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Abstract

Laplacian growth refers to domain evolution driven by harmonic
gradients, for example the gradient of the Green’s function with a fixed
pole. It makes sense on Riemannian manifolds of arbitrary dimension,
and there is a notion of weak solution which allows for changes of
topology of the domain during the evolution. However, here we discuss
the possibility, in the case of two dimensions, of avoiding changes of
topology at the price of allowing the evolution to go up on a branched
Riemann covering surface of the original surface. If the initial domain
is simply connected one can then describe the evolution by means of
conformal mappings from the unit disk, a kind of Loewner evolution.

There appear difficulties which are not yet completely solved. Pre‐
liminary results can be found in joint work arXiv:1411.1909 with Yu‐
Lin Lin, which presently is under further progress with also Joakim
Roos as an author.
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1 Introduction

This is a summary of a talk given at RIMS, Kyoto, on June 6, 2017. It
represents work in progress [8] with Yu‐Lin Lin and Joakim Roos. A partial
preprint is available as [7], which in its turn is a continuation of a previous
paper [6]. For general background and references on Laplacian growth, or
Hele‐Shaw flow moving boundary problems, see [11].

2 Laplacian growth, general description

There are many variants, but the traditional description of Laplacian growth
(LG) is given in terms of the following data and definitions.

\bullet \mathcal{M} is a Riemannian manifold, a\in \mathcal{M} a fixed point.

\bullet  $\Omega$ is any subdomain of \mathcal{M} with a\in $\Omega$.

\bullet  G_{ $\Omega$} a) denotes the Dirichlet Green’s function of  $\Omega$ with pole at  a.

\bullet  V_{n} = -\displaystyle \frac{\partial G_{ $\Omega$}(\cdot,a)}{\partial n} is the speed by which \partial $\Omega$ is imposed to move, in the
outward normal direction.

Then: given an initial domain  $\Omega$(0) one asks for the evolution  $\Omega$(t) , for t in
some interval containing t=0.

LG originally arose in a fluid problem discussed by Henry Selby Hele‐
Shaw [15]. Special features of this moving boundary problem for Hele‐Shaw
flow, i.e. LG, are

\bullet The dynamical law is nonlocal (“motion by harmonic measure”’).

\bullet Weak solution makes LG decouple into a series of elliptič problems.

\bullet There is an ordinary PDE description as highly degenerate parabolic
problem (of Stefan type).

\bullet LG is extremely well‐posed as  t\nearrow (injection, swelling domains).

\bullet LG is extremely ill‐posed as  t\searrow (suction, shrinking domains).
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3 History

The subject has switched several times between Great Britain and Russia,
but since around 1980 it has been truly international.

\bullet Henry Selby Hele‐Shaw (1854‐1941), British engineer and inventor.
Made experiments which are described in The flow of water, Nature 58
(1898) [15]. See also the historical review [29].

\bullet Russian school 1945‐ \cdots (Galin, Polubarinova, Kochina, Kufarev,
Vinogradov formulation of basic equations, first existence proof.

\bullet British school 1958 (Saffman, Taylor, Richardson, Ockendon,
Elliott, Howison, Lacey, King ); discovery of fingering instabil‐
ity in the suction version, many explicit examples, etc.

\bullet Contributions from many countries 1980 (Sakai, Friedman, DiBenedetto,
Reissig, Wolfersdorff, Tanveer, Escher, Simonett, Carleson,
Makarov, Hedenmalm, Shimorin, Tian, Lin, Ońodera proofs
of existence of various kinds of solutions, geometric properties, etc.

\bullet New Russian school 1990 (Mineev‐Weinstein, Wiegmann, Zabrodin,
Krichever, Marshakov connections to integrable systems and
other branches of modern mathematical physics.

\bullet Books by Etingof, Varchenko, Vasil’ev, Teodorescu, Gustafsson:
[28], [12], [11].

Examples of physical processes in general which are governed by LG
dynamical laws are:

\bullet Viscous fluid in a Hele‐Shaw cell.

\bullet Ground water movement (porous medium flow by Darcy’s law).

\bullet Electrochemical depositing.

\bullet  2\mathrm{D} quantum gravity.

\bullet Coulomb gas ensembles.

\bullet Quantum Hall regimes.
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\bullet (Internal) diffusion limited aggregation (I)DLA.

\bullet Random matrix ensembles.

\bullet Dispersionless limit of Toda integrable hierarchy.

