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No Suslin trees but a non-special Aronszajn tree exists by a side condition method
(compact version)
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Abtract

Let us fix a weakly Suslin tree 7* that is upward-absolutely Aronszajn. Let us assume 2* = w; and
2¥1 = w,. We construct an Aspero-Mota type iterated forcing (P, | @ < ws) and take the direct limit
P}, of the P,s. In the generic extensions V2| we have (1) 2 = wy, (2) every Aronszajn tree gets an
uncountable antichain and so no Suslin trees exist, while (3) 7* remains weakly Suslin and Aronszajn. In
particular, 7* has no specializing maps. The idea of a weakly Suslin tree that is upward-absolutely Aronszajn
belongs to a work of S. Shelah. Combinatorics with Aronszajn trees, say, via Ry y, is due to T. Yorioka. An
iterated forcing method that uses symmetric systems and markers is due to Aspero-Mota. It appears that
the construction in this paper is sensitive to the length wsy.

Introduction

Definition. Let T* be an w;-tree a la Kunen. Let § > wy be a regular cardinal. We say T* is weakly
Suslin witnessed at 0, if
{N € [Hg]* | Vx € Typ,, = pushdown N}

is stationary in [Hg]“. Here z pushdown N abbreviates that for any A € N, if ¢ € A, then there exists
y <7~ z such that y € A. We say T™* is weakly Suslin, if there exists a witness 6 for T*.
Proposition. (1) If T* is weakly Suslin witnessed at 6, then for all regular cardinals A > 6,

{N € [H\]” | Vz € Ty, = pushdown N}

are stationary in [H)]“.

(2) If T* is a Suslin tree, then T* is weakly Suslin witnessed at § = w, (with even a club) and (not yet
upward-absolutely) Aronszajn.

(3) If T* is weakly Suslin and Aronszajn, then T* is an Aronszajn tree with no specializing maps f. Namely,
f:T* — w such that whenever z <7+ y, then f(z) # f(y).

Lemma. (S. Shelah) Let T* be a Suslin tree. Then there exists a proper poset P consisting of finite
conditions such that |P| = w; and that P forces f and h such that

e f:C — w; such that the domin C is a club in w, and for all 4,5 € C, if i < j, then i < f(3) < 7,
o h:T*[range(f) — w such that if z <7. v, then h(z) # h(y).

Then, in the generic extension, it holds that GCH, if we start with GCH, and that 7* remains weakly
Suslin witnessed at w, and upward-absolutely Aronszajn.

This sets our ground model V to start with T*. We force wo-times with an Aspero-Mota type iteration
over V. We iteratively add uncountable antichains to all relevant Aronzajn trees, while preserving T to be
weakly Suslin witnessed at w; and Aronszajn. In particular, we have a consistency of no Suslin trees exist
yet a non-special Aronszajn tree exists with 2% = w,, a large continuum. However, we see no generalizations
of this construction to longer iterations, say, ws.

Question. Is it possible to form a longer Aspero-Mota type iterated forcing to get a larger continuum
with the current combinatorial context ?
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The finite symmetric systems Prps

We use symmetric systems of Aspero-Mota.

Definition. (2“1 = w;) Let ® : wy — H,,, such that for each z € H,,,
{i<wy | ®@) =2} /S wo.
We form a relational structure (i.e. a first-order structure with no functions)
(Ho,, €, ®).

Here, € denotes the binary relation € on the universe H,,. We treat ® as a single-valued partial binary
relation, namely

(H,,,€,®) E Va:w,3yst. ady”.

Proposition. Let X = (X, ENX xX),dN(X x X )) be a countable elementary substructure of
(Hu,, €,®). Then X = {®(3) | i € X Nw,}, that is denoted by ®[X Nw,]. Hence

X = ®[X Nwa).

In particular, if 0 # @ € X Nwy, there exists 8 € X Nws such that 8 < wy is the least with ®(f) : w3 — «
onto.

Let

M ={(X,en(X x X),®N(X x X)) | (1) X € [H,,]*, (2)(X,eN(X x X),®N(X x X) < (Hy,, €, P)}
Let (X, € N(X x X),®N (X x X)) € M*. Since X is closed under the function ®, we have
enN(Xx X)={(z,y) |rey,z e X,y X} =€ nX,

O[X ={(4,8()) |ie X}=dN(X x X)=®nX.

