AROUND GENERIC LINEAR PERTURBATIONS

SHUNSUKE ICHIKI

1. INTRODUCTION

In this paper, ℓ , m and n stand for positive integers. Throughout this paper, unless otherwise stated, all manifolds and mappings belong to class C^{∞} and all manifolds are without boundary. The purpose of this paper is to introduce some results shown in [2, 3].

Let $\pi : \mathbb{R}^m \to \mathbb{R}^{\ell}$, U and $F : U \to \mathbb{R}^{\ell}$ be a linear mapping, an open subset of \mathbb{R}^m and a mapping, respectively.

Set

$$F_{\pi} = F + \pi.$$

Here, π in $F_{\pi} = F + \pi$ is restricted to the open set U.

Let $\mathcal{L}(\mathbb{R}^m, \mathbb{R}^\ell)$ be the space consisting of all linear mappings of \mathbb{R}^m into \mathbb{R}^ℓ . Notice that we have the natural identification $\mathcal{L}(\mathbb{R}^m, \mathbb{R}^\ell) = (\mathbb{R}^m)^\ell$. An *n*-dimensional manifold is denoted by N.

In Section 2, two main theorems of [2] (Theorems 1 and 2) are introduced. Theorem 1 is as follows. Let $f: N \to U$ (resp., $F: U \to \mathbb{R}^{\ell}$) be an immersion (resp., a mapping). Generally, the composition $F \circ f$ does not necessarily yield a mapping which is transverse to a given subfiber-bundle of the jet bundle $J^1(N, \mathbb{R}^{\ell})$. Nevertheless, Theorem 1 asserts that for any \mathcal{A}^1 -invariant fiber, a generic mapping $F_{\pi} \circ f$ yields a mapping which is transverse to the subfiber-bundle of $J^1(N, \mathbb{R}^{\ell})$ with the given fiber. Theorem 2 is a specialized transversality result on crossings of a generic mapping $F_{\pi} \circ f$, where $f: N \to U$ (resp., $F: U \to \mathbb{R}^{\ell}$) is a given injection (resp., a given mapping).

In Section 3, some applications of Theorems 1 and 2 are introduced.

In Section 4, the main result of [3] (Theorem 4) is introduced. Theorem 4 is as follows. In [4], John Mather proved that almost all linear projections from a submanifold of a vector space into a subspace are transverse with respect to a given modular submanifold. Theorem 4 is an improvement of the result. Namely, almost all linear perturbations of a smooth mapping from a submanifold of \mathbb{R}^m into \mathbb{R}^ℓ yield a transverse mapping with respect to a given modular submanifold.

2. Composing generic linearly perturbed mappings and immersions/injections

In the following, we denote manifolds by N and P.

Definition 1. Let W be a submanifold of P, and let $g: N \to P$ be a mapping.

Research Fellow DC1 of Japan Society for the Promotion of Science.

(1) We say that $g: N \to P$ is transverse to W at q if $g(q) \notin W$ or in the case of $g(q) \in W$, the following holds:

$$dg_q(T_qN) + T_{g(q)}W = T_{g(q)}P.$$

(2) We say that $g: N \to P$ is *transverse* to W if for any $q \in N$, g is transverse to W at q.

We say that $g: N \to P$ is \mathcal{A} -equivalent to $h: N \to P$ if there exist two diffeomorphisms $\Phi: N \to N$ and $\Psi: P \to P$ such that $g = \Psi \circ h \circ \Phi^{-1}$.

Let $J^r(N, P)$ denote the space of r-jets of mappings of N into P. For a given mapping $g: N \to P$, the mapping $j^r g: N \to J^r(N, P)$ is given by $q \mapsto j^r g(q)$ (for details on $J^r(N, P)$ or $j^r g: N \to J^r(N, P)$, see for instance, [1]).