4 String equation

In two dimensions, with \mathcal{M}=\mathbb{C} to start with, the Green’s function is

G_{ $\Omega$}(x, a)=-\log|x-a|+ harmonic,

vanishing on \partial $\Omega$ . A convenient description of LG is that it is a smooth
evolution  $\Omega$(t)\subset \mathcal{M} such that

\displaystyle \frac{d}{dt}\int_{ $\Omega$(t)} $\varphi$ dxdy=\int_{\partial $\Omega$(t)} $\varphi$ d $\theta$ \forall $\varphi$\in C^{\infty}(\mathcal{M}) , (4.1)

holds, where (with * denoting the Hodge star operator)

d $\theta$=-*dG a)=-\displaystyle \frac{\partial G_{ $\Omega$(t)}(\cdot,a)}{\partial n}ds on \partial $\Omega$.

This one‐form  d $\theta$ can also be identified with the harmonic measure of \partial $\Omega$

with respect to the point  a . In the sequel we choose a=0.

The governing law (4.1) can reformulated in several ways, for example as:

1) String equation and corresponding Hamiltonian formulation.

2) Polubarinova‐Galin equation (for conformal map).

3) Loewner‐Kufarev equation (for conformal map).

4) Variational inequality weak solution.

Our main result concerns a combination of 3) and 4). On integrating
(4.1) with respect to t over an interval 0\leq t\leq T one gets

\displaystyle \int_{ $\Omega$(T)} $\varphi$ dx\wedge dy=\int_{0}^{T}\int_{\partial $\Omega$(t)} $\varphi$ dt\wedge d $\theta$+\int_{ $\Omega$(0)} $\varphi$ dx\wedge dy \forall $\varphi$\in C^{\infty}(M) .
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Locally, (t,  $\theta$) can be used as coordinates, in place of (x, y) . Indeed,

\left\{\begin{array}{l}
t=t(x, y)= \mathrm{t}\mathrm{h}\mathrm{e} \mathrm{t}\mathrm{i}\mathrm{m}\mathrm{e} \mathrm{w}\mathrm{h}\mathrm{e}\mathrm{n} \partial $\Omega$(t) \mathrm{r}\mathrm{e}\mathrm{a}\mathrm{c}\mathrm{h}\mathrm{e}\mathrm{s} (x, y) ,\\
 $\theta$= $\theta$(x, y)=\mathrm{a}\mathrm{n} \mathrm{a}\mathrm{n}\mathrm{g}\mathrm{u}\mathrm{l}\mathrm{a}\mathrm{r} \mathrm{v}\mathrm{a}\mathrm{r}\mathrm{i}\mathrm{a}\mathrm{b}\mathrm{l}\mathrm{e} \mathrm{a}\mathrm{l}\mathrm{o}\mathrm{n}\mathrm{g} \mathrm{e}\mathrm{a}\mathrm{c}\mathrm{h} \partial $\Omega$(t) .
\end{array}\right.
This gives the string equation:

dt\wedge d $\theta$=dx\wedge dy , equivalently \displaystyle \frac{\partial(t, $\theta$)}{\partial(x,y)}=1 . (4.2)

The string equation is not far from being on Hamiltonian form. Consider
 H= $\theta$ as a Hamiltonian function and set

 $\omega$=y dx—H dt.

Then (4.2) says that d $\omega$=0 , with t=t(x, y) as above. Now relax t to be
a free and independent variable. Then  $\omega$ can be interpreted as the action
1‐form in (x, y, t)‐space, the action itself, along a curve  $\gamma$ , being

 S=\displaystyle \int_{ $\gamma$} $\omega$.
\mathrm{I}\acute{\mathrm{n}} Hamiltonian mechanics one asks for curves  $\gamma$ for which the action becomes

stationary. The criterion for this is that

 i( $\xi$)d $\omega$=0

for any tangent vector  $\xi$=\displaystyle \dot{x}\frac{\partial}{\partial x}+\dot{y}\frac{\partial}{\partial y}+i\frac{\partial}{\partial t} along the curve. Here dot denotes
derivative with respect to an evolution parameter, which we may take to be
t itself, and i( $\xi$) denotes interior multiplication by  $\xi$ . Spelling this out gives
the traditional Hamilton equations, expressing stationarity of action as

\displaystyle \dot{x}=\frac{\partial H}{\partial y}, \dot{y}=-\frac{\partial H}{\partial x} . (4.3)

