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Abstract

The Dulmage‐Mendelsohn decomposition is a classical canonical decomposition
in matching theory applicable for bipartite graphs and is famous not only for its
application in the field of matrix computation, but also for providing a prototypal
structure in matroidal optimization theory. The Dulmage‐Mendelsohn decompo‐
sition is stated and proved using the two color classes of a bipartite graph, and
therefore generalizing this decomposition for nonbipartite graphs has been a difficult
task. In our study, we obtain a new canonical decomposition that is a generalization
of the Dulmage‐Mendelsohn decomposition for arbitrary graphs using a recently in‐
troduced tool in matching theory, the basilica decomposition. Our result enables us
to understand all known canonical decompositions in a unified way. Furthermore,
we apply our result to derive a new theorem regarding barriers. The duality theo‐
rem for the maximum matching problem is the celebrated Berge formula, in which
dual optimizers are known as barriers. Several results regarding maximal barriers
have been derived by known canonical decompositions; however, no characterization
has been known for general graphs. In our study, we provide a characterization of
the family of maximal barriers in general graphs, in which the known results are
developed and unified.

1 Introduction

We establish the Dulmage‐Mendelsohn decomposition for general graphs. The Dulmage‐
Mendelsohn decomposition [2−4], or the DM decomposition in short, is a classical canonical
decomposition in matching theory [15] applicable for bipartite graphs. This decomposition
is famous for its application for combinatorial matrix theory, especially for providing an
efficient solution for a system of linear equations [1, 4] and is also important in matroidal
optimization theory. Furthermore, its connection with matrices and matroids gave rise to
a branch of combinatorial matrix theory known as mixed matrix theory [16].

Canonical decompositions of a graph are fundamental tools in matching theory [15].
A canonical decomposition partitions a given graph in a way uniquely determined for
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the graph and describes the structure of maximum matchings using this partition. The
classical canonical decompositions are the Gallai‐Edmonds [5, 6] and Kotzig‐Lovász de‐
compositions [11−13] in addition to the DM decomposition. The DM and Kotzig‐Lovász
decompositions are applicable for bipartite graphs and factor‐connected graphs, respec‐
tively. The Gallai‐Edmonds decomposition partitions an arbitrary graph into three parts:
that is, the so‐called  D(G),  A(G) , and  C(G) parts. Comparably recently, a new canon‐
ical decomposition was proposed: the basilica decomposition [7−9]. This decomposition
is applicable for arbitrary graphs and contains a generalization of the Kotzig‐Lovász de‐
composition and a refinement the Gallai‐Edmonds decomposition. (The  C(G) part can
be decomposed nontrivially.)

In our study, we establish an analogue of the DM decomposition for general graphs
using the basilica decomposition. Our results accordingly provide a paradigm that enables
us to handle any graph and understand the known canonical decompositions in a unified
way. In the original theory of DM decomposition, the concept of the  DM components
of a bipartite graph is first defined, and then it is proved that these components form
a poset with respect to a certain binary relation. This theory depends heavily on the
two color classes of a bipartite graph and cannot be easily generalized for nonbipartite
graphs. In our generalization, we first define a generalization of the DM components
using the basilica decomposition. To capture the structure formed by these components
in nonbipartite graphs, we introduce a slightly more complex concept: posets with a
transitive forbidden relation. We then prove that the generalized DM components form a
poset with a transitive forbidden relation for certain binary relations.

Furthermore, we apply our generalized DM decomposition to derive a characterization
of the family of maximal barriers in general graphs. The Berge formula is a combinatorial
min‐max theorem in which maximum matchings are the optimizers of one hand, and the
optimizers of the other hand are known as barriers [15]. That is, barriers are the dual
optimizers of the maximum matchings problem. Barriers are heavily employed as a tool
for studying matchings. However, not as much is known about barriers themselves [15].
Aside from several observations that are derived rather easily from the Berge formula,
several substantial results about (inclusion‐wise) maximal barriers have been provided by
canonical decompositions.