In order to state Theorem 1, it is sufficient to consider the case of r = 1 and $P = \mathbb{R}^{\ell}$. Let $\{(U_{\lambda}, \varphi_{\lambda})\}_{\lambda \in \Lambda}$ denote a coordinate neighborhood system of N. Let $\Pi : J^{1}(N, \mathbb{R}^{\ell}) \to N \times \mathbb{R}^{\ell}$ denote the natural projection defined by $\Pi(j^{1}g(q)) = (q, g(q))$. Let $\Phi_{\lambda} : \Pi^{-1}(U_{\lambda} \times \mathbb{R}^{\ell}) \to \varphi_{\lambda}(U_{\lambda}) \times \mathbb{R}^{\ell} \times J^{1}(n, \ell)$ denote the homeomorphism given by

$$\Phi_{\lambda}\left(j^{1}g(q)\right) = \left(\varphi_{\lambda}(q), g(q), j^{1}(\psi_{\lambda} \circ g \circ \varphi_{\lambda}^{-1} \circ \widetilde{\varphi}_{\lambda})(0)\right),$$

where $J^1(n,\ell) = \{j^1g(0) \mid g : (\mathbb{R}^n, 0) \to (\mathbb{R}^\ell, 0)\}$ and $\widetilde{\varphi}_{\lambda} : \mathbb{R}^n \to \mathbb{R}^n$ (resp., $\psi_{\lambda} : \mathbb{R}^m \to \mathbb{R}^m$) is the translation defined by $\widetilde{\varphi}_{\lambda}(0) = \varphi_{\lambda}(q)$ (resp., $\psi_{\lambda}(g(q)) = 0$). Then, $\{(\Pi^{-1}(U_{\lambda} \times \mathbb{R}^\ell), \Phi_{\lambda})\}_{\lambda \in \Lambda}$ is a coordinate neighborhood system of $J^1(N, \mathbb{R}^\ell)$. We say that a subset $X \subset J^1(n,\ell)$ is \mathcal{A}^1 -invariant if for any $j^1g(0) \in X$, and for any two germs of diffeomorphisms $H : (\mathbb{R}^\ell, 0) \to (\mathbb{R}^\ell, 0)$ and $h : (\mathbb{R}^n, 0) \to (\mathbb{R}^n, 0)$, we get $j^1(H \circ g \circ h^{-1})(0) \in X$. Let X denote an \mathcal{A}^1 -invariant submanifold of $J^1(n,\ell)$. Set

$$X(N,\mathbb{R}^{\ell}) = \bigcup_{\lambda \in \Lambda} \Phi_{\lambda}^{-1} \left(\varphi_{\lambda}(U_{\lambda}) \times \mathbb{R}^{\ell} \times X \right).$$

Then, $X(N, \mathbb{R}^{\ell})$ is a subfiber-bundle of $J^1(N, \mathbb{R}^{\ell})$ with the fiber X satisfying

Theorem 1 ([2]). Let f be an immersion of N into an open subset U of \mathbb{R}^m , where N is a manifold of dimension n. Let $F: U \to \mathbb{R}^\ell$ be a mapping. If X is an \mathcal{A}^1 -invariant submanifold of $J^1(n, \ell)$, then there exists a subset $\Sigma \subset \mathcal{L}(\mathbb{R}^m, \mathbb{R}^\ell)$ with Lebesgue measure zero such that for any $\pi \in \mathcal{L}(\mathbb{R}^m, \mathbb{R}^\ell) - \Sigma$, $j^1(F_{\pi} \circ f) : N \to J^1(N, \mathbb{R}^\ell)$ is transverse to $X(N, \mathbb{R}^\ell)$.

Now, for the statement of Theorem 2, we will prepare some definitions. Set $N^{(s)} = \{(q_1, q_2, \ldots, q_s) \in N^s \mid q_i \neq q_j \ (i \neq j)\}$. Note that $N^{(s)}$ is an open submanifold of N^s . For a given mapping $g: N \to P$, let $g^{(s)}: N^{(s)} \to P^s$ be the mapping defined by

$$g^{(s)}(q_1, q_2, \dots, q_s) = (g(q_1), g(q_2), \dots, g(q_s)).$$

Set $\Delta_s = \{(y, \ldots, y) \in P^s \mid y \in P\}$. It is not hard to see that Δ_s is a submanifold of P^s satisfying

$$\operatorname{codim} \Delta_s = \dim P^s - \dim \Delta_s = (s-1)\dim P.$$

Definition 2. We say that $g: N \to P$ is a mapping with normal crossings if for any positive integer s ($s \ge 2$), $g^{(s)}: N^{(s)} \to P^s$ is transverse to Δ_s .