From the family of solutions of (4.3) one can recover (4.2).
It should be remarked that the trajectories for (4.3), i.e. the curves

H(x, y)= constant, are not the same as the trajectories for the fluid particles
in the Hele‐Shaw problem.
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5 Simply connected case

In the simply connected case, there is a more explicit description in terms
of conformal maps f t) : \mathbb{D} \rightarrow  $\Omega$(t) from the unit disk (normalization
f(0) = 0, f'(0) > 0 assumed). Indeed, writing z = x+\mathrm{i}y = f(e^{\mathrm{i} $\theta$}, t) and
assuming that f is actually univalent in a neighborhood of \overline{\mathrm{D}} we have the
Polubarinova‐Galin equation

{\rm Re}[\dot{f}( $\zeta$, t) $\zeta$ f'( $\zeta$, t)]=1,  $\zeta$\in\partial \mathrm{D}.

This can be identified with (4.2), and also with the string equation in the
version of Mineev‐Weinstein, Wiegmann, Zabrodin [31], [19]: for any
normalized univalent f in a neighborhood of \overline{\mathrm{D}} there holds

\{f, f^{*}\}=1.

Here the Poisson bracket is defined by

\displaystyle \{f, g\}:= $\zeta$\frac{\partial f}{\partial $\zeta$}\frac{\partial g}{\partial M_{0}}- $\zeta$\frac{\partial g}{\partial $\zeta$}\frac{\partial f}{\partial M_{0}},
in terms of f^{*}( $\zeta$)=\overline{f(1/\overline{ $\zeta$})} and the harmonic moments \{M_{0}, M_{1}, M_{2}, . . . \}
of  $\Omega$=f(\mathbb{D}) :

M_{k}:=\displaystyle \frac{1}{ $\pi$}\int_{ $\Omega$}z^{k}dxdy=\frac{1}{2 $\pi$ \mathrm{i}}\int_{\partial $\Omega$}z^{k}\overline{z}dz.
Thus we think of f as a function of  $\zeta$ and the moments:  f=f (  $\zeta$;M_{0} , Ml, . . . ).
It can be shown that simply connected domains are locally determined by
their moments, and Laplacian growth for such domains is characterized by

\left\{\begin{array}{l}
M_{k}=\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{s}\mathrm{t}\mathrm{a}\mathrm{n}\mathrm{t}, k\geq 1,\\
M_{0}=2t+\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{s}\mathrm{t}\mathrm{a}\mathrm{n}\mathrm{t}.
\end{array}\right.
Therefore, the derivative \partial/\partial M_{0} , which is taken with the other moments
M_{1}, M_{2} , . . . kept fixed, effectively agrees with the time derivative in the Hele‐
Shaw problem.

In terms of the Taylor expansion

f( $\zeta$)=\displaystyle \sum_{k=0}^{\infty}a_{k}$\zeta$^{k+1} (a_{0}>0)
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the moments are given by

M_{k}=\displaystyle \frac{1}{2 $\pi$ i}\int_{\partial \mathrm{D}}f( $\zeta$)^{k}f^{*}( $\zeta$)f'( $\zeta$)d $\zeta$=\sum(j_{0}+1)a_{J0} . . . a_{Jk}\overline{a}_{J\mathrm{o}+\cdots+\mathrm{J}k+k},

where the last expression is known as Richardson’s formula [21]. This
is a highly nonlinear relationship, and even when f is a polynomial of low
degree it is virtually impossible to invert it, to obtain a_{k}=a_{k} ( M_{0} , Ml, . . . ).
Note that such an inversion would give explicit solutions to the Laplacian
growth problem. However, there are in the polynomial case at least explicit
expressions for the (nonzero) Jacobi determinant for the change, see [17],
[27].

Remark 5.1. The moments M_{k} make sense for arbitrary analytic functions
f (not necessarily univalent) on IED, and for arbitrary k\in \mathbb{Z} . However, when
f is not locally univalent the moments M_{0}, M_{1}, M_{2} , . . . do not determine f,
even on the infinitesimal level.

