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1 Introduction

We study the following initial-boundary value problem for a reaction diffusion system:

Osur — Aug = ujug — buy, T € Q, t>0,

Orug — Aug = auq, z€eN, t>0,
(NR) U2 2 1 .

Oyuy + auy = dyug + Blug|" “us =0, r €N, t>0,

u1(2,0) = u1o(z) 2 0, uz(z,0) = uzo(z) 20, z€Q,

where @ C RY is a bounded domain with smooth boundary 81, v denotes the unit outward normal
vector on 9 and d,u; = Vu; - v (i = 1,2). us, ug are real-valued unknown functions, ¢ and b are given
positive constants. As for the parameters appearing in the boundary condition, we assume o > 0, 8 > 0
and v > 2. We note that the boundary condition for u; becomes the homogeneous Neumann boundary
condition when o = 0, and the boundary condition for uy gives the Robin boundary condition when
v = 2. Moreover, uig, uzo € L>°(Q2) are given initial data.

This system describes diffusion phenomena of neutrons and heat in nuclear reactors by taking the
heat conduction into consideration, introduced by Kastenberg and Chambré [10]. In this model u; and
ugy represent the neutron density and the temperature in nuclear reactors respectively. There are many
studies on this model under various boundary conditions, for example, (2], (3], [6], [7], [9], [17] and
[18]. Many of them are concerned with the existence of positive steady-state solutions and the long-time
behavior of solutions.

In [6], they study this system with the homogeneous Neumann boundary condition and Robin bound-
ary condition: '

Btul—Aul =u1u2—bu1, .’EEQ, t>0,
(L.1) Osus — Auy = aug, reQ, t>0,
' Oyu; = Oug + Pus =0, €N, t>0,

u1(z,0) = uio(z), ua(z,0) = ug(z), z€Q.

They showed the existence and the ordered uniqueness of positive stationary solution for N € [2,5]. They
also investigated some threshold property to determine blow-up or globally existence. Moreover, in [18]
the case where § = 0, that is, the homogeneous Neumann boundary condition for us is studied. The
author of [18] discussed the stability region and the instability region of (1.1) and give an upper bound
and a lower bound on the blowing-up time for a solution which blows up in finite time.
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Sakamoto, Hitachi-GE Nuclear Energy, Ltd.



The following system with the homogeneous Dirichlet boundary conditions:

Otu’l—Aul:ulu’z’—bul, zeQ, t>0,
Osuo — Aug = auy, zeN t>0
(12) tU2 2 1 )
U =ug =0, e, t>0,

ui(z,0) = uio(z), uz2(z,0) = ug(z), z€Q,

is studied by [7] and [9]. In (7], they showed the existence of positive stationary solutions for the case
where p=1and N = 2, 3 or Q is bounded convex domain with N € [2,5]. Furthermore, they obtained
similar resluts of the threshold property in [6] when Q is ball. In [9], the existence and ordered uniqueness
of positive stationary solutions are considered for general p > 0 and some threshold reslut is obtained.
Moreover the blow-up rate estimate is given for positive blowing-up solutions when 2 is ball and p > 1.

In this paper, we are concerned with the nonlinear boundary condition. From physical point of view
it could be more natural to consider the nonlinear boundary condition than the homogeneous Dirichlet
boundary condition or Neumann boundary condition. Indeed, if there is no control of the heat flux on
the boundary, it is well known that the power type nonlinearity for us is justified by Stefan-Boltzmann’s
law, which says that the heat energy radiation from the surface of the body is proportional to the fourth
power of temperature when N = 3. In Section 3, we consider the stationary problem associated with
(NR) and show the existence of positive solutions by applying abstract fixed point theorem based on
Krasnosel’skii [11]. In Section 4, we disscus the large time behavior of solutions to (NR) and prove that
every positive stationary solution plays a role of threshold to separate global solutions and finite time
blowing-up solutions.

2 Preliminaries

First of all, we state several lemma to prove our results for (NR).

Lemma 2.1 (Krasnosel’skii-type fixed point theorem [11], [12]). Suppose that E is a real Banach space
with norm || - ||, K C E is a positive cone, and & : K — K is a compact mapping satisfying ¢(0) = 0.
Assume that there exists two constants R > r > 0 and an element p € K \ {0}, such that

(i) u# AP(u), YA€ (0,1), if ue K and |lul| =,
(ii) w # P(u) + Ap, YA>0, if uve K and |lu|| = R.
Then the mapping ¢ possesses at least one fized point in K1 :={u € K; 0 <r < ||ul]| < R}.

Lemma 2.2 ([5]). Let \; and o1 be the first eigenvalue and the corresponding eigenfunction for the
problem:

—Ap=Xp, z€Q,
Op+ap=0, e,
where Q is smooth bounded domain in RN and a > 0. Then there exists a constant Cy > 0 such that
p1(z) > Cq zeq.