Our result for maximal barriers proves that our generalization of the DM decompo‐
sition has a reasonable consistency with the relationship between each known canonical
decomposition and maximal barriers. Each known canonical decomposition can be used
to state the structure of maximal barriers. The original DM decomposition provides a
characterization of the family of maximal barriers in a bipartite graph in terms of ideals
in the poset; minimum vertex covers in bipartite graphs are equivalent to maximal barri‐
ers. The Gallai‐Edmonds decomposition derives a characterization of the intersection of
all maximal barriers (that is, the  A(G) part) [15]; this characterization is known as the
Gallai‐Edmonds description. The Kotzig‐Lovász decomposition is used for characterizing
the family of maximal barriers in factor‐connected graphs [15]; this result is known as
Lovász’s canonical partition theorem [14, 15]. The basilica decomposition provides the
structure of a given maximal barrier in general graphs, which contains a common gen‐
eralization of the Gallai‐Edmonds description and Lovász’s canonical partition theorem.
Hence, a generalization of the DM decomposition would be reasonable if it can character‐
ize the family of maximal barriers, and our generalization attains this in a way analogical
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to the classical DM decomposition, that is, in terms of ideals in the poset with a transitive
forbidden relation.

Our results imply a new possibility in matroidal optimization theory. Submodular
function theory is a systematic field of study that captures many well‐solved problems in
terms of submodular functions and generalizations. In this theory, the bipartite maximum
matching problem is an important exemplary problem. According to the Hall‐Ore theo‐
rem [17], which is the duality theorem for the bipartite maximum matching problem, this
problem can be understood as a special case of the submodular function minimization.
The DM decomposition therefore has a special meaning in this theory as it describes the
structure of the family of minimizers of a submodular function. The nonbipartite max‐
imum matching problem is also an important well‐solved problem, and is even referred
to as the archetype of well‐solved problems [15, 17]. In fact, the idea of polyhedral com‐
binatorics and some of its central concepts, such as the total dual integrality, have been
discovered from the nonbipartite maximum matching problem. However, the nonbipartite
maximum matching problem and its duality shown by the Berge formula are not included
in submodular function theory today and nor in any of its generalizations. Our nonbi‐
partite DM decomposition may provide a clue to a new aspect of submodular function
theory that can be brought in by capturing these concepts.

2 Notation

For basic notation for sets, graphs, and algorithms, we mostly follow Schrijver [17]. In
this section, unless otherwise stated, let  G be a graph. The vertex set and the edge set
of  G are denoted by  V(G) and  E(G) , respectively. We often treat a graph as the set of
its vertices.

In the remainder of this section, let  X\subseteq V(G) . The subgraph of  G induced by  X is
denoted by  G[X] . The graph  G[V(G)\backslash X] is denoted by  G-X . The contraction of  G

by  X is denoted by  G/X . Let  F\subseteq E(G) . The graph obtained by deleting  F from  G

without removing vertices is denoted by  G-F . Let  H be a subgraph of  G . The graph
obtained by adding  F to  H is denoted by  H+F . Regarding these operations, we identify
vertices, edges, subgraphs of the newly created graph with the naturally corresponding
items of old graphs.

A neighbor of  X is a vertex from  V(G)\backslash X that is adjacent to some vertex from  X.

The neighbor set of  X is denoted by  N_{G}(X) . Let  Y\subseteq V(G) . The set of edges joining  X

and  Y is denoted by  E_{G}[X, Y] . The set  E_{G}[X, V(G)\backslash X] is denoted by  \delta_{G}(X) .
A set  M\subseteq E(G) is a matching if  |\delta_{G}(v)\cap M|\leq 1 holds for each  v\in V(G) . For a

matching  M , we say that  M covers a vertex  v if  |\delta_{G}(v)\cap M|=1 ; otherwise, we say that
 M exposes  v . A matching is maximum if it consists of the maximum number of edges.  A

graph can possess an exponentially large number of matchings. A matching is perfect if
it covers every vertex. A graph is factorizable if it has a perfect matchings. A graph is
factor‐critical if, for each vertex  v,  G-v is factorizable. A graph with only one vertex
is defined to be factor‐critical. The number of edges in a maximum matching is denoted
by  v(G) . The number of vertices exposed by a maximum matching is denoted by  def(G) ;
that is,  def(G)  :=|V(G)|-2\nu(G) .
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3 Basics on Matchings