Hence
(X,eﬂ(XxX),@ﬂ(XxX)) =(X,enN(X x X),®[X) = (X,enX, PN X).

We just write (X, €,®), (X, ®), or even X for (X,€ N(X x X),®N (X x X)) € M.

We later expand the relational structure (H,,, €, ®) only by unary relations P, M, and so forth forming
(Hw2, E,@,P,M,‘ N )

Let (X,e N(X x X),®N (X x X),PNX,MnNX,---) be an elementary substructure of the expanded
structure (H.,,, €, ®, P, M, ---). Then the shortened structure (X, € N(X x X), 2N (X x X)) isin M*. The
converse may not hold.

Proposition. Let (X3,€,8,P, M,--) and (X2,€,®,P, M,---) be two elemetary substructures of a
relational structure (H.,,€,®,P, M,---). Let ¢ be an isomorphism from (X1,€,®,P, M, ) to (X2, €
,®,P,M,---). Then ¢ = ¢x, x,, where ¢ x, x, denotes the unique isomorphism from (Xi, €) to (X2, €).

@]
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There is no guarantee that (X3, €,®,P, M,---) and (X, €,®, P, M, - --) are isomorphic, even if (X;, €
,®) and (X», €,®) are isomorphic. Hence, we must employ abbreviations and suppressions to denote sub-
structures with caution .

Definition. Let X,Y € M*. We say X and Y enjoy a finite alternation (at the level of wy), if the
following holds.

(fa)y, For any € € §3,if £ = |J(X N &) and € = Y(Y N¢), then £ = (X NY N¢E).

Notation. Let X,Y € M*. We write X =, Y, if X Nw; = Y Nw;. Similarly, X <., Y, if
XNwi <Y Nup. Also, X <, Y, if XNw, <Y Nuws.

Proposition. Let X,Y € M*.

(1) fne XNY Nuwp, then XN(n+1)=Y N(n+1).

(2) Let X and Y enjoy a finite alternation and X =,, Y. Let £ € SZ such that £ = (J(X N &) and
E=U(Y n¢). Then
XNnéE=YnNE.

We consider finite symmetric systems of Aspero-Mota that enjoy finite alternations.
Definition. Let N € Prayy, if

(1) N is a finite subset of M*.
(2) If X,Y € N with X =, Y, then there exists an isomorphism

"25's gt (X,E,é) — (YvE:Q)

that is the identity on the intersection X NY and gIN N X] =N NY.
(3) If X,Y € M with X <, Y, then there exists Z € A such that X € Z =,, Y.
(4) If X,Y e N with X =, Y, then X and Y enjoy a finite alternation at the level of ws.

Lemma. Let N € Prap and let X € N. Let a € X with cf(a) > w;. Then there exists p € X Na
such that for any Y € N with Y <, X, it holds that X NY Na C p.

The above does not need (fa),,.

Lemma. Let Y;,Y> € M* such that Y7 and Y> are isomorphic, the isomorphism ¢ = ¢y,y, : Y1 — Y2
is the identity on the intersection Y; N Y2, and that Y; and Y- enjoy a finite alternation. Let N' € Pram
with NV € Y:. Then N U ¢y1y2(N) € Pram-

Expanding relational structures and isomorphisms

We expand the relational structure (H.,,, €, ®) by adding a finitely many sequences (P} | i < @), -+,
say, (P23 | i < @) of a common length a. Typically, P} are forcing posets such that P} C H,,, and that (CH)
has the wp-cc. Typically, P? are some forcing relations with resect to P} or sets of countable elementary
substructures Z of (H.,,, €,®,---). These sequences are made explicit later. We present things with a single

sequence for the sake of shortness.

Notation. Let (P; | ¢ < a) be a sequence of non-empty subsets of H,, with @ < w,. We are primarily
interested in the initial segments (P; | 7 < &) with £ < a. We first code the P;s as a single subset of H,, by
a standard method. Let

P=Pwa= (P li<a))={(i,2) |i<e,z€P}

We next form an associated relational structure (H,,,€,®,P) that expands (H,,, €, ®) with the unary
relation P. -
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Let X € M*. We consider elementary substructures (X, €, ®,P) of the expanded structure (H,,, €
,®,P), where we mean

(X,6,9,P)=(X,enX,®nX,PNX).