Lemma 2.3 ([16]). Let @ C RN be a bounded domain. For p € [L,00) there exists a constant C =
C(Q,p) > 0 such that

udS < C|IVullpr(o) Yu € WhP(Q).

LP(Q)

|+~
109 Jon
Lemma 2.4 ([4]). Let vy >2 and N € N. Then there ezists Cyy > 0 such that

(2.1) (z—y) (2" %z = y|"2y) > Cylz — y|”
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for allz, y € RV,

Lemma 2.5 ([15]). Let Q be any domain in RN and assume that ezists a number ro > 1 and a constant
C' independent of r € [rg,00) such that

”u”Lr(Q) <C Vr e ['ro,oo),
then u belongs to L () and the following property holds.

(2.2) Jim Jlullzrg) = llull e @)-

Conversely, assume that w € L™ (Q) N L*®(Q) for some 7o € [1,00), then u satisfies (2.2).

Lemma 2.6 ([15]). Let y(t) be a bounded measurable non-negative function on [0,T] and suppose that
there exists yo > 0 and a monotone non-decreasing function m(-) : [0,+00) — [0, +00) such that

t
VO Sw+ [ muO)s  aete 1),
0
Then there ezists a number Ty = To(yo, m(+)) € (0, T such that

y(t) <yo+1 _a.e. t € [0, Ty).

3 Stationary Problem
First, we consider the following stationary problem:

S Aul = UjUg — bul, x e Q,
(S-NR) — Auy = auy, z€Q,
Ayuy + auy = dyug + Blug| " 2uy =0, € O

Since (S-NR) has no variational structure, it is hard to apply the variational method to (S-NR). Hence
in order to show the existence of positive stationary solutions to (NR), we rely on the abstract fixed
point theorem developed by Krasnosell’skii. The difficluty of proving the existence of positive stationary
solutions is how to obtain L*-estimates for solutions.

3.1 Existence of positive solutions

Theorem 3.1. Let 1 < N <5, suppose that either (A) or (B) is satisfyied :

A v=2, a<2B
B) v>2.

Then (S-NR) has at least one positive solution.

We shall prove this theorem by Lemma 2.1. In order to apply Lemma 2.1 , we here fix our setting:

E=C@) x Cc@), u=(u1,us)" € E,
el = lwllcg + lluzllcmy K ={u€Eu 20,uz >0}.

Set ¢ = (¢1,0)T € K\ {0}, where \; and ¢; are the first eigenvalue and the corresponding eigenfunction



of the eigenvalue problem:

—Ap=Xp, zEQ,
(3.1) { e T

Op+ap=0, zed.

It is well known that A; > 0. In this section, we normalize ¢;(z) such that ||¢;||z2 = 1. For given
u= (u1,u2)” € K, let v = (v1,v2)T = ¥(u) be the unique nonnegative solution (see Brézis [1]) of

— Avy + by = ugus, z €,
— Avs = auy, €,
Oyv1 + avr = Oyvg + Blva| 2 = 0, z € AN

It is easy to see that ¥(0) =0 and ¥ : K — K is compact.

Thus in order to prove that (S-NR) has a positive solution, it suffices to show that ¥ has a fixed point
in K. Therefore, for proving Theorem 3.1 we are going to check the conditions (i) and (ii) of Lemma 2.1.

We first check condition (i).

Lemma 3.2. Letr = % We see that u # X (u) for any X € (0,1) and u € K satisfying |u|| = r. That
is, condition (i) of Lemma 2.1 with & = ¥ holds.

Proof. We prove the statement by contradiction. Suppose that there exist A € (0,1) and u € K with
|lull = r such that u = A\(u), that is, u; and uy satisfy

— Aug + buy = Auqug, z €,
(3.2) — Aug = Aauy, z € Q,

y—-2
6,,u1+au1=3,,u2+,3|%I uy =0, z €.

Multiplying the first equation of (3.2) by u; and using integration by parts, we obtain

!|Vu1l|iz(9) + a/an uldS + b]|u1||%2(9) = A/ﬂu%ugdx
< luzllzoe @y llullF2 ()
< s hali3s(ay
Hence we have u; = 0. By the second equation of (3.2), we see that uy satisfies
— Auy =0, z € Q,
Oyus + B ‘%\2‘7_2@ =0, ze€dN.
Multiplying this equation by us and integration by parts, we obtain
IVusllza) =0,  u2|sq = 0.

By using Poincaré’s inequality, we get up = 0. Thus u; = up = 0. This contradicts the assumption
llull = § > 0. O

In order to verify condition (ii) of Lemma 2.1, we here claim the following lemma.
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Lemma 3.3. Let 1 < N < 5 and suppose that either (A) or (B) is satisfyied :

A rv=2 a<2
B r>2

then there ezists a constant R(> 1 = %) such that the estimate
lull <R

holds for all A > 0 and u € K satisfying u = ¥(u) + Ap.