For any injection $f: N \to \mathbb{R}^m$, set

$$s_f = \max\left\{s \mid \forall (q_1, q_2, \dots, q_s) \in N^{(s)}, \dim \sum_{i=2}^s \mathbb{R}\overline{f(q_1)f(q_i)} = s - 1\right\}.$$

Since the mapping f is injective, it follows that $2 \leq s_f$. Since $f(q_1), f(q_2), \ldots, f(q_{s_f})$ are points of \mathbb{R}^m , we have $s_f \leq m+1$. Hence, we get

 $2 \le s_f \le m+1.$

Moreover, in the following, for a set X, we denote the number of its elements (or its cardinality) by |X|.

Theorem 2 ([2]). Let f be an injection of N into an open subset U of \mathbb{R}^m , where N is a manifold of dimension n. Let $F : U \to \mathbb{R}^\ell$ be a mapping. Then, there exists a subset $\Sigma \subset \mathcal{L}(\mathbb{R}^m, \mathbb{R}^\ell)$ with Lebesgue measure zero such that for any $\pi \in \mathcal{L}(\mathbb{R}^m, \mathbb{R}^\ell) - \Sigma$, and for any $s \ (2 \le s \le s_f)$, $(F_\pi \circ f)^{(s)} : N^{(s)} \to (\mathbb{R}^\ell)^s$ is transverse to Δ_s . Furthermore, if the mapping F_π satisfies that $|F_\pi^{-1}(y)| \le s_f$ for any $y \in \mathbb{R}^\ell$, then $F_\pi \circ f : N \to \mathbb{R}^\ell$ is a mapping with normal crossings.

3. Applications of Theorems 1 and 2

In Subsection 3.1 (resp., Subsection 3.2), applications of Theorem 1 (resp., Theorem 2) are stated.

3.1. Applications of Theorem 1. Set

$$\Sigma^k = \left\{ j^1 g(0) \in J^1(n,\ell) \mid \text{corank } Jg(0) = k \right\},\$$

where corank $Jg(0) = \min\{n, \ell\}$ - rank Jg(0) and $k = 1, 2, ..., \min\{n, \ell\}$. Then, Σ^k is an \mathcal{A}^1 -invariant submanifold of $J^1(n, \ell)$. Set

$$\Sigma^{k}(N,\mathbb{R}^{\ell}) = \bigcup_{\lambda \in \Lambda} \Phi_{\lambda}^{-1} \left(\varphi_{\lambda}(U_{\lambda}) \times \mathbb{R}^{\ell} \times \Sigma^{k} \right),$$

where Φ_{λ} and φ_{λ} are as defined in Section 2. Then, the set $\Sigma^{k}(N, \mathbb{R}^{\ell})$ is a subfiberbundle of $J^{1}(N, \mathbb{R}^{\ell})$ with the fiber Σ^{k} satisfying

$$\operatorname{codim} \Sigma^k(N, \mathbb{R}^\ell) = \dim J^1(N, \mathbb{R}^\ell) - \dim \Sigma^k(N, \mathbb{R}^\ell) \\ = (n - v + k)(\ell - v + k),$$

where $v = \min\{n, \ell\}$. (For details on Σ^k and $\Sigma^k(N, \mathbb{R}^\ell)$, see for instance [1], pp. 60–61).

As applications of Theorem 1, we get the following Proposition 1, Corollaries 1, 2, 3 and 4.

Proposition 1 ([2]). Let f be an immersion of N into an open subset U of \mathbb{R}^m , where N is a manifold of dimension n. Let $F: U \to \mathbb{R}^\ell$ be a mapping. Then, there exists a subset $\Sigma \subset \mathcal{L}(\mathbb{R}^m, \mathbb{R}^\ell)$ with Lebesgue measure zero such that for any $\pi \in \mathcal{L}(\mathbb{R}^m, \mathbb{R}^\ell) - \Sigma$, the mapping $j^1(F_\pi \circ f) : N \to J^1(N, \mathbb{R}^\ell)$ is transverse to $\Sigma^k(N, \mathbb{R}^\ell)$ for any positive integer k satisfying $1 \le k \le v$. Especially, in the case of $\ell \ge 2$, we get $k_0 + 1 \le v$ and it follows that $j^1(F_\pi \circ f)$ satisfies that $j^1(F_\pi \circ f)(N) \cap \Sigma^k(N, \mathbb{R}^\ell) = \emptyset$ for any positive integer k ($k_0 + 1 \le k \le v$), where k_0 is the maximum integer satisfying $(n - v + k_0)(\ell - v + k_0) \le n$ ($v = \min\{n, \ell\}$).