We now explain the Berge Formula and the definition of barriers. An odd component
(resp. even component) of a graph is a connected component with an odd (resp. even)
number of vertices. The number of odd components of  G-X is denoted by  q_{G}(X) . The
set of vertices from odd components (resp. even components) of  G-X is denoted by  D_{X}

(resp.  C_{X} ).

Theorem 3.1 (Berge Formula [15]). For a graph  G,  def(G) is equal to the maximum
value of  q_{G}(X)-|X| , where  X is taken over all subsets of  V(G) .

The set of vertices that attains the maximum value in this relation is called a barrier.

That is, a set of vertices  X is a barrier if  def(G)=q_{G}(X)-|X|.
The set of vertices that can be exposed by maximum matchings is denoted by  D(G) .

The neighbor set of  D(G) is denoted by  A(G) , and the set  V(G)\backslash D(G)\backslash A(G) is denoted
by  C(G) . The following statement about  D(G),  A(G) , and  C(G) is the celebrated Gallai‐
Edmonds structure theorem [5, 6, 15].

Theorem 3.2 (Gallai‐Edmonds Structure Theorem). For any graph  G,

(i)  A(G) is a barrier for which  D_{A(G)}=D(G) and  C_{A(G)}=C(G) ;

(ii) each odd component of  G-A(G) is factor‐critical; and,

(iii) any edge in  E_{G}[A(G), D(G)] is allowed.

An edge is allowed if it is contained in some maximum matching. Two vertices are
factor‐connected if they are connected by a path whose edges are allowed. A subgraph
is factor‐connected if any two vertices are factor‐connected. A maximal factor‐connected
subgraph is called a factor‐connected component or factor‐component. A graph consists
of its factor‐components and edges joining them that are not allowed. The set of factor‐
components of  G is denoted by  \mathcal{G}(G) .

A factor‐component  C is inconsistent if   V(C)\cap D(G)\neq\emptyset . Otherwise,  C is said to be
consistent. We denote the sets of consistent and inconsistent factor‐components of  G by
 \mathcal{G}^{+}(G) and  \mathcal{G}^{-}(G) , respectively.

4 Basilica Decomposition

We now introduce the basilica decomposition of graphs [8, 9]. The theory of basilica
decomposition is made up of the three central concepts:

(i) a canonical partial order between factor‐components (Theorem 4.2),

(ii) the general Kotzig‐Lovász decomposition (Theorem 4.4), and

(iii) an interreıationship between the two (Theorem 4.5).

In this section, we explain these three concepts and give the definition of the basilica
decomposition. Every statement in the following is from Kita [8, 9]. In the following, let
 G be a graph unless otherwise stated.
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Definition 4.1. A set  X\subseteq V(G) is said to be separating if there exist  H_{1} , ,  H_{k}\in \mathcal{G}(G) ,
where  k\geq 1 , such that  X=V(H_{1})\cup\cdots\cup V(H_{k}) . For  G_{1},  G_{2}\in \mathcal{G}(G) , we say  G_{1}\triangleleft G_{2} if
there exists a separating set  X\subseteq V(G) with  V(G_{1})\cup V(G_{2})\subseteq X such that  G[X]/G_{1} is
a factor‐critical graph.

Theorem 4.2. For a graph  G , the binary relation  \triangleleft is a partial order over  \mathcal{G}(G) .

Definition 4.3. For  u,  v\in V(G)\backslash D(G) , we say  u\sim Gv if  u and  v are identical or if  u

and  v are factor‐connected and satisfy  def(G-u-v)>def(G) .

Theorem 4.4. For a graph  G , the binary relation ∼  G is an equivalence relation.