Let £ < o and write P[¢, P«¢, and P<¢ meaning

Ple=Pe=((P|i<&)={(i,2)|i<&z P}
Pag=Peesr =PlE+1) = (R |i<¢+1)) ={(i,2) | i<¢z € P}

We are interested in situations when

(Xv €, q>) PS&)
is an elementary substructure of

(Hu,, €, ®, P<e).
Note that (H.,,, €, ®, P<¢) is interpretable in (H.,,, €, ®,P). Similarly for (H.,, €, ®, P<e).

Proposition. (1) Let ¢(v1,---,v,) be a formula appropriate for (H,,, €, ®,P<¢). Then there is a

corresponding formula ¢*(v,v1,---,v,) such that for all z1,---,z, € H,,, we have

(HW27€’(I>’ PSE) §= “‘p(xh e ’xn)”
iff
(Hu;7 E,‘I),P) '= “‘p*(f»xh"'axn)”'

(2) Let p(v1,---,vn) be a formula appropriate for (H,,, €, ®, P¢). Then there is a corresponding formula
©**(v,v1, -+, Vn) such that for all z1,---,z, € H,,, we have

(Hop, €9, ) |= “pla1,- -+, 20)"
iff
(Huoyr €,2,P<e) | “0™" (€21, 20)".
Proposition. Let X, X;,Xo e M*. Let { <aand & <& < a.
(1) If (X, €, ®,P<¢) is an elementary substructure of (H.,, €, ®, P<¢), then £ € X.

(2) If (X, €,®,P<¢,) is an elementary substructure of (H,,, €, ®, P<¢,) and & € X, then (X, €,®, P<g,) is
an elementary substructure of (H,,, €, ®,P<¢, ).

(3) If (X1,€,®,P) and (X3,€,®,P) are isomorphic elementary substructures of (H,,,€,®,P) and § €

X1 N Xa, then (X1, €,®,P<¢) and (X2, €, ®, P<¢) are isomorphic elementary substructures of (H.,, €
7<I>7PSE)-

Lemma. (Induced structure) Let X;, X, Y € M*. Let £ € X; N Xz Na. Let (X,€,9,P<e),
(X2,€,®,P<), and (Y, €, ®, P<¢) be all elementary substructures of (H,,, €, ®, P<¢). Let

¢: (X1, €,2,P<g) — (X2, €, 9, Pse)
be the isomorphism with ¢(§) = £ and Y € X;. Then
(1) (Y,€,®,P<e) € X1
(2) $((Y,€,9,P<e)) = (#(Y), €, 9, P<e)-
@3) ¢(Y) € M*.
(4) The induced copy (¢(Y), €, ®, P<¢) forms an elementary substructure of (H,,, €, ®, P<¢).
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(5) (Y,€,®,P<¢) and (¢(Y), €, ®, P<¢) are isomorphic by the restriction of ¢.
The Basic Poset Pgasg

Notation. We say S is a relation from A to B, if S C A x B. We write aSb to mean (a,b) € S. Let z
be any, we denote S(z) to mean the range {b | zSb}. Hence if z € A, then S(z) = 0. Let C be a subset of
B, we denote aSC to mean that C C S(a).

Definition. Let p = (N?,S?, AP) = (N, S, A) € Pgask, if
(1) NP € Ppan.

(2) S¥ is a relation from NP to wy such that for all Y € NP, SP(Y) C Y Nws.
(3) AF is a finite relation from ws to w;.

According to our notational convention, we write £ APt for (£,t) € AP. We also write AP(§) to mean
{t <w; | £APt}. Hence
AP = J{{€} x 47(€) | € € dom(47)}.
It is clear that
Ppaseg C H,,.

Let p = (N,S,A) € Ppase and @ < wp. We define the usual restriction pfa = (N, S, A)[a =
(N, S[a, Ala), where
Sla=SN(N x a),

Ala= AN (a x w).
Hence S{a is a relation from A to « and A« is a finite relation from a to w; such that
e For any Y, we have SP[*(Y) = §P(Y) Nna.
e For any £ < o, we have AP[*(£) = AP(€).

If on < ag < wg, then

((N7S:A)I—02)I—al = (N,S,A)I—Q'].
For p,q € Pgasg, let ¢ < p, if N9 D NP, §9 D SP, and A7 D AP.

We construct a Ccg-increasing sequence (P, | o < ws) of subposets of Ppasg.