6 Loewner‐Kufarev equation

The Polubarinova‐Galin equation (PG) [3], [20] can be solved for \dot{f} =

\partial f/\partial t . This gives an equation of Loewner‐Kufarev type (LK) [18], [16],
[30] namely

\dot{f}=\nabla(0)f., (6.1)
where

\displaystyle \nabla(0)f( $\zeta$, t) :=\frac{ $\zeta$ f'( $\zeta$,t)}{2 $\pi$}\int_{0}^{2 $\pi$}\frac{1}{|f'(e^{ $\iota \theta$},t)|^{2}}\frac{e^{l} $\theta$+ $\zeta$}{e^{ $\iota \theta$}- $\zeta$}d $\theta$ (6.2)

can be thought of as a directional derivative, representing a tangent vector
in the infinite dimensional space of univalent functions. The equations (6.1),
(6.2) make sense also if  f' has zeros in \mathrm{D} , even though zeros on \partial \mathrm{D} cause
some troubles. When there are zeros in \mathrm{D} , LK is stronger than PG.

Goal: We set out to solve (6.1) for 0 \leq  t < \infty , given  f at t=0 . This
requires relaxation to weak solutions, otherwise it is not always possible.

In the test function description (4.1) of LG it is enough to use functions
which are harmonic in  $\Omega$(t) . This gives the characterization

\displaystyle \frac{d}{dt}\int_{ $\Omega$(t)}hdxdy=2 $\pi$ h(0) \forall h\in \mathrm{H}\mathrm{a} $\iota$ \mathrm{m}(\overline{ $\Omega$(t)}) ,
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and after integration

\displaystyle \int_{ $\Omega$(t)} hdxdy =\displaystyle \int_{ $\Omega$(0)} hdxdy +2 $\pi$ th(0) \forall h\in \mathrm{H}\mathrm{a}\mathrm{r}\mathrm{m}(\overline{ $\Omega$(t)}) . (6.3)

For subharmonic functions h one has the same, but with inequality) instead.
The above expresses that

$\chi$_{ $\Omega$(t)}\cong$\chi$_{ $\Omega$(0)}+2 $\pi$ t$\delta$_{0},

where \cong denotes graviequivalence. In the direction $\chi$_{ $\Omega$(0)}+2 $\pi$ t$\delta$_{0}\mapsto$\chi$_{ $\Omega$(t)}
it is a form of balayage, partial balayage (see [9]). We then write

\mathrm{B}\mathrm{a}1(2 $\pi$ t$\delta$_{0}+$\chi$_{ $\Omega$(0)}, 1)=$\chi$_{ $\Omega$(t)} . (6.4)

7 Weak solutions and Balayage

Laplacian growth makes sense on Riemannian manifolds, and in the well‐
posed time direction  t\nearrow there is a good notion of weak solution, which
is global (allows  t\rightarrow\infty ).

\bullet However, the domains  $\Omega$(t) are then not always simply connected,
and hence not always on the form f(\mathrm{D}, t) . If we insist on having a
solution on the form  $\Omega$(t)=f(\mathrm{D}, t) we must allow  $\Omega$(t) to spread on a
Riemann surface above \mathbb{C}.

\bullet The problem is that the Riemann surface we would need is not given
in advance, it has to be created along with the solution. Whenever a
zero of  f' approaches \partial \mathrm{D} one has to add a branch point to make sure
that the solution can spread on a covering surface.

Definition 7.1. An evolution  $\Omega$(t) for t \geq  0 is called a weak solution of

LG if, for each t>0,  $\Omega$(0)\subset $\Omega$(t) and

\displaystyle \int_{ $\Omega$(t)}hdxdy\geq\int_{ $\Omega$(0)} hdxdy+2 $\pi$ th(0) . (7.1)

for every h\in L^{1}( $\Omega$(t)) which is subharmonic in  $\Omega$(t) .
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The above inequality (7.1), saying that  $\Omega$(t) is a kind of quadrature
domain for subharmonic functions, is equivalent to the balayage statement
(6.4). The theory of quadrature domains for subharmonic functions was
developed by M. Sakai [23], [24], [25], and construction of such quadrature
domains were later developed into a notion of partial balayage tacitly used
in [5], and fully elaborated in [10], [9]. Partial balayage is also closely related
to weighted equilibrium distributions [22].
Theorem 7.1 ([24], [4]). Given any bounded open set  $\Omega$(0) there exists a
unique weak solution  $\Omega$(t)\subset \mathbb{C},  0\leq t<\infty , in the above sense.

\bullet The uniqueness statement actually requires some additional precision
concerning nullsets.

\bullet The theorem generalizes to much more general settings, and to Rie‐
mannian manifolds of any dimension.

