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EXISTENCE OF A MINIMAL NON-SCATTERING
SOLUTIONS TO THE MASS-SUBCRITICAL
GENERALIZED KORTEWEG-DE VRIES EQUATION

JUN-ICHI SEGATA

1. INTRODUCTION

This is a joint work with Satoshi Masaki (Osaka university). We consider
the generalized Korteweg-de Vries equation:

(gKdV) Byu + Bu = pdy(|lu|**u), t,z €R,

where u : R x R — R is an unknown function, @ > 0, and ¢ = £1. The
class of equations (gKdV) arises in several fields of physics. For example,
equation (gKdV) with o = 1 describes a time evolution for the curvature of
certain types of helical space curves [15].

We study the long time behavior of solution to (gKdV). Especially, we
focus on construction of a non-scattering solution, which is minimal in some
sense, to (gKdV). As for (gKdV), the mass-critical case @ = 2 is most
extensively studied in this direction. Killip, Kwon, Shao and Visan [13]
constructed a minimal blow-up solution to (gKdV) with the mass critical
case in the framework of L2. Dodson [6] proved the global well-posedness
and scattering in L? for (gKdV) with the mass critical, defocusing case
u=+1

We shall show existence of a minimal non-scattering solution of (gKdV)
with the mass-subcritical case a < 2 by using the concentration compact-
ness argument by Kenig and Merle [10]. As explained in [18], a good well-
posedness theory and a decoupling (in)equality play a central role in the
concentration compactness argument. However, when a < 2, it seems diffi-
cult to derive those properties in the usual Sobolev spaces by several reasons.
So, we construct a critical element by using a generalized hat-Morrey space
which enables us to establish well-posedness theory good enough and to
obtain the concentration compactness lemma equipped with a decoupling
inequality. We now introduce a generalized hat-Morrey space.

Definition 1.1. Let Tg = [k277,(k+1)277) forj,k € Z. For1 < f <y < o0
and B < 6 < 00, we define a hat-Morrey norm by

1zs, = 1721 50l oy

5
l].k

where f stands for Fourier transform of f in x. Banach space Mf’ 5 18
defined as set of tempered distributions of which above norm is finite. For
o > 0, we also define IBEI_"M,ﬁ‘; = {f € SM)||o:|°f € M,ﬁé}, where
|0s|7 = FE|ITF.



We construct a minimal non-scattering solution of (gKdV) in the frame-
work of the generalized hat-Morrey space ]81|“’]\;I25, ;- Before we state our
main theorems, we introduce several notation. We introduce a deformations
associated with the function space |8z|_"M£ 5

e Translation in physical side: (T'(y)f)(z) := f(z —y), y € R.
e Airy flow: (A(s)f)(z) = (=% f)(z), s € R.
e Dilation (scaling): (D(N)f)(x) = N®f(Nz), N € 2Z.
Note that |07 Af’ s-norm is invariant under the above group actions.
For a solution u on I, take ty € I and set
Tmax := sup {T > to | u(t) can be extended to a solution on [ty,T).},
Tmin := sup {T > —to | u(t) can be extended to a solution on (—T),to].},
Imax = max(u) = (_Tmimeax)-
Definition 1.2 (Scattering). We say a solution u(t) to (gKdV) scatters
forward in time (resp. backward in time) if Tin = 00 (resp. Tmax = 00)
and if |9;|7€!Pu(t) converges in M2B,5 ast — oo (resp. t — —00).

We first consider the small data scattering for (gKdV).

Assumption 1.3. Let 5/3 < a < 20/9 and 0 < ¢ < min(3/5 — 1/a,1/4 —
2/(5a)). Define B by 1/8=1/a+ o. Let vy and § satisfy

4 1 1 1 1 1 1
42K <o, cm K=< =
5a+a vy B 2 5a 6§ p

Theorem 1.4 (Small data scattering in |Bx|_"M$’6). Suppose a, o, 3,

~v. and 0 satisfy Assumption 1.8. Then, there exists €9 > 0 such that if
|0z|up € Mﬁé(R) satisfies |||8z|”uo||M56 < &g, then there exists a global
v

~ solution u(t) to (gKdV) satisfying
N 5a
u € C(R; [8;| 7" MP5(R)) N LF (R; LI*(R)) N [0;]" % L (R x R).
Moreover, u scatters for both time directions.