Remark. If you are sort of familiar with the markers of Aspero-Mota, what we roughly intend is the
following.

o If YSPn, then Y is well-closed with respect to P, and p[n is (P,,Y)-g.

o If YSPn and Y is well-closed with respect to Pp41, then p[(n+1) is (Pp+1,Y)-g.

e SP(Y) is an initial segment of Y N w,.

e YAPBiff YSP(Y N G), though we do not introduce the finite relation AP of Aspero-Mota.

o If YSP(Y Nn) and Y is well-closed with respect to P, then p[7n is (P,,Y)-g.

e S? is usually an infinite relation. But {(Y,SP(Y)) | Y € N} is a finite set that discerns S”.

Hence we prepared the predicate S¥ to argue things point-wise, namely, we worry Y SP5 or not.

YSP(n+1) = YSPp+Y <P = (Pp+1,Y) — g
y 4

YAP(p+1)+n€eY <= YSPy = YS*(YNn)+Y <P, = (P,Y)—¢g
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We prepare a sort of second-order treatment of forcing posets that has a right chain condition. In
the following, we may think of kK = wp. We stick to the only universe H, and prepare a variety of unary
predicates on it, resulting a variety of clubs in [H,]*.

Definition. Let s be a regular uncountable cardinal. Let (P,<p) be a poset such that P C H, and P
has the k-cc. We consider a relational structure

(H«,€,P,<p,RE,RE HE, ),

where
« RE = {(p,7,m) € (Px VP x VP) N Hy | pl-pir =},
o RE={(p,7,m) e (PxVFP xVP)nH, |plp ren’},
e H? =VPnH,.
We are interested in countable elementary substructures

(X,enX2,PNX,<pNX%, RPN X3, REN X3 HPNX,- ")

of

(H)wEyp’SPyR}:’)Rg»va"')-

Lemma. Let
(X,enx%,PnX,<pnX ,RENX3RENX3H nX,- )
be a countable elementary substucture of
(H.,€,P,<p,RE,RE,HE,. ).
Let G be P-generic over the ground model V. Then in V[G], we have
(X[G), e nX[G?, HY n X[G],Gn X[G], PN X[G],<p NX[G]%, RE n X[G?, RE n X (G}, HY n X[G),- )
is a countable elementary substructure of

(HX[GlyevH;Y707PySP7R£7RgvH::'")'

Definition. Let P be a poset such that P C H, and P has the s-cc. Let
X < (Hx,€,P,<p,R2,RZ,HY).
We define that p € P is (P, X)-generic, if for each predense subset D € X of P, D N X is predense below p

in P. Hence, we use maximal antichains rather than dense subsets that would be too large to belong to H..

Lemma. Let P be a poset such that P C H, and P has the k-cc. Let
X < (Hg,€,P,<p,RE,RE,HY)

and p € P. The following are equivalent

(1) pis (P, X)-generic.

(2) For any maximal antichain A € X of P, AN X is predense below p in P.
@) P”—P“X[(:;] NH =X".

4) plFp“X[GlNKk=XNkK".
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Definition. Let T* be weakly Suslin witnessed at . Let P be a poset such that P C H, and P has
the k-cc. We say P is T*-preserving, if there exists a club many X such that if X € M*andp e PN X,
then there exists ¢ < p in P such that

e ¢ is (P, X)-generic,
e For any z € Tk, if  pushdown X, then ¢ |- p“z pushdown X[G].

Lemma. Let T* be weakly Suslin witnessed at k. Let P be T*-preserving. Then 1|} p“T* is weakly
Suslin witnessed at £”.

Iteration

Definition. Let ® : w3 — H,,, be an onto map such that for each a € H,,,, {{ <wa | ®(£) = a} is
cofinal in ws. We may assume that
T = ®(0).

We construct a sequence of posets (P, | @ < ws) by recursmn on a < wsp. Let us assume that o < wy and

we have constructed (P | £ < a) together with (RS, K8) | £ < a) and (M¢ | £ < ). Let us identify the
finitely many sequences of subsets of H,,,.

P=((P:|i<a)),

(K§ li<a)),
(Ki|i<a)),
((RE i < @),
Ré’ = ((RE )
=((HS |i<a)),
={(M; | i< a)).

i< a)

We begin to state induction hypothesis, where we suppress mentioning the sequences except P and M,
as it is tidy. We write X < P for

X < (H,,,€,®, P, RF REe HSY).