The weak solution can be constructed as the solution of an obstacle

problem: For any  t>0 , let u be the smallest function satisfying

\left\{\begin{array}{l}
u\geq 0,\\
\triangle u\leq 1- $\mu$,
\end{array}\right.
where  $\mu$=$\chi$_{ $\Omega$(0)}+2 $\pi$ t , and define  $\Omega$(t) by

 $\Omega$(t)=\{u>0\}.
Thus u=0 outside  $\Omega$(t) and one has

$\chi$_{ $\Omega$(t)}= $\mu$+\triangle u.

This can be seen to be equivalent to (7.1) and hence provides a proof for
existence and uniqueness of weak solution
Comments:

\bullet Weak solutions are made up of just bounded open sets  $\Omega$(t) , and these
are allowed to change topology during the evolution.

\bullet Solutions within the framework of conformal mappings break down
when changes of topology occurs.

Now, our project (not yet finished) is still to insist on both global in time
solutions and the domains being simply connected. This has a price:

\bullet One need to allow \mathbb{C} to be replaced by a multi‐sheeted and branched
Riemann covering surface \mathcal{M} , which contains  $\Omega$(0) .
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8 Main result

Theorem 8.1 (modulo Conjecture below). Starting with any function f
which is analytic in a neighborhood of \overline{\mathrm{D}} and is normalized by f(0) = 0,
f'(0)>0 , there is a global evolution in time satisfying \dot{f}=\nabla(0)f in a weak
sense.

More precisely, there exists a Riemann surface \mathcal{M} and a covering map
p:\mathcal{M}\rightarrow \mathbb{C} such that, for each t, f t ) \rightarrow \mathbb{C} lifts to

f t):\mathrm{D}\rightarrow \mathcal{M}

and then becomes univalent. The image domains \tilde{ $\Omega$}(t) =\tilde{f}(\mathrm{D}, t) make up a
global weak LG evolution on \mathcal{M}.

The evolution is not unique, but presumably there is a unique minimal
choice, introducing no more branch points than necessary.

Proof. The steps of the proof are the following.

\bullet Starting with  $\Omega$(0) = f(\mathbb{D}) , construct the weak solution  $\Omega$(t) . Then
there are no problems as long as  $\Omega$(t) remains simply connected, there
is a corresponding conformal map f t) : \mathrm{D}\rightarrow $\Omega$(t) .

\bullet Even if  $\Omega$(t) starts wrapping over itself, in the sense that the conformal
mapping f from the unit disk is no longer univalent, there are no major
problems as long as f stays locally univalent, i.e., there are no zeros
of f' inside IED. The solution just proceeds on a non‐branched covering
surface.

\bullet The real problem starts when zeros of  f' penetrate \partial \mathrm{D} and go into
D. Then it, first of all, takes some efforts to construct an appropriate
branched Riemann surface on which the solution can proceed. Sec‐
ondly it is, after the somewhat singular step of adding a branch point,
difficult to control that the solution stays simply connected on the new
surface. However once this is controlled the solution can, by repeating
the procedure of adding branch points if necessary, be extended forever
as a simply connected solution.

\square 
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A weak solution on a branched covering surface becomes weighted Lapla‐
cian growth in a uniformizing coordinate. The problem of keeping the do‐
mains simply connected for a short time after adding a branch point then
boils down to the following statement.

Conjecture. Let g be analytic in a neighborhood of \overline{\mathrm{D}} and let, for t > 0

sufficiently small,  $\Omega$(t)=\{u>0\} , where u is the smallest function satisfying

\left\{\begin{array}{l}
u\geq 0,\\
\triangle u\leq |g|^{2}(1-$\chi$_{\mathrm{D}})-2 $\pi$ t$\delta$_{0}.
\end{array}\right.
Then (claim),

 $\Omega$(t)=\{u>0\}

is star‐shaped with respect to the origin if t > 0 is sufficiently small. In
particular  $\Omega$(t) is then simply connected.

\square 

\bullet The crucial case is when  g has zeros on \partial \mathrm{D} . Otherwise the conjecture
is known to be true by stability estimates due to L. Caffarelli [1], [2].
These are based on having \triangle u\geq c>0 near the free boundary.

\bullet The conjecture may not seem very exciting since it is almost obvious
that it must be true. Still we have not been able to prove it. Neither
was Makoto Sakai, who ran into the same question when working on
an inverse problem in potential theory. See his paper [26].

