# No Suslin trees but a non-special Aronszajn tree exists by a side condition method (compact version)

Tadatoshi Miyamoto, Teruyuki Yorioka 2017, September, 3

#### Abtract

Let us fix a weakly Suslin tree  $T^*$  that is upward-absolutely Aronszajn. Let us assume  $2^\omega = \omega_1$  and  $2^{\omega_1} = \omega_2$ . We construct an Aspero-Mota type iterated forcing  $\langle P_\alpha \mid \alpha < \omega_2 \rangle$  and take the direct limit  $P^*_{\omega_2}$  of the  $P_\alpha$ s. In the generic extensions  $V^{P^*_{\omega_2}}$ , we have (1)  $2^\omega = \omega_2$ , (2) every Aronszajn tree gets an uncountable antichain and so no Suslin trees exist, while (3)  $T^*$  remains weakly Suslin and Aronszajn. In particular,  $T^*$  has no specializing maps. The idea of a weakly Suslin tree that is upward-absolutely Aronszajn belongs to a work of S. Shelah. Combinatorics with Aronszajn trees, say, via  $R_{1,\aleph_1}$  is due to T. Yorioka. An iterated forcing method that uses symmetric systems and markers is due to Aspero-Mota. It appears that the construction in this paper is sensitive to the length  $\omega_2$ .

#### Introduction

**Definition.** Let  $T^*$  be an  $\omega_1$ -tree a la Kunen. Let  $\theta \ge \omega_2$  be a regular cardinal. We say  $T^*$  is weakly Suslin witnessed at  $\theta$ , if

$$\{N \in [H_{\theta}]^{\omega} \mid \forall x \in T_{N \cap \omega_1}^* \ x \text{ pushdown } N\}$$

is stationary in  $[H_{\theta}]^{\omega}$ . Here x pushdown N abbreviates that for any  $A \in N$ , if  $x \in A$ , then there exists  $y <_{T^*} x$  such that  $y \in A$ . We say  $T^*$  is weakly Suslin, if there exists a witness  $\theta$  for  $T^*$ .

**Proposition.** (1) If  $T^*$  is weakly Suslin witnessed at  $\theta$ , then for all regular cardinals  $\lambda \geq \theta$ ,

$$\{N \in [H_{\lambda}]^{\omega} \mid \forall x \in T^*_{N \cap \omega_1} \ x \text{ pushdown } N\}$$

are stationary in  $[H_{\lambda}]^{\omega}$ .

- (2) If  $T^*$  is a Suslin tree, then  $T^*$  is weakly Suslin witnessed at  $\theta = \omega_2$  (with even a club) and (not yet upward-absolutely) Aronszajn.
- (3) If  $T^*$  is weakly Suslin and Aronszajn, then  $T^*$  is an Aronszajn tree with no specializing maps f. Namely,  $f: T^* \longrightarrow \omega$  such that whenever  $x <_{T^*} y$ , then  $f(x) \neq f(y)$ .

**Lemma.** (S. Shelah) Let  $T^*$  be a Suslin tree. Then there exists a proper poset P consisting of finite conditions such that  $|P| = \omega_1$  and that P forces  $\dot{f}$  and  $\dot{h}$  such that

- $\dot{f}: \dot{C} \longrightarrow \omega_1$  such that the domin  $\dot{C}$  is a club in  $\omega_1$  and for all  $i, j \in \dot{C}$ , if i < j, then  $i \leq \dot{f}(i) < j$ ,
- $\dot{h}: T^*[\text{range}(\dot{f}) \longrightarrow \omega \text{ such that if } x <_{T^*} y, \text{ then } \dot{h}(x) \neq \dot{h}(y).$

Then, in the generic extension, it holds that GCH, if we start with GCH, and that  $T^*$  remains weakly Suslin witnessed at  $\omega_2$  and upward-absolutely Aronszajn.

This sets our ground model V to start with  $T^*$ . We force  $\omega_2$ -times with an Aspero-Mota type iteration over V. We iteratively add uncountable antichains to all relevant Aronzajn trees, while preserving  $T^*$  to be weakly Suslin witnessed at  $\omega_2$  and Aronszajn. In particular, we have a consistency of no Suslin trees exist yet a non-special Aronszajn tree exists with  $2^{\omega} = \omega_2$ , a large continuum. However, we see no generalizations of this construction to longer iterations, say,  $\omega_3$ .

Question. Is it possible to form a longer Aspero-Mota type iterated forcing to get a larger continuum with the current combinatorial context?

## The finite symmetric systems $P_{FAM}$

We use symmetric systems of Aspero-Mota.

**Definition.**  $(2^{\omega_1} = \omega_2)$  Let  $\Phi : \omega_2 \longrightarrow H_{\omega_2}$  such that for each  $x \in H_{\omega_2}$ ,

$$\{i < \omega_2 \mid \Phi(i) = x\} \nearrow \omega_2.$$

We form a relational structure (i.e. a first-order structure with no functions)

$$(H_{\omega_2}, \in, \Phi).$$

Here,  $\in$  denotes the binary relation  $\in$  on the universe  $H_{\omega_2}$ . We treat  $\Phi$  as a single-valued partial binary relation, namely

$$(H_{\omega_2}, \in, \Phi) \models "\forall \alpha : \omega_2 \exists ! y \text{ s.t. } \alpha \Phi y".$$

**Proposition.** Let  $X = (X, \in \cap (X \times X), \Phi \cap (X \times X))$  be a countable elementary substructure of  $(H_{\omega_2}, \in, \Phi)$ . Then  $X = \{\Phi(i) \mid i \in X \cap \omega_2\}$ , that is denoted by  $\Phi[X \cap \omega_2]$ . Hence

$$X = \Phi[X \cap \omega_2].$$

In particular, if  $0 \neq \alpha \in X \cap \omega_2$ , there exists  $\beta \in X \cap \omega_2$  such that  $\beta < \omega_2$  is the least with  $\Phi(\beta) : \omega_1 \longrightarrow \alpha$  onto.

Let

$$\mathcal{M}^* = \{(X, \in \cap (X \times X), \Phi \cap (X \times X)) \mid (1) \mid X \in [H_{\omega_2}]^{\omega}, (2) \mid (X, \in \cap (X \times X), \Phi \cap (X \times X) \prec (H_{\omega_2}, \in, \Phi)\}$$

Let  $(X, \in \cap (X \times X), \Phi \cap (X \times X)) \in \mathcal{M}^*$ . Since X is closed under the function  $\Phi$ , we have

$$\in \cap (X \times X) = \{(x,y) \mid x \in y, x \in X, y \in X\} = \in \cap X,$$

$$\Phi[X = \{(i, \Phi(i)) \mid i \in X\} = \Phi \cap (X \times X) = \Phi \cap X.$$

Hence

$$(X, \in \cap (X \times X), \Phi \cap (X \times X)) = (X, \in \cap (X \times X), \Phi[X) = (X, \in \cap X, \Phi \cap X).$$

We just write  $(X, \in, \Phi)$ ,  $(X, \Phi)$ , or even X for  $(X, \in \cap (X \times X), \Phi \cap (X \times X)) \in \mathcal{M}^*$ .

We later expand the relational structure  $(H_{\omega_2}, \in, \Phi)$  only by unary relations  $\mathcal{P}, \mathcal{M}$ , and so forth forming

$$(H_{\omega_2}, \in, \Phi, \mathcal{P}, \mathcal{M}, \cdots).$$

Let  $(X, \in \cap (X \times X), \Phi \cap (X \times X), \mathcal{P} \cap X, \mathcal{M} \cap X, \cdots)$  be an elementary substructure of the expanded structure  $(H_{\omega_2}, \in, \Phi, \mathcal{P}, \mathcal{M}, \cdots)$ . Then the shortened structure  $(X, \in \cap (X \times X), \Phi \cap (X \times X))$  is in  $\mathcal{M}^*$ . The converse may not hold.