To seek a critical element, we consider the minimization problem for E;
defined by

E; :=inf {tei?,,,f“”w”’”u(t)”M%
Remark that it holds that

Ey = inf { 110217 u(0) [l 45

2,6

u(t) is a solution to (gKdV) that
does not scatter forward in time. |

u(t) is a solution to (gKdV) that does }

not scatter forward in time, 0 € Ipax(u).

by the time translation symmetry. By Theorem 1.4, we see that E; > 0.
Furthermore, for the focusing case u = —1, we have Ey < [||0:/°Q s
2.8

where Q is a (unique) positive even solution of —Q"” + Q = Q%**1!,

The goal is to determine the explicit value of F;. In what follows, we
consider the focusing case u = —1 only. However, the focusing assumption
is used only for assuring Fj is finite. Our analysis work also in the defocusing
case u = +1 if we assume F; is finite.
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Assumption 1.5. We suppose that 5/3 < a < 12/5 and max(0,1/2 —
1/a) < 0 < min(3/5 — 1/a,1/4 — 2/(5a)). Define 8 € (5/3,2) by 1/8 =
1/a+o andlet 1/6 € (1/2 —1/(5a),1/0").

Theorem 1.6 (Analysis of E;). Suppose that Assumption 1.5 is satisfied.
Then, there exists a minimizer ui(t) to E; in the following sense: u(t) is
a solution to (gKdV) with mazimal interval Imax(u1) 3 0 and

(i) u1(t) does not scatter forward in time;

(i) u1(t) attains Ey in such a sense that either one of the following two
properties holds;
(@) 192|7ur(O)ll gz, = En;

2.
(b) u1(t) scatters backward in time and uy — :=lim¢ , o e uy (t)
satisfies |||3x|"ul,_|]1‘21£;‘s = E;.

So far, we do not have any additional property, such as precompactness
of the flow, of the critical solution u; constructed in Theorem 1.6. It is not
necessarily by a technical reason. Indeed, a similar minimization problem
is considered for energy critical nonlinear Schrodinger equation in [16], and
a minimizer satisfying properties (i) and (ii)-(b) is given!. Remark that the
minimizer satisfying (ii)-(b) does not possess precompactness of the flow for
negative time direction.

If we consider the minimization problem for F; defined by

B it { T 118, u(t)] u(t) is a solution to (gKdV) that
2 =1 tr;‘t,,ﬁx =l Y Mzﬁ,a does not scatter forward in time. |’

we obtain a compactness of the critical element. Indeed, we have the fol-
lowing result.

Theorem 1.7 (Analysis of E3). Suppose that Assumption 1.5 is satisfied.
Then, there exists a minimizer uz(t) to Ey in the following sense: wua(t) is
a solution to (gKdV) with mazimal interval Inax(u2) 3 0 and

(i) uz(t) does not scatter forward and backward in time;

(ii) Three quantities

sup |0z w2 ()|l e
teR 2.8

n o (£)] - im Tuo(t
i 10Ol T 167200

i,
are equal to E,.

(iil) wue(t) is precompact modulo symmetries, i.e., there exist a scale func-
tion N(t) : Imax — Ry and a space center y(t) : Inax — R such
that the set {(D(N(t))T(y(t))) " ua(t) | t € Imax} C IBII‘”Mfé is
precompact. ’

Note by definition, we see E; < FE».

The rest of the article is organized as follows. In Section 2, we give
an outline of the proof of the small data scattering for (gKdV) (Theorem
1.4). In Section 3, we shall mention about how to construct a minimal
non-scattering solution to (gKdV) (Theorems 1.6 and 1.7) by using the
concentration compactness.