9 Riemann surface of square root

In this section, and next, we give examples of Laplacian growth on branched
Riemann surfaces.

Example 9.1. \mathcal{M}= Riemann surface of \sqrt{z-1}= the two‐sheeted surface

\mathcal{M}=(\mathbb{C}\backslash \{1\})\cup\{1\}\cup(\mathbb{C}\backslash \{1\})

over \mathbb{C} . A local coordinate (actually global) on \mathcal{M} is \tilde{z} = \sqrt{z-1} . The
covering map is p:\mathcal{M}\rightarrow \mathbb{C}, \tilde{z}\mapsto z=\tilde{z}^{2}+1.
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Laplacian growth f t) : \mathrm{D}\rightarrow \mathcal{M} started at \tilde{z}=+\mathrm{i} becomes

\tilde{z}=\tilde{f}( $\zeta$, t)= \left\{\begin{array}{ll}
\sqrt{t $\zeta$-1}, & (0<t<1) ,\\
\sqrt{\frac{t(t $\zeta$-1)^{2}}{ $\zeta$-t}} & (1<t<\infty) ,
\end{array}\right.
and when pushed down to \mathbb{C}

z=f( $\zeta$, t)= \left\{\begin{array}{ll}
t $\zeta$, & (0<t<1) ,\\
\frac{ $\zeta$(t^{3} $\zeta$-2t^{2}+1)}{ $\zeta$-t} & (1<t<\infty) .
\end{array}\right.
Example 9.2. The derivative is

f'($\zeta$_{)}t)= \left\{\begin{array}{ll}
t & (0<t<1) ,\\
t\cdot\frac{(t $\zeta$-1)(t $\zeta$-2t^{2}+1)}{( $\zeta$-t)^{2}} & (1<t<\infty) ,
\end{array}\right.
hence it adopts the factor G( $\zeta$)=\displaystyle \frac{(t $\zeta$-1)(t $\zeta$-2t^{2}+1)}{( $\zeta$-\mathrm{t})^{2}} at critical time t=1 . This
has, for t>1,

\bullet Zeros: $\omega$_{1}=1/t (in D), $\omega$_{2}=2t-1/t (outside \mathbb{D} ).

\bullet Poles: $\zeta$_{1}=$\zeta$_{2}=t.

With suitable scaling G is a contractive zero divisor in the sense of
H. Hedenmalm [13], [14] for Bergman space. This means for example that

h(0)=\displaystyle \int_{\mathrm{D}}h(z)|G(z)|^{2}dA(z) \forall h\in \mathrm{H}\mathrm{o}1(\overline{\mathrm{D}}) .

Example 9.3. For a more general G , of the form

G( $\zeta$)= \displaystyle \frac{( $\zeta-\omega$_{1})( $\zeta-\omega$_{2})}{( $\zeta-\zeta$_{1})^{2}},
one has an identity

\displaystyle \frac{1}{ $\pi$}\int_{\mathrm{D}}h(z)|G(z)|^{2}dA(z)=a_{0}h(0)+a_{1}h(1/\overline{ $\zeta$}_{1})+c\int_{0}^{1/\overline{ $\zeta$}_{1}}hGd $\zeta$.
If here 1/\overline{ $\zeta$}_{1} = $\omega$_{1} (or = $\omega$_{2} ) then a_{1} = 0 , and if $\zeta$_{1} = \displaystyle \frac{1}{2}($\omega$_{1} +$\omega$_{2}) , then
c=0 . This is exactly what we had in Example 9.2, and it is what happens
in general in the LG evolution when zeros of f' penetrate into \mathrm{D} : a pair of
zeros and a double pole, subject to the above relations, are created.
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10 Several evolutions of cardioid

We start LG with

f( $\zeta$, 0)= $\zeta$-\displaystyle \frac{1}{2}$\zeta$^{2} , (10.1)

for which M_{0} = 3/2, M_{1} = -1/2, M_{2} =M3 =. . . = 0 . For convenience

we shall allow a more free (but monotone) relation between time t and M_{0}.