**Proposition.** Let  $(X_1, \in, \Phi, \mathcal{P}, \mathcal{M}, \cdots)$  and  $(X_2, \in, \Phi, \mathcal{P}, \mathcal{M}, \cdots)$  be two elemetary substructures of a relational structure  $(H_{\omega_2}, \in, \Phi, \mathcal{P}, \mathcal{M}, \cdots)$ . Let  $\phi$  be an isomorphism from  $(X_1, \in, \Phi, \mathcal{P}, \mathcal{M}, \cdots)$  to  $(X_2, \in, \Phi, \mathcal{P}, \mathcal{M}, \cdots)$ . Then  $\phi = \phi_{X_1X_2}$ , where  $\phi_{X_1X_2}$  denotes the unique isomorphism from  $(X_1, \in)$  to  $(X_2, \in)$ .

There is no guarantee that  $(X_1, \in, \Phi, \mathcal{P}, \mathcal{M}, \cdots)$  and  $(X_2, \in, \Phi, \mathcal{P}, \mathcal{M}, \cdots)$  are isomorphic, even if  $(X_1, \in, \Phi)$  and  $(X_2, \in, \Phi)$  are isomorphic. Hence, we must employ abbreviations and suppressions to denote substructures with caution.

**Definition.** Let  $X, Y \in \mathcal{M}^*$ . We say X and Y enjoy a finite alternation (at the level of  $\omega_2$ ), if the following holds.

(fa) $_{\omega_2}$  For any  $\xi \in S_0^2$ , if  $\xi = \bigcup (X \cap \xi)$  and  $\xi = \bigcup (Y \cap \xi)$ , then  $\xi = \bigcup (X \cap Y \cap \xi)$ .

**Notation.** Let  $X,Y \in \mathcal{M}^*$ . We write  $X =_{\omega_1} Y$ , if  $X \cap \omega_1 = Y \cap \omega_1$ . Similarly,  $X <_{\omega_1} Y$ , if  $X \cap \omega_1 < Y \cap \omega_1$ . Also,  $X \leq_{\omega_1} Y$ , if  $X \cap \omega_1 \leq Y \cap \omega_1$ .

**Proposition.** Let  $X, Y \in \mathcal{M}^*$ .

- (1) If  $\eta \in X \cap Y \cap \omega_2$ , then  $X \cap (\eta + 1) = Y \cap (\eta + 1)$ .
- (2) Let X and Y enjoy a finite alternation and  $X =_{\omega_1} Y$ . Let  $\xi \in S_0^2$  such that  $\xi = \bigcup (X \cap \xi)$  and  $\xi = \bigcup (Y \cap \xi)$ . Then

$$X \cap \xi = Y \cap \xi$$
.

We consider finite symmetric systems of Aspero-Mota that enjoy finite alternations.

**Definition.** Let  $\mathcal{N} \in P_{FAM}$ , if

- (1)  $\mathcal{N}$  is a finite subset of  $\mathcal{M}^*$ .
- (2) If  $X, Y \in \mathcal{N}$  with  $X =_{\omega_1} Y$ , then there exists an isomorphism

$$\varphi_{XY}:(X,\in,\Phi)\longrightarrow(Y,\in,\Phi)$$

that is the identity on the intersection  $X \cap Y$  and  $\phi[\mathcal{N} \cap X] = \mathcal{N} \cap Y$ .

- (3) If  $X, Y \in \mathcal{N}$  with  $X <_{\omega_1} Y$ , then there exists  $Z \in \mathcal{N}$  such that  $X \in Z =_{\omega_1} Y$ .
- (4) If  $X, Y \in \mathcal{N}$  with  $X =_{\omega_1} Y$ , then X and Y enjoy a finite alternation at the level of  $\omega_2$ .

**Lemma.** Let  $\mathcal{N} \in P_{FAM}$  and let  $X \in \mathcal{N}$ . Let  $\alpha \in X$  with  $\mathrm{cf}(\alpha) \geq \omega_1$ . Then there exists  $\rho \in X \cap \alpha$  such that for any  $Y \in \mathcal{N}$  with  $Y <_{\omega_1} X$ , it holds that  $X \cap Y \cap \alpha \subset \rho$ .

The above does not need  $(fa)_{\omega_2}$ .

**Lemma.** Let  $Y_1, Y_2 \in \mathcal{M}^*$  such that  $Y_1$  and  $Y_2$  are isomorphic, the isomorphism  $\phi = \phi_{Y_1Y_2} : Y_1 \longrightarrow Y_2$  is the identity on the intersection  $Y_1 \cap Y_2$ , and that  $Y_1$  and  $Y_2$  enjoy a finite alternation. Let  $\mathcal{N} \in P_{FAM}$  with  $\mathcal{N} \in Y_1$ . Then  $\mathcal{N} \cup \phi_{Y_1Y_2}(\mathcal{N}) \in P_{FAM}$ .

#### Expanding relational structures and isomorphisms

We expand the relational structure  $(H_{\omega_2}, \in, \Phi)$  by adding a finitely many sequences  $\langle P_i^1 \mid i < \alpha \rangle, \cdots$ , say,  $\langle P_i^{23} \mid i < \alpha \rangle$  of a common length  $\alpha$ . Typically,  $P_i^1$  are forcing posets such that  $P_i^1 \subset H_{\omega_2}$  and that (CH) has the  $\omega_2$ -cc. Typically,  $P_i^2$  are some forcing relations with resect to  $P_i^1$  or sets of countable elementary substructures Z of  $(H_{\omega_2}, \in, \Phi, \cdots)$ . These sequences are made explicit later. We present things with a single sequence for the sake of shortness.

**Notation.** Let  $\langle P_i \mid i < \alpha \rangle$  be a sequence of non-empty subsets of  $H_{\omega_2}$  with  $\alpha < \omega_2$ . We are primarily interested in the initial segments  $\langle P_i \mid i \leq \xi \rangle$  with  $\xi < \alpha$ . We first code the  $P_i$ s as a single subset of  $H_{\omega_2}$  by a standard method. Let

$$\mathcal{P} = \mathcal{P}_{<\alpha} = \langle \langle P_i \mid i < \alpha \rangle \rangle = \{(i, x) \mid i < \alpha, x \in P_i \}.$$

We next form an associated relational structure  $(H_{\omega_2}, \in, \Phi, \mathcal{P})$  that expands  $(H_{\omega_2}, \in, \Phi)$  with the unary relation  $\mathcal{P}$ .