We denote as  \mathcal{P}(G) the family of equivalence classes determined  by\sim G . This family is
known as the general Kotzig‐Lovász decomposition orjust the Kotzig‐Lovász decomposition
of  G . From the definition of ∼  G , for each  H\in \mathcal{G}(G) , the family  \{S\in \mathcal{P}(G) : S\subseteq V(H)\}
forms a partition of  V(H)\backslash D(G) . We denote this family by  \mathcal{P}_{G}(H) .

Let  H\in \mathcal{G}(G) . The sets of strict and nonstrict upper bounds of  H are denoted
by  \mathcal{U}_{G}(H) and  \mathcal{U}_{G}^{*}(H) , respectively. The sets of vertices  \cup\{V(I) : I\in \mathcal{U}_{G}(H)\} and
 \cup\{V(I) : I\in \mathcal{U}_{G}^{*}(H)\} are denoted by  U_{G}(H) and  U_{G}^{*}(H) , respectively.

Theorem 4.5. Let  G be a graph, and let  H\in \mathcal{G}(G) . Then, for each connected component
 K of  G[U_{G}(H)] , there exists  S\in \mathcal{P}_{G}(H) such that  N_{G}(K)\cap V(H)\subseteq S.

Under Theorem 4.5, for  S\in \mathcal{P}_{G}(H) , we denote by  \mathcal{U}_{G}(S) the set of factor‐components
that are contained in a connected component  K of  G[U_{G}(H)] with  N_{G}(K)\cap V(H)\subseteq S.
The set  \cup\{V(I) : I\in U_{G}(H)\} is denoted by  U_{G}(S) . We denote  U_{G}(H)\backslash S\backslash U_{G}(S) by
 TU_{G}(S) .

Theorem 4.5 integrates the two structures given by Theorems 4.2 and 4.4 into a struc‐
ture of graphs that is reminiscent of an architectural building. We call this integrated
structure the basilica decomposition of a graph.

5 TFR Poset

We now introduce the new concept of posets with a transitive forbidden relation, which
serves as a language to describe the nonbipartite DM decomposition.

Definition 5.1. Let  X be a set, and let  \preceq be a partial order over  X . Let  \smile be a binary
relation over  X such that,

(i) for each  x,  y,  z\in X , if  x\preceq y and  y\smile z hold, then  x\smile z holds (transitivity);

(ii) for each  x\in X,  x\smile x does not hold (nonreflexivity); and,

(iii) for each  x,  y\in X , if  x\smile y holds, then  y\smile x also holds (symmetry).

We call this poset endowed with this additional binary relation a poset with a transitive
forbidden relation or TFR poset in short, and denote this by  (X, \preceq, \smile) . We call a pair of
two elements  x and  y with  x\smile y forbidden.
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Let  (X, \preceq, \smile) be a TFR poset. For two elements  x,  y\in X with  x\smile y , we say that
 x\smile\star y if, there is no  z\in X\backslash \{x, y\} with  x\preceq z and  z\smile y . We call such a forbidden pair
of  x and  y immediate. A TFR poset can be visualized in a similar way to an ordinary
posets. We represent  \preceq just in the same way as the Hasse diagrams and depict  \smile by
indicating every immediate forbidden pairs.

Definition 5.2. Let  P be a TFR poset  (X, \preceq, \smile) . A lower or upper ideal  Y of  P is
legitimate if no elements  x,  y\in Y satisfy  x\smile y . Otherwise, we say that  Y is illegitimate.
Let  Y be a consistent lower or upper ideal, and let  Z be the subset of  X\backslash Y such that,
for each  x\in Z , there exists  y\in Y with  x\smile y . We say that  Y is spanning if  Y\cup Z=X.

6 DM Decomposition Theory for General Graphs

We now provide our new theory of the DM decomposition for general graphs. In this
section, unless otherwise stated, let  G be a graph.

Definition 6.1. A Dulmage‐Mendelsohn component, or a  DM component in short, is a
subgraph of the form  G[S\cup^{T}U_{G}(S)] , where  S\in \mathcal{P}(G) , endowed with  S as an attribute
known as the base. For a DM component  C , the base of  C is denoted by  \pi(C) . Conversely,
for  S\in \mathcal{P}(G),  K(S) denotes the DM components whose base is  S . We denote by  \mathcal{D}(G)
the set of DM components of  G.