Proof. We rewite u = ¥(u) + Ay in terms of each component, that is:

— Auy +bug = wug + A(b+ A)p1, z€Q,
(3.3) — Aug = auy, z €,
yu1 + auy = Qyuy + Blug|"2uy =0, = € 0.

Hereafter we denote by C' > 0 a general constant. First, we derive H!'-estimate for uy. Replacing u; in
the first equation of (3.3) by —LAus, we get

(34) A2u2 — bAug = —ugAus + /\a(b + Al)ipl.

By multipying (3.4) by ¢ and using integration by parts, we have
(lhs) =/ Azuchlda:—b/ A’Ll,z(pldw
Q Q
= —/ V(Aug) - Viprdo +/ (6,,Au2)<p1dS+b/ Vug - Viprdz — b/ (Byu2)p1dS
Q a0 Q 1o}
= —/\1/ AuQcpldz—b/ u2A<p1dx+b/ uz(auapl)dS——b/ (O, uz)p1dS
Q Q o0 o0

= Al(b + }\1) / ugp1dT + ﬁ(b + )\1)/ u;’—lcpldS’ - a(b + )\1)/ uchldS,
Q N N

(r.h.s) = — ‘/Q usAugprdz + Aa(b+ /\1)”501“%2(9)
= / Vugy - V(ugapr)dz — /a (O, u2)uzp1dS + Aa(b+ A1)
Q Q
1
= / |Vug|2p1dz + 5/ Vul - Vidr + ,3/ udp1dS + Aa(b + A1)
Q Q a0
1 1
= / |Vug|2prdz — 3 / uiAprdz + 3 / u2(8,p1)dS + /6/ udp1dS + da(b+ A1)
Q Q 0 a0

A
= / |Vug|?prdz + ~—1—/ udprdz + [3/ udp1dS — Z / u2p1dS + Aa(b + \1).
Q 2 Ja a9 2 Jaa
Therefore we see that the following equality holds.
A
(35) A1 (b-l- /\1) /Q uztpldz = ,/n 1V1.L2'2(,01d1' + ?1 /Qu%gold:v -+ a(b + )\1)/\

+/ {Bu;’ - B(b-i-/\l)u;’—1 — gug +a(b+ )\1)U2} p1dS.
£ 2
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Since (A) : v =2, a <28 or (B) : v > 2 holds,
inf {,@u;' —BB+r)ult - gug +a(b+ ) Ug} > —-C > —c0.
u2 >0 2
Moreover, since 1 is bounded (Lemma 2.2), we see that
A
)\1(b+ /\1)/ ugnpldx Z / IVU2|2<p1d.Z' + "21 / u%goldx + a(b+ )\1)}\ -C.
Q Q Q

By Schwarz’s inequality and Young’s inequality, it is easy to see that

A
/IVU2|2<p1dcc+7l/u§<p1dw+a(b+/\1))\S)\l(b+)\1)/quald:c—{—C
Q Q Q

<M+ A1) (/ng%dzy (/szldw) +C

< 2\l/'uggoldar;—{—C'.
4 Ja

ol

Hence we obtain
(3.6) / |Vug2p1de < C, / udode <C, A<C,
Q Q

and

(37) / Uz(pldil) S (/ u%cpldz) ’ (/ (pld.’lJ) ’ S C
Q Q Q

Furthermore it follows from Lemma 2.2 and (3.6)
(3.8) luzllagr (o) < C.
By (3.7) and (3.5), we also have

/an {ﬁug —BO+A)ul™t - %u% +alb+ )\1)U2} p1dS < C.
Similarly, using Holder’s inequality and Young’s inequality, we obtain
/mu;’dSSC, (y>2 or y=2, a<2p)

(3.9)
/ udS < C. (vy=2, a=2p)
on

Now, we derive H'-estimate for u;. Multipying the first equation of (3.3) by ; and using integration by
parts, we get

(3.10) (M + b)/ uyprde = / uuzp1dz + A(A1 + b)
Q Q :

Similarly, multipying the second equation of (3.3) by 1, we get

(3.11) Al/quoldz—I—ﬂ/ ug‘l<p1dS—a/ u2<p1d5=a/ uyprdz.
Q o0 . o) Q
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Then by (3.10), (3.11), (3.8) and (3.9), we obtain
(3.12) / uyprde < C, / ujugprdr < C.
Q Q