Let  $X \in \mathcal{M}^*$ . We consider elementary substructures  $(X, \in, \Phi, \mathcal{P})$  of the expanded structure  $(H_{\omega_2}, \in, \Phi, \mathcal{P})$ , where we mean

$$(X, \in, \Phi, \mathcal{P}) = (X, \in \cap X, \Phi \cap X, \mathcal{P} \cap X).$$

Let  $\xi < \alpha$  and write  $\mathcal{P}[\xi, \mathcal{P}_{<\xi}, \text{ and } \mathcal{P}_{\leq \xi}]$  meaning

$$\mathcal{P}\lceil \xi = \mathcal{P}_{<\xi} = \langle \langle P_i \mid i < \xi 
angle 
angle = \{(i,x) \mid i < \xi, x \in P_i\}.$$

$$\mathcal{P}_{\leq \xi} = \mathcal{P}_{<\xi+1} = \mathcal{P}\lceil (\xi+1) = \langle \langle P_i \mid i < \xi+1 \rangle \rangle = \{(i,x) \mid i \leq \xi, x \in P_i\}.$$

We are interested in situations when

$$(X, \in, \Phi, \mathcal{P}_{\leq \mathcal{E}})$$

is an elementary substructure of

$$(H_{\omega_2}, \in, \Phi, \mathcal{P}_{<\xi}).$$

Note that  $(H_{\omega_2}, \in, \Phi, \mathcal{P}_{\leq \xi})$  is interpretable in  $(H_{\omega_2}, \in, \Phi, \mathcal{P})$ . Similarly for  $(H_{\omega_2}, \in, \Phi, \mathcal{P}_{\leq \xi})$ .

**Proposition.** (1) Let  $\varphi(v_1, \dots, v_n)$  be a formula appropriate for  $(H_{\omega_2}, \in, \Phi, \mathcal{P}_{\leq \xi})$ . Then there is a corresponding formula  $\varphi^*(v, v_1, \dots, v_n)$  such that for all  $x_1, \dots, x_n \in H_{\omega_2}$ , we have

$$(H_{\omega_2}, \in, \Phi, \mathcal{P}_{<\xi}) \models "\varphi(x_1, \cdots, x_n)"$$

iff

$$(H_{\omega_2}, \in, \Phi, \mathcal{P}) \models "\varphi^*(\xi, x_1, \dots, x_n)".$$

(2) Let  $\varphi(v_1, \dots, v_n)$  be a formula appropriate for  $(H_{\omega_2}, \in, \Phi, P_{\xi})$ . Then there is a corresponding formula  $\varphi^{**}(v, v_1, \dots, v_n)$  such that for all  $x_1, \dots, x_n \in H_{\omega_2}$ , we have

$$(H_{\omega_2}, \in, \Phi, P_{\xi}) \models "\varphi(x_1, \cdots, x_n)"$$

iff

$$(H_{\omega_2}, \in, \Phi, \mathcal{P}_{\leq \xi}) \models "\varphi^{**}(\xi, x_1, \cdots, x_n)"$$

**Proposition.** Let  $X, X_1, X_2 \in \mathcal{M}^*$ . Let  $\xi < \alpha$  and  $\xi_1 < \xi_2 < \alpha$ .

- (1) If  $(X, \in, \Phi, \mathcal{P}_{\leq \xi})$  is an elementary substructure of  $(H_{\omega_2}, \in, \Phi, \mathcal{P}_{\leq \xi})$ , then  $\xi \in X$ .
- (2) If  $(X, \in, \Phi, \mathcal{P}_{\leq \xi_2})$  is an elementary substructure of  $(H_{\omega_2}, \in, \Phi, \mathcal{P}_{\leq \xi_2})$  and  $\xi_1 \in X$ , then  $(X, \in, \Phi, \mathcal{P}_{\leq \xi_1})$  is an elementary substructure of  $(H_{\omega_2}, \in, \Phi, \mathcal{P}_{\leq \xi_1})$ .
- (3) If  $(X_1, \in, \Phi, \mathcal{P})$  and  $(X_2, \in, \Phi, \mathcal{P})$  are isomorphic elementary substructures of  $(H_{\omega_2}, \in, \Phi, \mathcal{P})$  and  $\xi \in X_1 \cap X_2$ , then  $(X_1, \in, \Phi, \mathcal{P}_{\leq \xi})$  and  $(X_2, \in, \Phi, \mathcal{P}_{\leq \xi})$  are isomorphic elementary substructures of  $(H_{\omega_2}, \in, \Phi, \mathcal{P}_{\leq \xi})$ .

**Lemma.** (Induced structure) Let  $X_1, X_2, Y \in \mathcal{M}^*$ . Let  $\xi \in X_1 \cap X_2 \cap \alpha$ . Let  $(X_1, \xi, \Phi, \mathcal{P}_{\leq \xi})$ ,  $(X_2, \xi, \Phi, \mathcal{P}_{\leq \xi})$ , and  $(Y, \xi, \Phi, \mathcal{P}_{\leq \xi})$  be all elementary substructures of  $(H_{\omega_2}, \xi, \Phi, \mathcal{P}_{\leq \xi})$ . Let

$$\phi: (X_1, \in, \Phi, \mathcal{P}_{\leq \xi}) \longrightarrow (X_2, \in, \Phi, \mathcal{P}_{\leq \xi})$$

be the isomorphism with  $\phi(\xi) = \xi$  and  $Y \in X_1$ . Then

- (1)  $(Y, \in, \Phi, \mathcal{P}_{<\xi}) \in X_1$ .
- (2)  $\phi((Y, \in, \Phi, \mathcal{P}_{<\xi})) = (\phi(Y), \in, \Phi, \mathcal{P}_{<\xi}).$
- (3)  $\phi(Y) \in \mathcal{M}^*$ .
- (4) The induced copy  $(\phi(Y), \in, \Phi, \mathcal{P}_{\leq \xi})$  forms an elementary substructure of  $(H_{\omega_2}, \in, \Phi, \mathcal{P}_{\leq \xi})$ .

(5)  $(Y, \in, \Phi, \mathcal{P}_{\leq \ell})$  and  $(\phi(Y), \in, \Phi, \mathcal{P}_{\leq \ell})$  are isomorphic by the restriction of  $\phi$ .

## The Basic Poset $P_{BASE}$

**Notation.** We say S is a relation from A to B, if  $S \subseteq A \times B$ . We write aSb to mean  $(a,b) \in S$ . Let x be any, we denote S(x) to mean the range  $\{b \mid xSb\}$ . Hence if  $x \notin A$ , then  $S(x) = \emptyset$ . Let C be a subset of B, we denote aSC to mean that  $C \subseteq S(a)$ .

**Definition.** Let  $p = (\mathcal{N}^p, S^p, A^p) = (\mathcal{N}, S, A) \in P_{BASE}$ , if

- (1)  $\mathcal{N}^p \in P_{FAM}$ .
- (2)  $S^P$  is a relation from  $\mathcal{N}^p$  to  $\omega_2$  such that for all  $Y \in \mathcal{N}^p$ ,  $S^p(Y) \subseteq Y \cap \omega_2$ .
- (3)  $A^P$  is a finite relation from  $\omega_2$  to  $\omega_1$ .

According to our notational convention, we write  $\xi A^p t$  for  $(\xi,t) \in A^p$ . We also write  $A^p(\xi)$  to mean  $\{t < \omega_1 \mid \xi A^p t\}$ . Hence

$$A^p = \bigcup \{ \{ \xi \} \times A^p(\xi) \mid \xi \in \text{dom}(A^p) \}.$$

It is clear that

$$P_{BASE} \subset H_{\omega_2}$$
.

Let  $p = (\mathcal{N}, S, A) \in P_{BASE}$  and  $\alpha < \omega_2$ . We define the usual restriction  $p\lceil \alpha = (\mathcal{N}, S, A)\lceil \alpha = (\mathcal{N}, S \lceil \alpha, A \lceil \alpha))$ , where

$$S[\alpha = S \cap (\mathcal{N} \times \alpha),$$

$$A \lceil \alpha = A \cap (\alpha \times \omega_1).$$

Hence  $S[\alpha]$  is a relation from  $\mathcal{N}$  to  $\alpha$  and  $A[\alpha]$  is a finite relation from  $\alpha$  to  $\omega_1$  such that

- For any Y, we have  $S^{p\lceil\alpha}(Y) = S^p(Y) \cap \alpha$ .
- For any  $\xi < \alpha$ , we have  $A^{p \lceil \alpha}(\xi) = A^p(\xi)$ .