- E ICHIKI
- **Remark 1.** (1) In Proposition 1, by $(n-v+k_0)(\ell-v+k_0) \le n$, it is not hard to see that $k_0 \ge 0$.
 - (2) In Proposition 1, in the case of $\ell = 1$, we get $k_0 + 1 > v$. Indeed, in the case, by v = 1, we have $(n 1 + k_0)k_0 \le n$. Thus, it follows that $k_0 = 1$.

A mapping $g: N \to \mathbb{R}$ is called a *Morse function* if all of the singularities of g are nondegenerate (for details on Morse functions, see for instance, [1], p. 63). In the case of $(n, \ell) = (n, 1)$, we get the following.

Corollary 1 ([2]). Let f be an immersion of N into an open subset U of \mathbb{R}^m , where N is a manifold of dimension n. Let $F : U \to \mathbb{R}$ be a mapping. Then, there exists a subset $\Sigma \subset \mathcal{L}(\mathbb{R}^m, \mathbb{R})$ with Lebesgue measure zero such that for any $\pi \in \mathcal{L}(\mathbb{R}^m, \mathbb{R}) - \Sigma$, the mapping $F_{\pi} \circ f : N \to \mathbb{R}$ is a Morse function.

For a given mapping $g: N \to \mathbb{R}^{2n-1}$ $(n \geq 2)$, a singular point $q \in N$ is called a singular point of Whitney umbrella if there exist two germs of diffeomorphisms $H: (\mathbb{R}^{2n-1}, g(q)) \to (\mathbb{R}^{2n-1}, 0)$ and $h: (N,q) \to (\mathbb{R}^n, 0)$ satisfying $H \circ g \circ h^{-1}(x_1, x_2, \ldots, x_n) = (x_1^2, x_1x_2, \ldots, x_1x_n, x_2, \ldots, x_n)$, where (x_1, x_2, \ldots, x_n) is a local coordinate around the point $h(q) = 0 \in \mathbb{R}^n$. In the case of $(n, \ell) =$ (n, 2n - 1) $(n \geq 2)$, we get the following.

Corollary 2 ([2]). Let f be an immersion of N into an open subset U of \mathbb{R}^m , where N is a manifold of dimension n $(n \geq 2)$. Let $F: U \to \mathbb{R}^{2n-1}$ be a mapping. Then, there exists a subset $\Sigma \subset \mathcal{L}(\mathbb{R}^m, \mathbb{R}^{2n-1})$ with Lebesgue measure zero such that for any $\pi \in \mathcal{L}(\mathbb{R}^m, \mathbb{R}^{2n-1}) - \Sigma$, any singular point of the mapping $F_{\pi} \circ f: N \to \mathbb{R}^{2n-1}$ is a singular point of Whitney umbrella.

In the case of $\ell \geq 2n$, the immersion property of a given mapping $f: N \to U$ is preserved by composing generic linearly perturbed mappings as follows:

Corollary 3 ([2]). Let f be an immersion of N into an open subset U of \mathbb{R}^m , where N is a manifold of dimension n. Let $F: U \to \mathbb{R}^\ell$ be a mapping $(\ell \ge 2n)$. Then, there exists a subset $\Sigma \subset \mathcal{L}(\mathbb{R}^m, \mathbb{R}^\ell)$ with Lebesgue measure zero such that for any $\pi \in \mathcal{L}(\mathbb{R}^m, \mathbb{R}^\ell) - \Sigma$, the mapping $F_{\pi} \circ f: N \to \mathbb{R}^\ell$ is an immersion.

A mapping $g: N \to \mathbb{R}^{\ell}$ has corank at most k singular points if

$$\sup \{ \text{corank } dg_q \mid q \in N \} \le k,$$

where corank $dg_q = \min\{n, \ell\} - \operatorname{rank} dg_q$. From Proposition 1, we have the following.