Hence, distinct DM components can be equivalent as a subgraph of  G . Each member
from  \mathcal{P}(G) serves as an identifier of a DM component.

Definition 6.2. A DM component  C is said to be inconsistent if  \pi(C)\in \mathcal{P}_{G}(H) for some
 H\in \mathcal{G}^{-}(G) ; otherwise,  C is said to be consistent. The sets of consistent and inconsistent
DM components are denoted by  \mathcal{D}^{+}(G) and  \mathcal{D}^{-}(G) , respectively.

Definition 6.3. We define binary relations  \preceq^{\circ}and\preceq over  \mathcal{D}(G) as follows: for  D_{1},   D_{2}\in

 \mathcal{D}(G) , we let  D{\imath}\preceq^{\circ}D_{2} if  D_{1}=D_{2} or if  N_{G}(^{T}U_{G}(S_{1}) )  \cap S_{2}\neq\emptyset ; we let  D_{1}\preceq D_{2} if there
exist  C_{1} , . . . ,  C_{k}\in \mathcal{D}(G) , where  k\geq 1 , such that  \pi(C_{1})=\pi(D_{1}),  \pi(C_{k})=\pi(D_{2}) , and
 C_{t}\preceq^{\circ}C_{i+1} for each  i\in\{1, . . . , k\}\backslash \{k\}.

Definition 6.4. We define binary relations  \smile\circ and\smile over  \mathcal{D}(G) as follows: for  D_{1},   D_{2}\in

 \mathcal{D}(G) , we let  D_{1}\smile\circ D_{2} if  \pi(D_{2})\subseteq V(D_{1})\backslash \pi(D_{1}) holds; we let  D_{1}\smile D_{2} if there exists
 D'\in \mathcal{D}(G) with  D_{1}\preceq D' and  D'\smile\circ D_{2}.

Theorem 6.5. For a graph  G , the triple  (\mathcal{D}(G), \preceq, \smile) is a TFR poset.

For a graph  G , the TFR poset  (\mathcal{D}(G),\underline{S}, \smile) is uniquely determined. We denote this
TFR poset by  \mathcal{O}(G) . We call this canonical structure that  \mathcal{O}(G) describes the nonbipartite
Dulmage‐Mendelsohn  (DM) decomposition of  G . This is a generalization of the classical
DM decomposition for bipartite graphs.

Remark 6.6. As mentioned previously, a DM component is identified by its base. There‐
fore, the nonbipartite DM decomposition is essentially the relations between the members
of  \mathcal{P}(G) .

Immediate forbidded pairs in  \mathcal{O}(G) can be characterized as follows:
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Theorem 6.7. Let  G be a graph. Let  S,  T\in \mathcal{P}(G) . Then,  K(S) and  K(T) are immediate
forbidden pairs if and only if  S and  T are contained in the same factor‐component.

Given a graph  G , its basilica decomposition can be computed in  O(|V(G)|\cdot|E(G)|)
time [8, 9]. Therefore, the next thereom can be stated.

Theorem 6.8. Given a graph  G , the TFR poset  \mathcal{O}(G) can be computed in  O(|V(G)| .
 |E(G)|) time.

7 Characterization of Barriers

We now derive the characterization of the family of maximal barriers in generaı graphs
using the nonbipartite DM decomposition. In this section, unless otherwise stated, let
 G be a graph. It is a known fact that a graph has an exponentially many number of
maximal barriers, however the family of maximal barriers can be fully characterized in
terms of ideals of  \mathcal{O}(G) .

Theorem 7.1. Let  G be a graph. A set of vertices  X\subseteq V(G) is a maximal barrier if
and only if there exists a spanning legitimate normalized upper ideal  \mathcal{I} of the TFR poset
 \mathcal{O}(G) such that  X=\cup\{\pi(C) : C\in \mathcal{I}\}.
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