We also write X < (P<¢, M<¢) for
X < (Hw27€>q>)PS£?M55)'

We assume recursively that for each ¢ < a
o P: C{p € Ppase | p[§ = p} C H., and (CH) P; has the wa-cc,
&, “KSUKS is a partition of [w;)? that is Ry x,”.

o If &(£) is a Pe-name, then |- p, “if ®(&) is an Aronszajn tree, then KgUf(f is the induced partition”.
e M¢={XeM*|(1) X <P (2) Foralln€ X N& X < (P<y, M<y)}
Let p = (NP,SP, AP) = (N, S, A) € P,, if

(Ob) e N € Prapy.
e S is a relation from A to « such that for all Y € N, S(Y) are initial segments of Y Na.

e A is a finite relation from a to w;.
(el) If Y Sp, then (Y)<, |, this abbreviates



Y < (P<yy M<n).

(ho) If Y157 =.,, Ya2Sn, then (Y1)<, ~ (Y2)<y, this abbreviates

(Yll €,9, PS"?! MS'I) ~ (Y2’ S q)’PSW’ MSW)-
up) If Y257, YaSn, Y3 <., Ya, then there is Y1 € N such that Y3 € Y; =, Y2 and Y1 9.
*

%) If p[€ € P, then p[¢ |--p “A(¢) is K§-homo”.
g) If £At and Y S¢, then either

et<, Y, or

(
(down) If Y18 =, Y257, Y3Sn, and Y3 € Y1, then ¢y, v, (Y3)S7.
(
(

e There exists Z such that S(Z) D ZN¢, Z < (P<¢, M<¢),and Y € Z <, t.

For p,q € P,, set ¢ < pin P,, if N9 D NP, §9 D SP, and A? D AP.

Hence P, is a suborder of PgssEg.

Lemma. (The restrictions) Let p € P, and p < a. Then p[p € P,.
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Lemma. (The projection) Let p < a. The map P, — P, defined by p — p[p is a projection in the

following sense.

(1) If p,q € Py with ¢ < p in P,, then q[p < p[p in P,.

(2) If h € P, with h < p[p, then ht = (M, 5" USP, A* U AP) € P, such that h*[p = h and h* < pin P,.

Lemma. (Complete suborders) Let p < a. Then

1) P, is a suborder of P,.
2) For p,q € P,, p and q are incompatible in P, iff in P,.

4) p<plpin Pa.

1)
)
(3) Any maximal antichain A in P, remains in P,.
)
(5) If G, is P,-generic over V, then

GoaNP,=Galp={glp| g€ Ga}
is P,-generic over V.

Lemma. (1) Pa C {p € Ppass | pla=p} C H,.
(2) (CH) P, has the ws-cc.

Here is the main lemma proved by induction on a < ws.
Lemma. (MAIN) Let p € P, and X be such that
(1) X < (P<ayMc<a),
(2) X Na=87(X).
Then p is (Pa, X)-gg. Namely,
(1) pis (Pa, X)-g,
(2) If z € Txp,, With = pushdown X, then p |- p, “z pushdown X[Ga)”.
Lemma. (Start) Let @ < wp and p € P,. Let
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(1) pe X < (PSmMSG):

Then there exists ¢ € P, such that ¢ < p and that g satisfies the assumption of lemma (main).

In the forcing construction, it suffices to deal with those Aronszajn trees T such that

(1) T has a single root.
(2) Every node of T has infinitely many successors on every higher level of 7.

In particular, for every finite Ko-homogeneous set (namely, antichain) A with respect to T, we have
{t e T | Au{t} is Ko-homogeneous} is uncountable. Details based on [K].

Lemma. (Add Domain, Add a new Element) Let p € Pot1. Let Z < (P<a, M<a) such that p € Z.
Then there exists (h'*,t) such that

(1) ht € Pa+l»

Lemma. (a+ 1 | Ext) Let X < (P<at1, M<at1), P € Pat1, XSPa, and a € dom(AP). Then there
is (£,5*) such that

(1) NPN X, rang(AP) N X <y, Z <oy X.

(2) S*CZxa.

(3) (NPUZ,5P US*, AP) € Payi.

(4) If Y <., X and Y SPa, then there is (Z, X') such that

e ZcZ,5Z)=2ZNa,and Z < (P<qa, M<a)-
e X'SPa,andY € Ze X' =, X.

Proof of main lemma out-lined. Details in use with R; x, provided along [Y].
By induction on a < wp. Let p € P, SP(X) = X Na, and X < (P<qa, M<a)-
Case 0.0. @ =0 and want p is (Po, X)-g.