Normalizing so that the leading coefficient in f is e^{t} we have a perfectly good
global LG solution

f( $\zeta$, t)=e^{t} $\zeta$-\displaystyle \frac{1}{2}e^{-2t}$\zeta$^{2}, 0<t<\infty,
for which M_{1}, M_{2} , . . . remain fixed and

M_{0}=a_{0}^{2}+2|a_{1}|^{2}=e^{2t}+\displaystyle \frac{1}{2}e^{-4t}
Above M_{0} is a convex function of t for all -\infty<t<\infty and it attains its

minimum value at  t=0 . Therefore M_{0} (essentially the area) increases also
when t decreases from t=0 , and we get a new LG‐evolution by changing
the sign of t :

f( $\zeta$, t)=e^{-t} $\zeta$-\displaystyle \frac{1}{2}e^{2t}$\zeta$^{2}, 0<t<\infty.
This is however not univalent, f' has a zero $\omega$_{1}(t) = e^{-3t} in \mathbb{D} , but f still
satisfies the string equation. Also, b_{1}(t)=f($\omega$_{1}(t), t) does not stay fixed, so
the f t) are not conformal maps into a fixed Riemann surface.

Since f'( $\zeta$, 0) =  1- $\zeta$ has a zero  $\omega$_{1} = 1 on \partial \mathrm{D} one might want to lift
solutions to a Riemann surface with a branch point over f($\omega$_{1},0) = \displaystyle \frac{1}{2} , in
order to make sure that one does not run into troubles. We then let

f'( $\zeta$, 0)=(1- $\zeta$)\displaystyle \frac{( $\zeta$-1)( $\zeta$-1)}{( $\zeta$-1)^{2}}
continue as

f'( $\zeta$, t)=b(t)\displaystyle \frac{( $\zeta-\omega$_{1}(t))( $\zeta-\omega$_{2}(t))( $\zeta-\omega$_{3}(t))}{( $\zeta-\zeta$_{1}(t))^{2}},
with the zeros and poles related according to certain principles:

The requirements which determine this evolution are (see [7] for explana‐
tions):
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\bullet The reflected point of $\zeta$_{1}(t) is to be a zero of f' :

f'(1/\overline{$\zeta$_{1}(t)}, t)=0.

\bullet  f t) shall map the above point 1/\overline{$\zeta$_{1}(t)} to a point which does not
move:

f(1/\overline{$\zeta$_{1}(t)}, t)= constant =f(1,0)=\displaystyle \frac{1}{2}.
\bullet The moment  M_{1} is conserved in time:

M_{1}(t)={\rm Res}_{ $\zeta$=0}(ff^{*}f'd $\zeta$)=M_{1}(0)=-\displaystyle \frac{1}{2}.
\bullet The dependence of  M_{0}(t) on t has to be specified.

The above may be worked out to a solution

f( $\zeta$, t)=\displaystyle \frac{b_{1} $\zeta$+b_{2}$\zeta$^{2}+b_{3}$\zeta$^{3}}{$\zeta$_{1}- $\zeta$}
where

\left\{\begin{array}{l}
$\zeta$_{1}(t)=\sqrt{\frac{1}{2}(1+2e^{\mathrm{t}}-e^{-2t})},\\
b_{1}(t)=e^{t},\\
b_{2}(t)=-\frac{1}{4\sqrt{2}}(1+2e^{t}+3e^{-2t})\sqrt{1+2e^{t}-e^{-2t}},\\
b3 (t)=\frac{1}{4}(2e^{-t}+e^{-2t}-e^{-4t}) .
\end{array}\right.
The relation between M_{0} and t is here

M_{0}(t)=\displaystyle \frac{1}{8}(4e^{2t}+2e^{t}+e^{-2t}+6e^{-3t}+2e^{-4\mathrm{t}}-3e^{-6t}) .

An interesting aspect is that the above fully explicit solution f( $\zeta$, t) is not
only smooth at t=0 , it even has a real analytic continuation across t=0.

This extended solution, defined on - $\epsilon$ < t < \infty (say), has the drawback
that it has a pole inside \mathrm{D} when t<0 . But in some sense it still represents
suction out of the cardioid as t decreases to negative values.

In summary we have constructed, starting from (10.1), the following so‐
lutions to PG and LK (recall that \mathrm{L}\mathrm{K}\Rightarrow \mathrm{P}\mathrm{G} ):

\bullet One univalent forward (t\nearrow) solution of LK.
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\bullet One non‐univalent forward (t\nearrow) solution of PG (not satisfying LK).

\bullet One non‐univalent forward (t\nearrow) solution of LK.

\bullet One backward (t\searrow) solution, with a pole inside \mathrm{D} , of LK. This solution
is non‐univalent, but f(\partial \mathrm{D}, t) still consist of simple analytic curves.
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