If  $\alpha_1 \leq \alpha_2 < \omega_2$ , then

$$((\mathcal{N}, S, A) \lceil \alpha_2) \lceil \alpha_1 = (\mathcal{N}, S, A) \lceil \alpha_1.$$

For  $p, q \in P_{BASE}$ , let  $q \leq p$ , if  $\mathcal{N}^q \supseteq \mathcal{N}^p$ ,  $S^q \supseteq S^p$ , and  $A^q \supseteq A^p$ .

We construct a  $\subset_{\text{reg}}$ -increasing sequence  $\langle P_{\alpha} \mid \alpha < \omega_2 \rangle$  of subposets of  $P_{BASE}$ .

Remark. If you are sort of familiar with the markers of Aspero-Mota, what we roughly intend is the following.

- If  $YS^p\eta$ , then Y is well-closed with respect to  $P_{\eta}$  and  $p\lceil \eta$  is  $(P_{\eta},Y)$ -g.
- If  $YS^p\eta$  and Y is well-closed with respect to  $P_{\eta+1}$ , then  $p[(\eta+1)]$  is  $(P_{\eta+1},Y)$ -g.
- $S^p(Y)$  is an initial segment of  $Y \cap \omega_2$ .
- $Y\Delta^p\beta$  iff  $YS^p(Y\cap\beta)$ , though we do not introduce the *finite* relation  $\Delta^p$  of Aspero-Mota.
- If  $YS^p(Y \cap \eta)$  and Y is well-closed with respect to  $P_{\eta}$ , then  $p\lceil \eta$  is  $(P_{\eta}, Y)$ -g.
- $S^p$  is usually an infinite relation. But  $\{(Y, S^p(Y)) \mid Y \in \mathcal{N}^p\}$  is a finite set that discerns  $S^p$ .

Hence we prepared the predicate  $S^P$  to argue things point-wise, namely, we worry  $YS^p\eta$  or not.

We prepare a sort of second-order treatment of forcing posets that has a right chain condition. In the following, we may think of  $\kappa = \omega_2$ . We stick to the only universe  $H_{\kappa}$  and prepare a variety of unary predicates on it, resulting a variety of clubs in  $[H_{\kappa}]^{\omega}$ .

**Definition.** Let  $\kappa$  be a regular uncountable cardinal. Let  $(P, \leq_P)$  be a poset such that  $P \subset H_{\kappa}$  and P has the  $\kappa$ -cc. We consider a relational structure

$$(H_{\kappa}, \in, P, \leq_P, R_{=}^P, R_{\epsilon}^P, H_{\kappa}^P, \cdots),$$

where

- $R_{=}^{P} = \{(p, \tau, \pi) \in (P \times V^{P} \times V^{P}) \cap H_{\kappa} \mid p \Vdash_{P} "\tau = \pi"\},$
- $R_{\in}^P = \{(p, \tau, \pi) \in (P \times V^P \times V^P) \cap H_{\kappa} \mid p \Vdash_P "\tau \in \pi"\},$
- $H_{\kappa}^P = V^P \cap H_{\kappa}$ .

We are interested in countable elementary substructures

$$(X, \in \cap X^2, P \cap X, \leq_P \cap X^2, R_=^P \cap X^3, R_{\in}^P \cap X^3, H_{\kappa}^P \cap X, \cdots)$$
of
$$(H_{\kappa}, \in, P, \leq_P, R_=^P, R_{\varepsilon}^P, H_{\kappa}^P, \cdots).$$

Lemma. Let

$$(X, \in \cap X^2, P \cap X, \leq_P \cap X^2, R_=^P \cap X^3, R_{\in}^P \cap X^3, H_{\kappa}^P \cap X, \cdots)$$

be a countable elementary substucture of

$$(H_{\kappa}, \in, P, \leq_P, R_{=}^P, R_{\in}^P, H_{\kappa}^P, \cdots).$$

Let G be P-generic over the ground model V. Then in V[G], we have

$$(X[G], \in \cap X[G]^2, H^V_\kappa \cap X[G], G \cap X[G], P \cap X[G], \leq_P \cap X[G]^2, R^P_\equiv \cap X[G]^3, R^P_\epsilon \cap X[G]^3, H^P_\kappa \cap X[G], \cdots)$$

is a countable elementary substructure of

$$(H^{V[G]}_{\kappa}, \in, H^{V}_{\kappa}, G, P, \leq_{P}, R^{P}_{=}, R^{P}_{\epsilon}, H^{P}_{\kappa}, \cdots).$$

**Definition.** Let P be a poset such that  $P \subset H_{\kappa}$  and P has the  $\kappa$ -cc. Let

$$X \prec (H_{\kappa}, \in, P, \leq_P, R^p_-, R^p_{\epsilon}, H^p_{\epsilon}).$$

We define that  $p \in P$  is (P, X)-generic, if for each <u>predense</u> subset  $D \in X$  of P,  $D \cap X$  is <u>predense</u> below p in P. Hence, we use maximal antichains rather than dense subsets that would be too large to belong to  $H_{\kappa}$ .

**Lemma.** Let P be a poset such that  $P \subset H_{\kappa}$  and P has the  $\kappa$ -cc. Let

$$X \prec (H_\kappa, \in, P, \leq_P, R^p_=, R^p_\in, H^p_\kappa)$$

and  $p \in P$ . The following are equivalent

- (1) p is (P, X)-generic.
- (2) For any maximal antichain  $A \in X$  of  $P, A \cap X$  is predense below p in P.
- (3)  $p \Vdash_P X[\dot{G}] \cap H_{\kappa}^V = X$ .
- (4)  $p \Vdash_P "X[\dot{G}] \cap \kappa = X \cap \kappa"$ .

**Definition.** Let  $T^*$  be weakly Suslin witnessed at  $\kappa$ . Let P be a poset such that  $P \subset H_{\kappa}$  and P has the  $\kappa$ -cc. We say P is  $T^*$ -preserving, if there exists a club many X such that if  $X \in \mathcal{M}^*$  and  $p \in P \cap X$ , then there exists  $q \leq p$  in P such that

- q is (P, X)-generic,
- For any  $x \in T^*_{X \cap \omega_1}$ , if x pushdown X, then  $q \Vdash_P x$  pushdown  $X[\dot{G}]$ .

**Lemma.** Let  $T^*$  be weakly Suslin witnessed at  $\kappa$ . Let P be  $T^*$ -preserving. Then  $1 \Vdash_P {}^*T^*$  is weakly Suslin witnessed at  $\kappa$ .