1I'\n'thermore, in this case there is no minimizer which attains minimum value at finite
time as in (ii)-(a). See [16]
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2. SMALL DATA SCATTERING

In this section we prove small data scattering for (gKdV) (Theorem 1.4).
To this end, we consider integral form of (gKdV):

t
(2.1) u(t) = e~ (1=t 4 u/ e_(t_s)6281(|u|2°’u)(s)ds.

to

For an interval I C R, we introduce function spaces L(I), M(I), and S(I)as
follows:

) , — a3
L) = {ueS(IxR) Il gy = |12 Lgam;Lff(,))w}’
— ! = 3
M(I) = {" € SU X R) llullps(r) = Hla””lzau L e Fay OO}’
S(I) = {ueSUIxR = g <o
() {" (IR (el = el 38 g r gy oo}

For an interval I C R, we say a function v € M(I) N S(I) is a solution
to (gKdV) on I if u satisfies (2.1) in the M (I) N S(I) sense. Modifying a
well-posedness result in [17], we have

Lemma 2.1. Let 5/3 < a < 20/9. Denote by Z(I) either L(I) or M(I).
Let tg € R and I be an interval with tg € I. Then, there exists a universal
constant 6 > 0 such that if a tempered distribution ug and an interval I > tg
satisfy

no = no(1; uo, to) := “6_“—“’)32%“ + He_(t—m)aguoH )

S(I) z(1)

then there exists a unique solution u(t) on I to (gKdV) satisfying
lullsery + llullz¢ry < 270
Moreover, the solution satisfies u(t) — e~(:=0)%yy € C(I; L.
Furthermore we obtain an existence result.

Proposition 2.2. Let a, o, B, v and & satisfy the assumption of Theorem
1.4. Then, for any up € |az)-<’Mf y and tyg € R there exists an interval
I C R, I >ty such that there exists a unique solution u(t) on I to (gKdV).
The solution belongs to C(I; i(?,,l“’Mf’(s + Lo).

The key point in the proof of Proposition 2.2 is the following refined
Strichartz’ estimate for the Airy equation which is due to [19, Theorem 1.3].

Lemma 2.3. Let o € (0,1/4). Let (p,q) satisfy
1 1 1 1 1
£-<+-g0 <
p 4 qg 2 p
Define a and s by
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Further, we define 3, v, and é by
1

ity
1_1. 3 p Y9ZpT 1 1
_ = — o _ = R
’ 1 1 11 ax
hoa v,y ity 002 maxpg)
B q qg p

Then, there exists a positive constant C depending on p,q,o such that the
inequality

(2:2) [10z1°¢=% ¢

< Clllo:1° fll;
sy < O Flze,

holds for any f € |3x|_0M$,5

Proof of Proposition 2.2. One sees from Lemma 2.3 that if a > 8/5 and
0<o<1/4-2/(5a) then

(2.3) “e‘(t—to)i‘ﬁu(’” + ”e—(t—to)agut)” <C |”3$|6“0||M36 < oo.
b

L(R) S(R)

Hence, there exists an open neighborhood I C R of tg such that 7o(I; ug, to) <
8, where § and 7o are defined in Lemma 2.1. Since u(t) — e~(t=%0)%y, ¢
C(I; L*) and |8,|7e=(t-t)%yy € C(I; M,ﬁé), we obtain the result. O

Proof of Theorem 1.4. To prove the theorem, it suffices to show that u(t) —
e~ (=% € C(I, |8, Mf s)- This is obtained by mimicing the argument
in [17, 18]. See [19, Proof of Theorem 1.4]. O

As a byproduct of the above arguments, we obtain the scattering criterion
for (gKdV).

Theorem 2.4 (scattering criterion). Suppose a, o, 3, v, and § satisfy As-
sumption 1.8. Let ug € |8z|‘”M5’ 5 and let u(t) be a solution to (gKdV) with
mazimadl lifespan Imax 5 0. The following three statements are equivalent

e u(t) scatters forward in time in the sense of Definition 1.2;

b Ilu”L([O,Tmax)) < 005

* Ilulls(io,Tmay) < 00

Further, if either one of the above (hence all of the above) holds then e%2u(t)
converges as t — oo in L N |9,| "7 LP.

3. MINIMIZING PROBLEM

3.1. Linear profile decomposition. In this subsection, we establish the
linear profile decomposition in |9;|~7 Mf s- The linear profile decomposition
essentially consists of two parts. The first part is concentration compactness
and the second part is the inductive procedure to obtain a decomposition.