Recall p € Py iff p= (NP,0,0) and NP € Prapm.
We have q < p iff N9 D N'P. Hence, Py and Prap are isomorphic.
Let D € X be a predense subset of Py, ¢ < p,g<d,andd € D.
Get ¢’ and d’ such that

e dePnX,¢d<dinPyandd e DNnX,

e N9 DNINX.

Let h* € P, such that A*" > M2 UNY . Then h* < ¢, h* <d’,and &' € DN X.

Case 0.1. @ =0 and want p is (Po, X)-gg.

Let z € Txp,,, and z pushdown X. Let A€ X bea Pyname. Let < pand q|}p,“z € A”.
Get ¢’ and y <7+ z such that

e g ePNX, .

* 4R yc A,
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e N DNINX.
Let h* € P, such that N** > N9 UNY . Then h* < g and At |-p,“y € A”.

Case 1.0. suc(a = a + 1) and want p is (Pat1, X )-8

Let D € X be a predense subset of Py1,9<p, ¢ <d,d€ D, and o € dom(A?). We may assume that
AY(a) ¢ X by lemma (add domain, add a new element) and that ¢ is as in lemma (ext).

Get ¢’ and d’ such that

edeP 1 NnX,¢{<deDnX,

o a € dom(A?) and A9 (@) Dena (A%(e) N X),

e SY(Y)CYNnaorST(Y)=Y N(a+1), (not essential)

o If Y € X NN, then S4(Y) = §9(Y),

e heP,,

* h<qfa,q[e,

o hlbp, “(A%a) \ X) U (A7 () \ (4%(a) N X)) is K§-homo”.
Let

Rt = (N", S"USTUST UST, AR U ATU AT).
Then At € P,y1 and ht < q,q.

Here for Y € N* and n = a € [@,a + 1) NY, we set Y'S*a, whenever there exists (X', W) such that
X =, X' €N, X'S%, W € X,WS%a, and Y = ¢xx/(W).

XS% ~ X'S%
l l
WS%a ~ YSta >a

Here we may think of that p = @ and @+ 1 = (a4 1)x = ssup(X N (a + 1)), in view of later cases.

Case 1.1. suc(a = o + 1) and want p is (P41, X)-g8.

Let z € Tj‘mw1 and z pushdown X. Let AeXbea P,4+1-name. Let ¢ < p, qll—pmrl “r € A”, and
a € dom(A?). We may assume that A9(a) ¢ X by lemma (add domain, add a new element) and that q is
as in lemma (ext).

Get ¢’ and y <7+ T such that

q/ € Pa+1 N X and q’ ”_PR.H “y € A”

@ € dom(A?) and A7 () Dena (A%(a) N X),
ST(Y)CYNaor S (Y)=Y N(a+1), (not essential)
IfY € X N N4, then S9(Y) = S9'(Y),

h € P,,

k< qla,q'[a,

hl-p, “(A%a) \ X) U (Aq( (@) \ (A%(a) N X)) is Kg-homo”.

Let

Rt =(Wh, SPUSIUST USH, AP U ATU A7).
Then ht € P,y and ht < gq,q’.

Case 2.0. cf(a) = w and want p is (P,, X)-g.
Let D € X be a predense subset of P,, ¢ <p,q<d,andd € D.
Let p be an ordinal such that

e peEXnNa.

e dom(A?) C p.

e If S9(Y) is bounded below «, then S¥(Y) C p.
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Get ¢/, d’, and h such that

gdeP,NX,deDnX,and ¢ <d in P,,
dom(A7) C p,

ST(Y)cYnpor ST (Y)=Y Na, (not essential)
If Y € X NN9, then S4(Y) = S7(Y),

he P,

k<qfp,q'[p.

Let

Bt = (Nh, ShUSTUST UST, AM).
Then h* € P, and h* < q,¢' in Pa.

Here for Y € N and 5 € [p,a) NY, we set Y S*7, whenever there exists (X', W) such that X =,
X' eNL,WeX,p<neW, XS, WSy, and éxx: (W) = Y.

XS ~ X'Sip
| |
WSin ~ YStp >p
If this is the case, then we have X Na = X’ Na and even a € X N X'. This is because, S9(X’) N« is
cofinal below @ and so, by (fa),,, X Na = X’ Na. Since cf(a) = w, we then even have ¢xx:(a) = a € X'.