#### Iteration

**Definition.** Let  $\Phi: \omega_2 \longrightarrow H_{\omega_2}$  be an onto map such that for each  $a \in H_{\omega_2}$ ,  $\{\xi < \omega_2 \mid \Phi(\xi) = a\}$  is cofinal in  $\omega_2$ . We may assume that

$$T^* = \Phi(0).$$

We construct a sequence of posets  $\langle P_{\alpha} \mid \alpha < \omega_2 \rangle$  by recursion on  $\alpha < \omega_2$ . Let us assume that  $\alpha < \omega_2$  and we have constructed  $\langle P_{\xi} \mid \xi < \alpha \rangle$  together with  $\langle (\dot{K}_0^{\xi}, \dot{K}_1^{\xi}) \mid \xi < \alpha \rangle$  and  $\langle M_{\xi} \mid \xi < \alpha \rangle$ . Let us identify the finitely many sequences of subsets of  $H_{\omega_2}$ .

$$\begin{split} \mathcal{P} &= \langle \langle P_i \mid i < \alpha \rangle \rangle, \\ \mathcal{K}_0 &= \langle \langle \dot{K}_0^i \mid i < \alpha \rangle \rangle, \\ \mathcal{K}_1 &= \langle \langle \dot{K}_1^i \mid i < \alpha \rangle \rangle, \\ \mathcal{R}_{=}^P &= \langle \langle R_{=}^{P_i} \mid i < \alpha \rangle \rangle, \\ \mathcal{R}_{\in}^P &= \langle \langle R_{\leftarrow}^{P_i} \mid i < \alpha \rangle \rangle, \\ \mathcal{H}^P &= \langle \langle H_{\omega_2}^{P_i} \mid i < \alpha \rangle \rangle, \\ \mathcal{M} &= \langle \langle M_i \mid i < \alpha \rangle \rangle. \end{split}$$

We begin to state induction hypothesis, where we suppress mentioning the sequences except  $\mathcal{P}$  and  $\mathcal{M}$ , as it is tidy. We write  $X \prec P_{\xi}$  for

$$X \prec (H_{\omega_2}, \in, \Phi, P_{\xi}, R_{=}^{P_{\xi}}, R_{\in}^{P_{\xi}}, H_{\omega_2}^{P_{\xi}}).$$

We also write  $X \prec (\mathcal{P}_{\leq \xi}, \mathcal{M}_{\leq \xi})$  for

$$X \prec (H_{\omega_2}, \in, \Phi, \mathcal{P}_{<\xi}, \mathcal{M}_{<\xi}).$$

We assume recursively that for each  $\xi < \alpha$ 

- $P_{\xi} \subset \{p \in P_{BASE} \mid p[\xi = p] \subset H_{\omega_2} \text{ and (CH) } P_{\xi} \text{ has the } \omega_2\text{-cc},$
- $\Vdash_{P_{\xi}}$  " $\dot{K}_{0}^{\xi} \dot{\cup} \dot{K}_{1}^{\xi}$  is a partition of  $[\omega_{1}]^{2}$  that is  $R_{1,\aleph_{1}}$ ".
- If  $\Phi(\xi)$  is a  $P_{\xi}$ -name, then  $\Vdash_{P_{\xi}}$  if  $\Phi(\xi)$  is an Aronszajn tree, then  $\dot{K}_0^{\xi} \cup \dot{K}_1^{\xi}$  is the induced partition.
- $M_{\xi} = \{X \in \mathcal{M}^* \mid (1) \ X \prec P_{\xi}; (2) \text{ For all } \eta \in X \cap \xi, \ X \prec (\mathcal{P}_{\leq \eta}, \mathcal{M}_{\leq \eta})\}$ Let  $p = (\mathcal{N}^p, S^p, A^p) = (\mathcal{N}, S, A) \in P_{\alpha}$ , if
  - (ob)  $\bullet \mathcal{N} \in P_{FAM}$ .
    - S is a relation from  $\mathcal{N}$  to  $\alpha$  such that for all  $Y \in \mathcal{N}$ , S(Y) are initial segments of  $Y \cap \alpha$ .
    - A is a finite relation from  $\alpha$  to  $\omega_1$ .
  - (el) If  $YS\eta$ , then  $(Y)_{\leq \eta} \downarrow$ , this abbreviates

$$Y \prec (\mathcal{P}_{\leq \eta}, \mathcal{M}_{\leq \eta}).$$

(ho) If  $Y_1S\eta =_{\omega_1} Y_2S\eta$ , then  $(Y_1)_{\leq \eta} \sim (Y_2)_{\leq \eta}$ , this abbreviates

$$(Y_1, \in, \Phi, \mathcal{P}_{\leq \eta}, \mathcal{M}_{\leq \eta}) \sim (Y_2, \in, \Phi, \mathcal{P}_{\leq \eta}, \mathcal{M}_{\leq \eta}).$$

- (up) If  $Y_2S\eta$ ,  $Y_3S\eta$ ,  $Y_3<_{\omega_1}Y_2$ , then there is  $Y_1\in\mathcal{N}$  such that  $Y_3\in Y_1=_{\omega_1}Y_2$  and  $Y_1S\eta$ .
- (down) If  $Y_1S\eta =_{\omega_1} Y_2S\eta$ ,  $Y_3S\eta$ , and  $Y_3 \in Y_1$ , then  $\phi_{Y_1Y_2}(Y_3)S\eta$ .
- $(\underline{*})$  If  $p[\xi \in P_{\xi}, \underline{\text{then }} p[\xi \Vdash_{P_{\xi}} A(\xi)]$  is  $K_0^{\xi}$ -homo".
- (g) If  $\xi At$  and  $YS\xi$ , then either
  - $t <_{\omega_1} Y$ , or
  - There exists Z such that  $S(Z) \supseteq Z \cap \xi$ ,  $Z \prec (\mathcal{P}_{\leq \xi}, \mathcal{M}_{\leq \xi})$ , and  $Y \in Z \leq_{\omega_1} t$ .

For  $p, q \in P_{\alpha}$ , set  $q \leq p$  in  $P_{\alpha}$ , if  $\mathcal{N}^q \supseteq \mathcal{N}^p$ ,  $S^q \supseteq S^p$ , and  $A^q \supseteq A^p$ .

Hence  $P_{\alpha}$  is a suborder of  $P_{BASE}$ .

**Lemma.** (The restrictions) Let  $p \in P_{\alpha}$  and  $\rho < \alpha$ . Then  $p \lceil \rho \in P_{\rho}$ .

**Lemma.** (The projection) Let  $\rho < \alpha$ . The map  $P_{\alpha} \longrightarrow P_{\rho}$  defined by  $p \mapsto p \lceil \rho$  is a projection in the following sense.

- (1) If  $p, q \in P_{\alpha}$  with  $q \leq p$  in  $P_{\alpha}$ , then  $q \lceil \rho \leq p \lceil \rho \text{ in } P_{\rho}$ .
- (2) If  $h \in P_{\rho}$  with  $h \leq p\lceil \rho$ , then  $h^+ = (\mathcal{N}^h, S^h \cup S^p, A^h \cup A^p) \in P_{\alpha}$  such that  $h^+ \lceil \rho = h$  and  $h^+ \leq p$  in  $P_{\alpha}$ .

**Lemma.** (Complete suborders) Let  $\rho < \alpha$ . Then

- (1)  $P_{\rho}$  is a suborder of  $P_{\alpha}$ .
- (2) For  $p, q \in P_{\rho}$ , p and q are incompatible in  $P_{\rho}$  iff in  $P_{\alpha}$ .
- (3) Any maximal antichain A in  $P_{\rho}$  remains in  $P_{\alpha}$ .
- (4)  $p \leq p \lceil \rho \text{ in } P_{\alpha}$ .
- (5) If  $G_{\alpha}$  is  $P_{\alpha}$ -generic over V, then

$$G_{\alpha} \cap P_{\rho} = G_{\alpha} \lceil \rho = \{ g \lceil \rho \mid g \in G_{\alpha} \} \}$$

is  $P_{\rho}$ -generic over V.

**Lemma.** (1)  $P_{\alpha} \subset \{p \in P_{BASE} \mid p \mid \alpha = p\} \subset H_{\omega_2}$ .

(2) (CH)  $P_{\alpha}$  has the  $\omega_2$ -cc.