Let us begin with the concentration compactness part. The hat-Morrey
space J\;Ig, is realized as a dual of a Banach space [16, Theorem 2.17].
Therefore, a bounded set of the hat-Morrey space is compact in the weak-*
topology.
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Theorem 3.1 (Concentration compactness in |6m|_"1\;I£ 5)- Suppose that
a>8/5and0< o <1/4—2/(5a). Let B,7,6 satisfy 1/8 =1/a+ o,

4 +20 < — ! < ! d L_1 < 1 < =
— + 20 =, and = -—<=-<-—.
S5a v B 2 ba 6 O
Let {up}n C |81|“’M,35 a bounded sequence;
(3.1 110617l < M

for some M > 0. If the sequence further satisfies

83 S
(3.2) ” nHL(lR)nS(R) Zm

for some m > 0 then there exist such that
10217 (T (yn) " A(sn) "' D(Np) " tun) — (8279
as n — oo weakly-* in Mﬁ(S with ||1/)||M;a > C(M,m) > 0.

Proof of Theorem 3.1. See [19, Theorem 4.1]. O

We next move to the main issue of this subsection, linear profile decom-
position. Let us define a set of deformations as follows

(3.3) G := {D(N)A(s)T(y) | T = (N, s,y) € 22 xR x R}.

We often identify G € G with a corresponding parameter I' € 2Z x R x R if
there is no fear of confusion. Let us now introduce a notion of orthogonality
between two families of deformations.

Definition 3.2. We say two families of deformations {Gn} C G and {Gn} C
G are orthogonal if corresponding parameters I'y, I‘n € 22 x R x R satisfies

3
34)  lim ( + s, - (ﬂ) 5, Nn ) — oo
N,

n—0o Yn — Fnyn
Theorem 3.3 (Linear profile decomposition in |c‘9z|"’]\;.f§ 5)- Suppose that
a, o, B, v, and & satisfy Assumption 1.5. Let {un}n be a bounded se-
quence. in |8;,|“’J\;I§6. Then, there exist 7 € |Bx|‘”M£5, T € |3m|_”M£6,
and pairwise orthogonal families of deformations {Ga}n C G (j = 1,2,...)
parametrized by {I's, = (hb, s}, y%)}n such that, extracting a subsequence n
n!

+

log Nu
N,

n

J

(3.5) Un =Y GhY + 77
=1
foralln,J > 1 and
3.6) lim I H B,|3a =10 ” ~t03p.J =0.
(3.6) Joeen nc}o( | Is € "l L32 (RxR) € n Lt%ngﬂ(RxIR)

Moreover, a decoupling inequahty

(37 T [16el unlle, ZII!@JWIIME + B I3,

n—00
=1
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holds for all J > 1. Furthermore, if u, is real-valued then so are ¢’ and r,{ .
Proof of Theorem 3.3. See [19, Theorem 43] a

3.2. Outline of Proof of Theorem 1.6. Let us begin with the analysis
of E;. We first take a minimizing sequence {u,(t),tn}n C |8$|_"M£5 x R
as follows; t, € Imax(un) and

1
(3.8) l1unll S((tn, Tmax)) = O Hlazlgun(tn)nj\;,f& < E+ .

By time translation symmetry, we may suppose that t, = 0. We apply
the linear profile decomposition theorem (Theorem 3.3) to the sequence
{un(0)},. Then, up to subsequence, we obtain a decomposition
J
un(0) = ZQ%W +7r)
=1
for n,J > 1 with the properties (3.6), (3.7), and pairwise orthogonality of
{G}}n C G. By extracting subsequence and changing notations if necessary,
we may assume that for each j and {z2}n, = {log Ni}n;, {Sh}nys {¥2}nygs
either 22, = 0, 7, — 00 as n — 00, or T, — —00 as n — oo holds. Let us
define a nonlinear profile ¥/ (t) associated with (¢, s3,) as follows: For each
7, we let
e if s, = 0 then UJ(¢) is a solution to (gKdV) with ¥7(0) = 97;
e if 57, — 00 as n — oo then W/(t) is a solution to (gKdV) that
scatters forward in time to e~%
psvl;
e if s;, - —00 as n — oo then U’(¢t) is a solution to (gKdV) that
scatters backward in time to e~%%¢9; '

Let
(3.9) V3(t) := D(NI)T(y3) W ((N3)’t + s7,).
Here, we define an approximate solution
J
(3.10) @l(tz) = > V(tz) +e %],
j=1

The main step is to show that there exists W7 that does not scatter for-
ward in time. Suppose not. Then, all ¥’ scatters forward in time and so
“lel" P || 58 < Er for all j. Then, we shall observe that @; is an approxi-

2.8

mately solves (gKdV) and that is close to u,. Furthermore, by the stability
estimate (19, Theorem 3.6, we have [lun||gg,) < oo for sufficiently large
n. This contradicts with the definition of {us},. Thus, we see that there
exists jo such that ¥J° does not scatter. Then, |||0;|7¢7| Mg, > E; by

definition of E;. One also sees from (3.7) that ||[0z|°%°||,,s < E1. Hence,
2.6
118217 5, = Bi.