Corollary 4 ([2]). Let f be an immersion of N into an open subset U of \mathbb{R}^m , where N is a manifold of dimension n. Let $F: U \to \mathbb{R}^\ell$ be a mapping. Let k_0 be the maximum integer satisfying $(n-v+k_0)(\ell-v+k_0) \leq n$ ($v = \min\{n,\ell\}$). Then, there exists a subset $\Sigma \subset \mathcal{L}(\mathbb{R}^m, \mathbb{R}^\ell)$ with Lebesgue measure zero such that for any $\pi \in \mathcal{L}(\mathbb{R}^m, \mathbb{R}^\ell) - \Sigma$, the mapping $F_{\pi} \circ f: N \to \mathbb{R}^\ell$ has corank at most k_0 singular points.

3.2. Applications of Theorem 2.

Proposition 2 ([2]). Let f be an injection of N into an open subset U of \mathbb{R}^m , where N is a manifold of dimension n. Let $F: U \to \mathbb{R}^\ell$ be a mapping. If $(s_f - 1)\ell > ns_f$, then there exists a subset $\Sigma \subset \mathcal{L}(\mathbb{R}^m, \mathbb{R}^\ell)$ with Lebesgue measure zero such that for any $\pi \in \mathcal{L}(\mathbb{R}^m, \mathbb{R}^\ell) - \Sigma$, the mapping $F_{\pi} \circ f: N \to \mathbb{R}^\ell$ is a mapping with normal crossings satisfying $(F_{\pi} \circ f)^{(s_f)}(N^{(s_f)}) \cap \Delta_{s_f} = \emptyset$.

In the case of $\ell > 2n$, the injection property of a given mapping $f : N \to U$ is preserved by composing generic linearly perturbed mappings as follows:

Corollary 5 ([2]). Let f be an injection of N into an open subset U of \mathbb{R}^m , where N is a manifold of dimension n. Let $F: U \to \mathbb{R}^\ell$ be a mapping. If $\ell > 2n$, then there exists a subset $\Sigma \subset \mathcal{L}(\mathbb{R}^m, \mathbb{R}^\ell)$ with Lebesgue measure zero such that for any $\pi \in \mathcal{L}(\mathbb{R}^m, \mathbb{R}^\ell) - \Sigma$, the mapping $F_{\pi} \circ f: N \to \mathbb{R}^\ell$ is injective.

By combining Corollaries 3 and 5, we get the following.

Corollary 6 ([2]). Let f be an injective immersion of N into an open subset U of \mathbb{R}^m , where N is a manifold of dimension n. Let $F: U \to \mathbb{R}^\ell$ be a mapping. If $\ell > 2n$, then there exists a subset $\Sigma \subset \mathcal{L}(\mathbb{R}^m, \mathbb{R}^\ell)$ with Lebesgue measure zero such that for any $\pi \in \mathcal{L}(\mathbb{R}^m, \mathbb{R}^\ell) - \Sigma$, $F_{\pi} \circ f: N \to \mathbb{R}^\ell$ is an injective immersion.

In Corollary 6, suppose that the mapping $F_{\pi} \circ f : N \to \mathbb{R}^{\ell}$ is proper. Then, an injective immersion $F_{\pi} \circ f$ is necessarily an embedding (see [1], p. 11). Hence, we have the following.

Corollary 7 ([2]). Let f be an embedding of N into an open subset U of \mathbb{R}^m , where N is a compact manifold of dimension n. Let $F: U \to \mathbb{R}^{\ell}$ be a mapping. If $\ell > 2n$, then there exists a subset $\Sigma \subset \mathcal{L}(\mathbb{R}^m, \mathbb{R}^{\ell})$ with Lebesgue measure zero such that for any $\pi \in \mathcal{L}(\mathbb{R}^m, \mathbb{R}^{\ell}) - \Sigma$, the mapping $F_{\pi} \circ f: N \to \mathbb{R}^{\ell}$ is an embedding.

4. Composing generic linearly perturbed mappings and embeddings

Let $C^{\infty}(N, P)$ be the set consisting of all C^{∞} mappings of N into P, and the topology on $C^{\infty}(N, P)$ is the Whitney C^{∞} topology (for the definition of Whitney C^{∞} topology, see for instance [1]). Then, we say that g is *stable* if the \mathcal{A} -equivalence class of g is open in $C^{\infty}(N, P)$.