Here is the main lemma proved by induction on  $\alpha < \omega_2$ .

**Lemma.** (MAIN) Let  $p \in P_{\alpha}$  and X be such that

- (1)  $X \prec (\mathcal{P}_{\leq \alpha}, \mathcal{M}_{\leq \alpha}),$
- (2)  $X \cap \alpha = S^p(X)$ .

Then p is  $(P_{\alpha}, X)$ -gg. Namely,

- (1) p is  $(P_{\alpha}, X)$ -g,
- (2) If  $x \in T^*_{X \cap \omega_1}$  with x pushdown X, then  $p \Vdash_{P_{\alpha}} x$  pushdown  $X[\dot{G}_{\alpha}]$ .

**Lemma.** (Start) Let  $\alpha < \omega_2$  and  $p \in P_{\alpha}$ . Let

(1)  $p \in X \prec (\mathcal{P}_{\leq \alpha}, \mathcal{M}_{\leq \alpha}),$ 

Then there exists  $q \in P_{\alpha}$  such that  $q \leq p$  and that q satisfies the assumption of lemma (main).

In the forcing construction, it suffices to deal with those Aronszajn trees T such that

- (1) T has a single root.
- (2) Every node of T has infinitely many successors on every higher level of T.

In particular, for every finite  $K_0$ -homogeneous set (namely, antichain) A with respect to T, we have  $\{t \in T \mid A \cup \{t\} \text{ is } K_0$ -homogeneous} is uncountable. Details based on [K].

**Lemma.** (Add Domain, Add a new Element) Let  $p \in P_{\alpha+1}$ . Let  $Z \prec (\mathcal{P}_{\leq \alpha}, \mathcal{M}_{\leq \alpha})$  such that  $p \in Z$ . Then there exists  $(h^+, t)$  such that

- (1)  $h^+ \in P_{\alpha+1}$ ,
- (2)  $h^{+} \leq p \text{ in } P_{\alpha+1}$ ,
- (3)  $Z \in \mathcal{N}^{h^+}$ ,
- (4)  $Z <_{\omega_1} t$ ,
- (5)  $A^{h^+}(\alpha) = A^p(\alpha) \cup \{t\}.$

**Lemma.**  $(\alpha + 1 \models \text{Ext})$  Let  $X \prec (\mathcal{P}_{\leq \alpha+1}, \mathcal{M}_{\leq \alpha+1}), p \in P_{\alpha+1}, XS^p\alpha$ , and  $\alpha \in \text{dom}(A^p)$ . Then there is  $(\mathcal{Z}, S^*)$  such that

- (1)  $\mathcal{N}^p \cap X$ , rang $(A^p) \cap X <_{\omega_1} \mathcal{Z} <_{\omega_1} X$ .
- (2)  $S^* \subseteq \mathcal{Z} \times \alpha$ .
- (3)  $(\mathcal{N}^p \cup \mathcal{Z}, S^p \cup S^*, A^p) \in P_{\alpha+1}$ .
- (4) If  $Y <_{\omega_1} X$  and  $YS^p \alpha$ , then there is (Z, X') such that
  - $\bullet \ \ Z \in \mathcal{Z}, \, S^*(Z) = Z \cap \alpha, \, \text{and} \, \, Z \prec (\mathcal{P}_{\leq \alpha}, \mathcal{M}_{\leq \alpha}).$
  - $X'S^p\alpha$ , and  $Y \in Z \in X' =_{\omega_1} X$ .

*Proof* of main lemma out-lined. Details in use with  $R_{1,\aleph_1}$  provided along [Y].

By induction on  $\alpha < \omega_2$ . Let  $p \in P_{\alpha}$ ,  $S^p(X) = X \cap \alpha$ , and  $X \prec (\mathcal{P}_{<\alpha}, \mathcal{M}_{<\alpha})$ .

Case 0.0.  $\alpha = 0$  and want p is  $(P_0, X)$ -g.

Recall  $p \in P_0$  iff  $p = (\mathcal{N}^p, \emptyset, \emptyset)$  and  $\mathcal{N}^p \in P_{FAM}$ .

We have  $q \leq p$  iff  $\mathcal{N}^q \supseteq \mathcal{N}^p$ . Hence,  $P_0$  and  $P_{FAM}$  are isomorphic.

Let  $D \in X$  be a predense subset of  $P_0$ ,  $q \leq p$ ,  $q \leq d$ , and  $d \in D$ .

Get q' and d' such that

- $q' \in P_0 \cap X$ ,  $q' \leq d'$  in  $P_0$ , and  $d' \in D \cap X$ ,
- $\mathcal{N}^{q'} \supseteq \mathcal{N}^q \cap X$ .

Let  $h^+ \in P_0$  such that  $\mathcal{N}^{h^+} \supset \mathcal{N}^q \cup \mathcal{N}^{q'}$ . Then  $h^+ \leq q$ ,  $h^+ \leq d'$ , and  $d' \in D \cap X$ .

Case 0.1.  $\alpha = 0$  and want p is  $(P_0, X)$ -gg.

Let  $x \in T^*_{X \cap \omega_1}$  and x pushdown X. Let  $\dot{A} \in X$  be a  $P_0$ -name. Let  $q \leq p$  and  $q \Vdash_{P_0}$  " $x \in \dot{A}$ ". Get q' and  $y <_{T^*} x$  such that

- $q' \in P_0 \cap X$ ,
- $q' \Vdash_{P_0} "y \in \dot{A}"$ ,

•  $\mathcal{N}^{q'} \supset \mathcal{N}^q \cap X$ .

Let  $h^+ \in P_0$  such that  $\mathcal{N}^{h^+} \supset \mathcal{N}^q \cup \mathcal{N}^{q'}$ . Then  $h^+ < q$  and  $h^+ \Vdash_{P_0} "u \in \dot{A}$ ".

Case 1.0.  $\operatorname{suc}(\alpha = \alpha + 1)$  and want p is  $(P_{\alpha+1}, X)$ -g.

Let  $D \in X$  be a predense subset of  $P_{\alpha+1}$ ,  $q \leq p$ ,  $q \leq d$ ,  $d \in D$ , and  $\alpha \in \text{dom}(A^q)$ . We may assume that  $A^q(\alpha) \not\subset X$  by lemma (add domain, add a new element) and that q is as in lemma (ext).

Get q' and d' such that

- $\begin{array}{l} \bullet \ q' \in P_{\alpha+1} \cap X, \, q' \leq d' \in D \cap X, \\ \bullet \ \alpha \in \mathrm{dom}(A^{q'}) \ \mathrm{and} \ A^{q'}(\alpha) \supset_{\mathrm{end}} \big(A^q(\alpha) \cap X\big), \end{array}$
- $S^{q'}(Y) \subseteq Y \cap \alpha$  or  $S^{q'}(Y) = Y \cap (\alpha + 1)$ , (not essential)
- If  $Y \in X \cap \mathcal{N}^q$ , then  $S^q(Y) = S^{q'}(Y)$ ,
- $h \in P_{\alpha}$ ,
- $h \leq q \lceil \alpha, q' \lceil \alpha, q' \rceil = q \lceil \alpha, q' \rceil =$
- $h \Vdash_{P_{\alpha}} (A^q(\alpha) \setminus X) \cup (A^{q'}(\alpha) \setminus (A^q(\alpha) \cap X))$  is  $K_0^{\alpha}$ -homo".