Let us show that uy := U7 attains F;. The case $?° — 0o as n — o0 is
excluded since this implies u.(t) scatters forward in time. If si = 0 then
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W0(0) = 4% and so |[|8z|”u1(0) ||,

2.
then limy_, o, €% Uio(t) = ¢%. Hence, uj — := limy—,_ €92 y0 (t) satisfies
113e s~ p. = .

s = E;. Finally, if s - —co asn — o0
é

3.3. Outline of Proof of Theorem 1.7. We finally consider analysis of
E,. By definition of Ej, it is possible to choose a minimizing sequence of
solutions {un(t)}n so that all u,(t) does not scatter forward.in time and

1

< Iim 4 .5 < —.
E2 X tTTiI::tun) “Ia’tl u"(t)“Mfé B E2 + n

Hence, there exists tn,t), € Imax(un), tn < t,, so that

2
u =N, su Orl%un(t)|| 6 € |Eo, Ea+ —| .
llum 15 gt 23) P 1621 n ()] 6. [ 2, B n]
Indeed, we first choose t, so that the second property holds. Then, since
||u""S([tn,me)) = 00, we can choose t], so that the first property is true.

By time translation symmetry, we may suppose that ¢/, = 0. We now
apply linear profile decomposition to u,(0) to get the decomposition

J
un(0) = > Gy + 15,

J=1

for n,J > 1 with the properties (3.6), (3.7), and pairwise orthogonality of
{G%}n C G. By extracting subsequence and changing notations if necessary,
we may assume that for each j and {z}n; = {log Ni}nj, {sh}nys {¥3}nys
we have either zJ, = 0, 2, — 00 as n — 00, or xj, — —00 as n — 00. Let
us define nonlinear profile ¥’ associated With‘(’(ﬁj, s%) in the same way as
in the proof of Theorem 1.6. We also define V;! and ;] by (3.9) and (3.10),
respectively.

Then, mimicking the proof of Theorem 1.6, one sees that at least one U7
does not scatter forward in time. We further see from decoupling inequality
(3.7) and small data scattering that the number of the profiles that do not
scatter is finite. Renumbering, we may suppose that ¥’(¢) do not scatter
forward in time if and only if j € [1,J/1]. Here, 1 < J; < co. Arguing as
in [16], we see that J; = 1, m”Tmax(q,l)“IB:EIU\I/l(t)”Méié = E3, 97 =0 for

j>2andr: —»0asn— coin |3$|“’M£6. As a result,
(3.11) un(0) = Gayp' +0n(1) in |9,|77 M.

If s — oo as n — oo then U!(t) scatters forward in time, a contradic-
tion. Because of ||uy|| S([tn,0]) = ™ the same argument works for negative

time direction. We see that W!(t) does not scatter backward in time and
that the case s} — —o0o as n — oo is excluded. Moreover, together with

SUP;c [t Timax) |||c9;,|”un(t)||M£(s € [Ez, E; + %], we have

tlem(\I’l)

max

Tim ”Iaxla‘l,l(t)“Mf& :t sup y HIa,‘,‘.lﬂ\]:ll(t)“J\;Ié;‘s = Es.
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So far, we have proven that ! satisfies the first two properties of Theorem
1.7. Let us finally prove the precompactness modulo symmetry. Take an ar-
bitrary sequence {7n} C Imax(¥!). Then, we can choose t, € (Tnin(¥'), )
so that u,(t) :== ¥, t, = 7, and this t, satisfies the same assumption
as above. The decomposition (3.11) reads as existence of ¢ € |9;|™7 Af’ P
{Npn}n C Ry, and {yn}n C R such that

V() = D(Nu)T(yn)$ + 0n(1) in |85~ M.

This is nothing but a sequential version of precompactness. A standard
argument then upgrades this property to the continuous one.
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