Let ${}_{s}J^{r}(N,P)$ be the space consisting of elements $(j^{r}g(q_{1}),\ldots,j^{r}g(q_{s})) \in J^{r}(N,P)^{s}$ satisfying $(q_{1},\ldots,q_{s}) \in N^{(s)}$, where s is a positive integer. Since $N^{(s)}$ is an open submanifold of N^{s} , the space ${}_{s}J^{r}(N,P)$ is also an open submanifold of $J^{r}(N,P)^{s}$. For a given mapping $g: N \to P$, ${}_{s}j^{r}g: N^{(s)} \to {}_{s}J^{r}(N,P)$ is defined by $(q_{1},\ldots,q_{s}) \mapsto (j^{r}g(q_{1}),\ldots,j^{r}g(q_{s})).$

Let W be a submanifold of ${}_{s}J^{r}(N, P)$. We say that a mapping $g: N \to P$ is transverse with respect to W if ${}_{s}j^{r}g: N^{(s)} \to {}_{s}J^{r}(N, P)$ is transverse to W.

Following Mather ([4]), we can partition P^s as follows. For any partition π of $\{1, \ldots, s\}$, let P^{π} be the set of s-tuples $(y_1, \ldots, y_s) \in P^s$ such that $y_i = y_j$ if and only if two positive integers i and j are in the same member of the partition π .

Let Diff N be the group of diffeomorphisms of N. We have a natural action of Diff N × Diff P on ${}_{s}J^{r}(N, P)$ such that for a mapping $g: N \to P$, the equality $(h, H) \cdot {}_{s}j^{r}g(q) = {}_{s}j^{r}(H \circ g \circ h^{-1})(q')$ holds, where $q = (q_{1}, \ldots, q_{s})$ and $q' = (h(q_{1}), \ldots, h(q_{s}))$. We say that a subset $W \subset {}_{s}J^{r}(N, P)$ is *invariant* if it is invariant under this action.

We recall the following identification (*) from [4]. Let $q = (q_1, \ldots, q_s) \in N^{(s)}$, let $g: U \to P$ be a mapping defined in a neighborhood U of $\{q_1, \ldots, q_s\}$ in N, and let $z = {}_{s}j^r g(q), q' = (g(q_1), \ldots, g(q_s))$. Let ${}_{s}J^r(N, P)_q$ and ${}_{s}J^r(N, P)_{q,q'}$ be the fibers of ${}_{s}J^r(N, P)$ over q and over (q, q') respectively. Let $J^r(N)_q$ be the \mathbb{R} -algebra of r-jets at q of functions on N. Namely, we have

$$J^r(N)_q = {}_s J^r(N, \mathbb{R})_q.$$

SHUNSUKE ICHIKI

Set $g^*TP = \bigcup_{\tilde{q} \in U} T_{g(\tilde{q})}P$, where TP is the tangent bundle of P. Let $J^r(g^*TP)_q$ denote the $J^r(N)_q$ -module of r-jets at q of sections of the bundle g^*TP . Let \mathfrak{m}_q be the ideal in $J^r(N)_q$ consisting of jets of functions which vanish at the point q. Namely, we have

$$\mathfrak{m}_q = \{ {}_s j^r h(q) \in {}_s J^r(N, \mathbb{R})_q \mid h(q_1) = \cdots = h(q_s) = 0 \}.$$

Let $\mathfrak{m}_q J^r (g^*TP)_q$ denote the set consisting of finite sums of products of an element of \mathfrak{m}_q and an element of $J^r (g^*TP)_q$. Namely, we have

$$\mathfrak{m}_{q}J^{r}(g^{*}TP)_{q} = J^{r}(g^{*}TP)_{q} \cap \{_{s}j^{r}\xi(q) \in {}_{s}J^{r}(N,TP)_{q} \mid \xi(q_{1}) = \cdots = \xi(q_{s}) = 0\}.$$

Then, the following canonical identification of \mathbb{R} vector spaces (*) holds.