Let

$$h^{+} = (\mathcal{N}^{h}, S^{h} \cup S^{q} \cup S^{q'} \cup S^{+}, A^{h} \cup A^{q} \cup A^{q'}).$$

Then  $h^+ \in P_{\alpha+1}$  and  $h^+ < q, q'$ .

Here for  $Y \in \mathcal{N}^h$  and  $\eta = \alpha \in [\alpha, \alpha + 1) \cap Y$ , we set  $YS^+\alpha$ , whenever there exists (X', W) such that  $X =_{\omega_1} X' \in \mathcal{N}^q, \ X'S^q\alpha, \ W \in X, \ WS^{q'}\alpha, \ \text{and} \ Y = \phi_{XX'}(W).$ 

$$\begin{array}{cccc} XS^{q}\alpha & \sim & X'S^{q}\alpha \\ & | & | \\ WS^{q'}\alpha & \sim & YS^{+}\alpha & \geq \alpha \end{array}$$

Here we may think of that  $\rho = \alpha$  and  $\alpha + 1 = (\alpha + 1)_X = \sup(X \cap (\alpha + 1))$ , in view of later cases.

Case 1.1.  $suc(\alpha = \alpha + 1)$  and want p is  $(P_{\alpha+1}, X)$ -gg.

Let  $x \in T^*_{X \cap \omega_1}$  and x pushdown X. Let  $\dot{A} \in X$  be a  $P_{\alpha+1}$ -name. Let  $q \leq p$ ,  $q \Vdash_{P_{\alpha+1}} "x \in \dot{A}"$ , and  $\alpha \in \text{dom}(A^q)$ . We may assume that  $A^q(\alpha) \not\subset X$  by lemma (add domain, add a new element) and that q is as in lemma (ext).

Get q' and  $y <_{T^*} x$  such that

- $q' \in P_{\alpha+1} \cap X$  and  $q' \Vdash_{P_{\alpha+1}} "y \in A$ "
- $\alpha \in \text{dom}(A^{q'})$  and  $A^{q'}(\alpha) \supset_{\text{end}} (A^{q}(\alpha) \cap X)$ ,
- $S^{q'}(Y) \subseteq Y \cap \alpha$  or  $S^{q'}(Y) = Y \cap (\alpha + 1)$ , (not essential)
- If  $Y \in X \cap \mathcal{N}^q$ , then  $S^q(Y) = S^{q'}(Y)$ ,
- $h \in P_{\alpha}$ ,
- $h \leq q \lceil \alpha, q' \lceil \alpha,$
- $h \Vdash_{P_{\alpha}} (A^q(\alpha) \setminus X) \cup (A^{q'}(\alpha) \setminus (A^q(\alpha) \cap X))$  is  $\dot{K}_0^{\alpha}$ -homo".

$$h^+ = (\mathcal{N}^h, S^h \cup S^q \cup S^{q'} \cup S^+, A^h \cup A^q \cup A^{q'}).$$

Then  $h^+ \in P_{\alpha+1}$  and  $h^+ \leq q, q'$ .

Case 2.0.  $cf(\alpha) = \omega$  and want p is  $(P_{\alpha}, X)$ -g.

Let  $D \in X$  be a predense subset of  $P_{\alpha}$ ,  $q \leq p$ ,  $q \leq d$ , and  $d \in D$ .

Let  $\rho$  be an ordinal such that

- $\rho \in X \cap \alpha$ .
- $dom(A^q) \subset \rho$ .
- If  $S^q(Y)$  is bounded below  $\alpha$ , then  $S^q(Y) \subset \rho$ .

Get q', d', and h such that

- $q' \in P_{\alpha} \cap X$ ,  $d' \in D \cap X$ , and q' < d' in  $P_{\alpha}$ ,
- $\operatorname{dom}(A^{q'}) \subset \rho$ ,
- $S^{q'}(Y) \subset Y \cap \rho$  or  $S^{q'}(Y) = Y \cap \alpha$ , (not essential)
- If  $Y \in X \cap \mathcal{N}^q$ , then  $S^q(Y) = S^{q'}(Y)$ ,
- $h \in P_{\rho}$ ,
- $h \leq q \lceil \rho, q' \lceil \rho$ .

Let

$$h^+ = (\mathcal{N}^h, S^h \cup S^q \cup S^{q'} \cup S^+, A^h).$$

Then  $h^+ \in P_{\alpha}$  and  $h^+ \leq q, q'$  in  $P_{\alpha}$ .

Here for  $Y \in \mathcal{N}^h$  and  $\eta \in [\rho, \alpha) \cap Y$ , we set  $YS^+\eta$ , whenever there exists (X', W) such that  $X =_{\omega_1} X' \in \mathcal{N}^q$ ,  $W \in X$ ,  $\rho \leq \eta \in W$ ,  $X'S^q\eta$ ,  $WS^{q'}\eta$ , and  $\phi_{XX'}(W) = Y$ .

$$XS^q \eta \sim X'S^q \eta$$
 $|$ 
 $WS^{q'} \eta \sim YS^+ \eta > \rho$ 

If this is the case, then we have  $X \cap \alpha = X' \cap \alpha$  and even  $\alpha \in X \cap X'$ . This is because,  $S^q(X') \cap \alpha$  is cofinal below  $\alpha$  and so, by  $(\mathrm{fa})_{\omega_2}$ ,  $X \cap \alpha = X' \cap \alpha$ . Since  $\mathrm{cf}(\alpha) = \omega$ , we then even have  $\phi_{XX'}(\alpha) = \alpha \in X'$ .

Case 2.1.  $cf(\alpha) = \omega$  and want p is  $(P_{\alpha}, X)$ -gg.

Let  $x \in T^*_{X \cap \omega_1}$  and x pushdown X. Let  $\dot{A} \in X$  be a  $P_{\alpha}$ -name. Let  $q \leq p$  and  $q \Vdash_{P_{\alpha}} "x \in \dot{A}"$ . Let  $\rho$  be an ordinal such that

- $\rho \in X \cap \alpha$ .
- $dom(A^q) \subset \rho$ .
- If  $S^q(Y)$  is bounded below  $\alpha$ , then  $S^q(Y) \subset \rho$ .

Get q' and  $y <_{T^*} x$  such that

- $q' \in P_{\alpha} \cap X$  and  $q' \Vdash_{P_{\alpha}} "y \in A"$ ,
- $dom(A^{q'}) \subset \rho$ ,
- $S^{q'}(Y) \subset Y \cap \rho$  or  $S^{q'}(Y) = Y \cap \alpha$ , (not essential)
- If  $Y \in X \cap \mathcal{N}^q$ , then  $S^q(Y) = S^{q'}(Y)$ ,
- $h \in P_{\rho}$ ,
- $h \leq q \lceil \rho, q' \lceil \rho$ .

Let

$$h^{+} = (\mathcal{N}^{h}, S^{h} \cup S^{q} \cup S^{q'} \cup S^{+}, A^{h}).$$

Then  $h^+ \in P_{\alpha}$  and  $h^+ \leq q, q'$  in  $P_{\alpha}$ .

Case 3.0.  $cf(\alpha) \ge \omega_1$  and want p is  $(P_{\alpha}, X)$ -g.

Let  $D \in X$  be a predense subset of  $P_{\alpha}$ ,  $q \leq p$ ,  $q \leq d$ , and  $d \in D$ .

Let  $\rho$  be an ordinal such that

- $\rho \in \alpha \cap X$ ,
- $dom(A^q) \cap sup(X \cap \alpha) \subset \rho$ ,
- If  $S^q(Y) \cap \sup(X \cap \alpha)$  is bounded below  $\sup(X \cap \alpha)$ , then  $S^q(Y) \cap \sup(X \cap \alpha) \subset \rho$ ,
- If  $Y \in \mathcal{N}^q$  and  $Y <_{\omega_1} X$ , then  $Y \cap X \cap \alpha \subset \rho$ .

