete. g

K(a)

By (3.7) and Lemma 3.1, we obtain Theorem 2.1. g
We introduce the Special functions and their asymptotic behavior here. For z > 1, we
have (cf. [9, p. 929, p. 958])

T(z) = \/% {[1 + Ry cos (z - gw)

[IF()+R2 sm(z—%r)}, (3.19)

22T (3)
Joi(z) = \/wzz {[1 + Ry] cos (z + iﬂ')
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_ [%11: % + Rz] sin (z + in) } , (3.20)

Yi() = \/g{[l + Rylsin (2 - %‘n)
+ r2_1z 11: g; 4 By cos (z - %w) } , (3.21)

Yoi(z) = 7% {[1 + Rysin (= + iw)
e enlwm () em

where

IR %’? , |Rel < Zsrr((—% ) (3.23)
Ju(z) = Jul2), (3.24)
Ean(z) = ~Yu() T % +0(z), (3.25)

4 Special case

Finally, we are interested in the case g(u) = sin/u. In this case, the equation (1.1)-(1.3)
has been proposed in Cheng [5] as a model problem which has arbitrary many solutions near
A= n2/4.

Theorem 4.0.([5]) Let g1(v) =sin/u (u > 0). Then for any integer r > 1, there is 6 > 0
such that if X € (A\y — 8, \1 + 8), then (1.1)-(1.3) has at least r distinct solutions.

Theorem 4.0 gives us the imformation about the solution set of (1.1)-(1.3), and we expect

that A(g1, o) satisfies (OP). The purpose here is to prove the expectation above is valid.
Theorem 4.1 ([21]). Let g(u) = g;(u) = siny/u. Then as a — oo,

2 3
Mg, a) = % — 73207%4 cos (\/c_x - Zw) + o(a™5%). 4.1)

We next give the asymptotic behavor of A(g1,a) as a — 0.

Theorem 4.2 ([21]). Let g(u) = g1(u) = sin/u.
(i) As a — 0, the following asymptotic formula for (g1, ) holds:

3
Mg, @) = ZC’;"\/E + §Cnga + 0(a®?), (4.2)
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where
! 1 3 (1 1-5?
C; :=/ ——ds, Cy:=—= ———ds. 4.3
' 0o V1—s%2 2 8 Jo V1-— 532 (43)
(ii) Let vy be a unique classical solution of the following equation
3
—yy(t) = ZCf\/vo(t), tel, (4.4)
’Uo(t) > 0, tel, (45)
1.)0(—1) = vo(].) =0. (46)

Furthermore, let v4(t) := uq(t)/a. Then vy — v in C*(I) as a — 0.

The proofs also depend on time-map method.
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