(*)
$$T({}_sJ^r(N,P)_{q,q'})_z = \mathfrak{m}_q J^r(g^*TP)_q$$

Now, let W be a non-empty submanifold of ${}_{s}J^{r}(N, P)$. Choose $q = (q_{1}, \ldots, q_{s}) \in N^{(s)}$ and $g : N \to P$, and let $z = {}_{s}j^{r}g(q)$ and $q' = (g(q_{1}), \ldots, g(q_{s}))$. Suppose that $z \in W$. Set $W_{q,q'} = \tilde{\pi}^{-1}(q,q')$, where $\tilde{\pi} : W \to N^{(s)} \times P^{s}$ is defined by $\tilde{\pi}({}_{s}j^{r}\tilde{g}(\tilde{q})) = (\tilde{q}, (\tilde{g}(\tilde{q}_{1}), \ldots, \tilde{g}(\tilde{q}_{s})))$ and $\tilde{q} = (\tilde{q}_{1}, \ldots, \tilde{q}_{s}) \in N^{(s)}$. Suppose that $W_{q,q'}$ is a submanifold of ${}_{s}J^{r}(N, P)$. Then, from (*), the tangent space $T(W_{q,q'})_{z}$ can be identified with a vector subspace of $\mathfrak{m}_{q}J^{r}(g^{*}TP)_{q}$. By E(g,q,W), we denote this vector subspace.

Definition 3. A submanifold W of ${}_{s}J^{r}(N, P)$ is said to be *modular* if conditions (α) and (β) below are satisfied:

- (α) The set W is an invariant submanifold of ${}_{s}J^{r}(N, P)$, and lies over P^{π} for some partition π of $\{1, \ldots, s\}$.
- (β) For any $q \in N^{(s)}$ and any mapping $g: N \to P$ satisfying $_{s}j^{r}g(q) \in W$, the subspace E(g, q, W) is a $J^{r}(N)_{q}$ -submodule.

Now, suppose that $P = \mathbb{R}^{\ell}$. The main theorem of [4] is the following.

Theorem 3 ([4]). Let f be an embedding of N into \mathbb{R}^m , where N is a manifold of dimension n. If W is a modular submanifold of ${}_sJ^r(N, \mathbb{R}^\ell)$ and $m > \ell$, then there exists a subset $\Sigma \subset \mathcal{L}(\mathbb{R}^m, \mathbb{R}^\ell)$ with Lebesgue measure zero such that for any $\pi \in \mathcal{L}(\mathbb{R}^m, \mathbb{R}^\ell) - \Sigma, \pi \circ f : N \to \mathbb{R}^\ell$ is transverse with respect to W.

Theorem 4 ([3]). Let f be an embedding of N into an open subset U of \mathbb{R}^m , where N is a manifold of dimension n. Let $F: U \to \mathbb{R}^{\ell}$ be a mapping. If W is a modular submanifold of ${}_sJ^r(N,\mathbb{R}^{\ell})$, then there exists a subset Σ with Lebesgue measure zero of $\mathcal{L}(\mathbb{R}^m,\mathbb{R}^{\ell})$ such that for any $\pi \in \mathcal{L}(\mathbb{R}^m,\mathbb{R}^{\ell}) - \Sigma$, the mapping $F_{\pi} \circ f: N \to \mathbb{R}^{\ell}$ is transverse with respect to W.

By the same way as in the proof of Theorem 3 of [4], we get the following as a corollary of Theorem 4.

Corollary 8 ([3]). Let f be an embedding of N into an open subset U of \mathbb{R}^m , where N is a compact manifold of dimension n. Let $F : U \to \mathbb{R}^\ell$ be a mapping. If a dimension pair (n, ℓ) is in the nice dimensions, then there exists a subset $\Sigma \subset \mathcal{L}(\mathbb{R}^m, \mathbb{R}^\ell)$ with Lebesgue measure zero such that for any $\pi \in \mathcal{L}(\mathbb{R}^m, \mathbb{R}^\ell) - \Sigma$, the composition $F_{\pi} \circ f : N \to \mathbb{R}^\ell$ is stable.

Acknowledgements

The author was supported by JSPS KAKENHI Grant Number 16J06911.

References

- M. Golubitsky and V. Guillemin, Stable mappings and their singularities, Graduate Texts in Mathematics 14, Springer, New York, 1973.
- [2] S. Ichiki, Composing generic linearly perturbed mappings and immersions/injections, to appear in J. Math. Soc. Japan, available from arXiv:1612.01100.
- [3] S. Ichiki, Generic linear perturbations, to appear in Proc. Amer. Math. Soc., available from arXiv:1607.03220.
- [4] J. N. Mather, Generic projections, Ann. of Math., (2) 98 (1973), 226-245.

Graduate School of Environment and Information Sciences, Yokohama National University, Yokohama 240-8501, Japan

E-mail address: ichiki-shunsuke-jb@ynu.jp