Get q' and d' such that

- $q' \in P_{\alpha} \cap X$ ,  $d' \in D \cap X$ , and  $q' \leq d'$  in  $P_{\alpha}$ ,
- If  $Y \in X \cap \mathcal{N}^q$ , then  $S^q(Y) = S^{q'}(Y)$ ,
- $h \in P_{\rho}$ ,

•  $h \leq q \lceil \rho, q' \lceil \rho$ .

Let

$$h^+ = (\mathcal{N}^h, S^h \cup S^q \cup S^{q'} \cup S^+, A^h \cup A^q \cup A^{q'}).$$

Then  $h^+ \in P_{\alpha}$  and  $h^+ \leq q, q'$  in  $P_{\alpha}$ .

Here for  $Y \in \mathcal{N}^h$  and  $\eta \in [\rho, \alpha_X) \cap Y$ ,  $\alpha_X = \sup(X \cap \alpha)$ , we set  $YS^+\eta$ , whenever there exists (X', W) such that  $X =_{\omega_1} X' \in \mathcal{N}^q$ ,  $W \in X$ ,  $\rho \leq \eta \in W$ ,  $X'S^q\eta$ , and  $\phi_{XX'}(W) = Y$ .

$$XS^{q}\eta \sim X'S^{q}\eta$$
 $|$ 
 $WS^{q'}\eta \sim YS^{+}\eta \geq \rho$ 

If this is the case, then we have  $X \cap \alpha_X = X' \cap \alpha_X$ .

Case 3.1.  $cf(\alpha) \geq \omega_1$  and want p is  $(P_{\alpha}, X)$ -gg.

Let  $x \in T^*_{X \cap \omega_1}$  and x pushdown X. Let  $\dot{A} \in X$  be a  $P_{\alpha}$ -name. Let  $q \leq p$  and  $q \models_{P_{\alpha}} "x \in \dot{A}$ ". Let  $\rho$  be an ordinal such that

- $\rho \in \alpha \cap X$ ,
- $dom(A^q) \cap sup(X \cap \alpha) \subset \rho$ ,
- If  $S^q(Y) \cap \sup(X \cap \alpha)$  is bounded below  $\sup(X \cap \alpha)$ , then  $S^q(Y) \cap \sup(X \cap \alpha) \subset \rho$ ,
- If  $Y \in \mathcal{N}^q$  and  $Y <_{\omega_1} X$ , then  $Y \cap X \cap \alpha \subset \rho$ .

Get q' and  $y <_{T^*} x$  such that

- $q' \in P_{\alpha} \cap X$  and  $q' \Vdash_{P_{\alpha}} "y \in A"$ ,
- If  $Y \in X \cap \mathcal{N}^q$ , then  $S^q(Y) = S^{q'}(Y)$ ,
- $h \in P_{\rho}$ ,
- $h \leq q \lceil \rho, q' \lceil \rho$ .

Let

$$h^{+} = (\mathcal{N}^{h}, S^{h} \cup S^{q} \cup S^{q'} \cup S^{+}, A^{h} \cup A^{q} \cup A^{q'}).$$

Then  $h^+ \in P_{\alpha}$  and  $h^+ \leq q, q'$  in  $P_{\alpha}$ .

# The Final Stage $P_{\omega_2}^*$

We gave a uniform definition of the  $P_{\alpha}$ s and we did not define  $P_{\omega_2}$ . The reason was that if  $\alpha < \omega_2$  and  $Y \prec (H_{\omega_2}, \mathcal{P}_{\leq \alpha})$ , then  $\alpha \in Y$ , while  $\omega_2 \not< \omega_2$ . We did not want to argue  $P_{\alpha}$ s and  $P_{\omega_2}$  in the previous sections separatedly.

Now, we form the direct limit  $P_{\omega_2}^*$  of  $\langle P_{\alpha} \mid \alpha < \omega_2 \rangle$ . If we had defined  $P_{\omega_2}$  as in the  $P_{\alpha}$ s, then  $P_{\omega_2} = P_{\omega_2}^*$ . Hence we pay back here by somewhat repeating relevants.

**Definition.**  $P_{\omega_2}^* = \bigcup \{P_\alpha \mid \alpha < \omega_2\}$ . For  $p, q \in P_{\omega_2}^*$ , let  $q \leq p$  in  $P_{\omega_2}^*$ , if there exists  $\alpha < \omega_2$  such that  $p, q \in P_\alpha$  and  $q \leq p$  in  $P_\alpha$ .

The choices of  $\alpha$  are irrelevant and  $q \leq p$  in  $P_{\omega_2}^*$  iff  $q \leq p$  in  $P_{BASE}$  iff  $\mathcal{N}^q \supseteq \mathcal{N}^p$ ,  $S^q \supseteq S^p$ , and  $A^q \supseteq A^p$ .

Lemma. (1)  $P_{\omega_2}^* \subset P_{BASE} \subset H_{\omega_2}$ .

- (2) For each  $\alpha < \omega_2$ ,  $P_{\alpha}$  is a complete suborder of  $P_{\omega_2}^*$ .
- (3) For each  $\alpha < \omega_2$ , the map  $p \mapsto p[\alpha \text{ from } P_{\omega_2}^* \text{ to } P_{\alpha} \text{ is a projection.}]$
- (4) Let G be a  $P_{\omega_0}^*$ -generic filter over V. Then  $G[\alpha = \{g[\alpha \mid g \in G\} \text{ is } P_{\alpha}\text{-generic filter over } V \text{ and we have } P_{\omega_0}^*$

$$G[\alpha = G \cap P_{\alpha}]$$

(5) (CH)  $P_{\omega_2}^*$  has the  $\omega_2$ -cc.

**Lemma.** (1) Let  $p \in P_{\omega_2}^*$  and  $p \in X \prec (\mathcal{P}_{<\omega_2}, \mathcal{M}_{<\omega_2})$ . Then there exists  $q \in P_{\omega_2}^*$  such that  $q \leq p$  in  $P_{\omega_2}^*$  and  $X \cap \omega_2 = S^q(X)$ .

(2) Let  $X \prec (\mathcal{P}_{<\omega_2}, \mathcal{M}_{<\omega_2})$ . Let  $q \in P_{\omega_2}^*$  such that  $X \cap \omega_2 = S^q(X)$ . Then q is  $(P_{\omega_2}^*, X)$ -gg.

**Lemma.**  $\Vdash_{P_{\omega_2}^*}$  "T\* remains weakly Suslin and Aronszajn".

**Lemma.**  $\Vdash_{P^*_{\omega_2}}$  "For any Aronszajn tree T, there exists an uncountable antichain  $A \subset T$ ".

### References

[A-M] D. Aspero, M. Mota, Forcing consequences of PFA together with the continuum large, Trans. Amer. Math. Soc. 367 (2015), no. 9, 6103-6129.

[S] S. Shelah. Shelah, Proper and Improper Forcing, Springer, 1998.

[Y] T. Yorioka, Notes, 2015-2016.

miyamoto@nanzan-u.ac.jp Mathematics Nanzan University 18 Yamazato-cho, Showa-ku, Nagoya 466-8673 Japan

styorio@ipc.shizuoka.ac.jp Department of Mathematics Shizuoka University Ohya 836, Shizuoka, 422-8529 Japan