Case 2.1. cf(a) = w and want p is (P,, X)-gg.

Let z € T, and x pushdown X. Let A€ X bea P,-name. Let ¢ < p and q|p, “z € A”.
Let p be an ordinal such that

epeXnNa.
e dom(A9) C p.
o If S9(Y) is bounded below «, then SI(Y) C p.

Get ¢’ and y <7+ z such that

¢ ePynNXandq |-p, “yec A,

dom(AY) C p,

ST(Y)CYnpor S?(Y) =Y Na, (not essential)
IfY € X NN4, then SU(Y) = §9(Y),

h e P,

h<qlp.q'[p.

Let

Rt = (N", 8" USTUST UST, AM).
Then h* € P, and ht < q,q’ in P,.

Case 3.0. cf(a) > w; and want p is (P, X)-g.

Let D € X be a predense subset of P,,¢<p,q<d,and d € D.
Let p be an ordinal such that

epcankX,

e dom(A?) Nsup(X Na) C p,

o If S9(Y) Nsup(X Na) is bounded below sup(X Na), then S7(Y) Nsup(X Na) C p,
eIfYeMN andY <, X,thenYNXNaCp.

Get ¢’ and d’ such that

egdeP,NnX,deDNX,and ¢ <d in P,,
IfY € X N N4, then S9(Y) = S9(Y),
e he P,
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e h<4qfp,q'[p.
Let , ,
Rt =Wk ShuSTUST USH AU ATU AT).
Then ht € P, and ht < q,q¢' in P,.
Here for Y € N* and 5 € [p,ax) NY, ax = sup(X Na), we set Y S*7n, whenever there exists (X', W)
such that X =,, X' e NI, W e X,p<neW, X'S%, and ¢xx/ (W) =Y.
XS ~ X'Sip

| I
wWSsYny ~ YStnp >p

If this is the case, then we have X Nax = X' Nax.

Case 3.1. cf(a) > w; and want p is (Pa, X)-gg.

Let z € Tkp,, and = pushdown X. Let A€ X be a P,-name. Let ¢ < p and g |-p, “z € A”.
Let p be an ordinal such that

peEanX,

dom(A?) Nsup(X Na) C p,

If S7(Y) Nsup(X Na) is bounded below sup(X N a), then S9(Y) Nsup(X Na) C p,
fYeN andY <, X,then YN X Na Cp.

Get ¢’ and y <7. z such that

e¢decP,NXand ¢ |-p, “yc A",
e IfY € X N N4, then S9(Y) = S9(Y),
e he P,
e h<q{p,q'[p.
Let

Rt =(Wh SPUSTUST USH AP U ATU AY).
Then h* € P, and ht < q,¢ in P,.

The Final Stage P,

We gave a uniform definition of the P,s and we did not define P,,,. The reason was that if @ < w; and
Y < (H.,,P<a), then a € Y, while wy £ w,. We did not want to argue P,s and P,,, in the previous sections
separatedly.

Now, we form the direct limit P, of (P | & < ws). If we had defined P, as in the P,s, then P,, = PJ,.
Hence we pay back here by somewhat repeating relevants.

Definition. P}, = (J{P. | @ < wz}. For p,q € P},, let ¢ < p in P, if there exists o < wp such that
p,q€ Pyand ¢ <pin P,.

The choices of o are irrelevant and ¢ < pin P}, iff ¢ < p in Ppasg iff N7 2 NP, 59 D SP, and A? D AP.
Lemma. (1) P}, C Pase C Ho,.-

(2) For each a < wa, P, is a complete suborder of P, .

(3) For each o < wa, the map p + p[a from P}, to P, is a projection.

(4) Let G be a P} -generic filter over V. Then G[a = {g[a | g € G} is P,-generic filter over V and we have

Gla =GN P,.
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(CH) P2, has the wy-cc.

Lemma. (1) Let p € P}, and p € X < (P<uw,, M<w,). Then there exists ¢ € P, such that ¢ < pin

P}, and X Nwy = S9(X).

(2)

Let X < (P<uw,> M<u,). Let g € P, such that X Nwy = §9(X). Then q is (P},, X)-gg.

wa?

Lemma. |- P, “T* remains weakly Suslin and Aronszajn”.

Lemma. |- P, “For any Aronszajn tree T, there exists an uncountable antichain A C T”.
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