We first suppose that N = 3,4,5 and let 0 = % € (0,1). Multiplying the frist equation of (3.3) by u;
and using integration by parts, (3.9), Holder’s inequality and Sobolev’s inequality, we obtain

||VU1”%2(Q) + Ol/ ufds + b||u1|l%2(n) = / u%uzdz + )\(b + )\1)/ u1<p1da:
o0 Q Q

S/ (urup)’ (“f
Q
0 20 1-0
< (/ ulugdz) (/ ull“"uzd:c) +C
Q Q

N-2
N+2 a
SC’(/u?—guzda) +C
Q

N—

4
L2

)
|

]

1-6
g U2> dx + C

|

|

< Cllul| i g Il o gy + €
< Cllurllgoy + €,
where 2* = 28 is critical Sobolev exponent. Since N € [3,5], we have 22 < 2. Hence we obtain
(3.13) lluallzroy < C-
Finally, we derive L*°-estimates for u; and uy. Since (3.13), we know

lutll2s @) < C.
From the second equation of (3.3) and the elliptic estimate , we have

luzll w22 ) < C.

Since N € [3, 5], we have

Hence, Sobolev imbedding theorem gives
luz| Lo () < Co.

Similarly, we can get |Ju1||zee < Cy from the first equation of (3.3). As for the cases N = 1, 2, we can
show this result by slight modification and omit the details here. Choosing R > C; + C5, we can see that
the conclusion of this lemma holds. O

Proof of Theorem 3.1. By applying Lemma 3.2, Lemma 3.3 and Lemma 2.1, we can verify that Theorem
3.1 holds. O

Remark 3.4. If o = 0, for v € (1,2) we can derive H'-estimate for uy by taking H' norm of uy as
[IVull L2y + llull L1 (a0) in the proof of Lemma 3.3. In fact, it is easy to see that this norm is equivalent
to the usual H!(Q) norm by Lemma 2.3. Therefore it is easy to see that Theorem 3.1 holds in the case
ofa=0,>0and vy > 1.
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3.2 Ordered Uniqueness

Theorem 3.5. Let (u1,u2) and (v1,v2) be two positive solutions of (S-NR) satisfying u; < vy oruz < vs.
Then uy = vy and uy = vs.

Proof. Suppose that u; # vy or uy # ve. Without loss of generality, we only have to consider the case
where ug # vo and up < vo. In fact, if u3 < vy, by the second equation of (S-NR) we have

(3.14) —A(ug — v2) = a(ug —v1) <0.

Multipying (3.14) by [uz — va] := max{uy — vs,0} and using integration by parts, we obtain
(3.15) [V[uz — vo] |30 +ﬂ/an[u2 — o]t (Juz|""2uz — |u2|""202) dS < 0.

By Lemma 2.4,

/; [UZ e ’U2}+ (|’LL2|’Y_2U,2 - |02|7_2v2) dsS = /{ (uz - Uz) (!’LLQP_ZUQ - |1)2|7'~2’02) ds
Q

uz>va}

Z / C,Y(UQ = vz)"’dS
{u2>v2}

=0, / (fug — va]*)7 dS.
0
By this inequality and (3.15),
“V[UZ - U2]+”%2(Q) + C‘y /3(1 ({'UQ - ’02]+)7dS < 0.

Therefore we get
Viug —vo]* =0,
[U2 - v2]+|89 =0.

Hence we deduce [uz — va]T =0, i.e., us < v2. Next we consider the following eigenvalue problems:

(3.16) { —Aw+ (b—uz(z))w=p'w inQ,
d,w+ow=0 on 99,
and
—Aw+ (b—ve(z))w=n'w inQ,
(317) {Byw +aow=0 on 99Q.

If necessary, we take some nonnegative constant L > 0 and add both sides of equations of (3.16) and
(3.17) by L, and we can assume U(z) :=b—ug(z) + L > 1 and V(x) := b — vo(z) + L > 1. Thus we
consider the following problems in stead of (3.16) and (3.17):

(3.18)

—Aw+U(z)w = pw in Q,
ow+ow=0 on 99,
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and

—Aw+V(@)w=nw inQ,
(3.19)

d,w+ow=0 on O0.

By applying the compactness argument for the associate Rayleigh’s quotients of (3.18) and (3.19) , we
know that the smallest positive eigenvalues of (3.18) and (3.19) are atteined and we denote them by g
and 7. Moreover, thanks to ug # vz and ug < vz, we see that 79 < po. On the other hand, since (u1,uz)
and (v1,v2) are positive stationary solutions for (S-NR), u; > 0 and v; > 0 satisfy

—Aup + (b—ug(z)+ L)uy = Luy  in Q,
Oyur +au; =0 on 99,

and
—Avy 4+ (b—wa(z) + L)vy = Lvy  in Q,

Oyv1 +avy =0 on 99Q.

By the fact that the eigenvalue corresponding positive eigenfunction is the smallest one, we deduce
po = L =mnp. This is in contradiction with 1y < pp. Thus the proof is completed. O

4 Nonstationary Problem

In this section, we investigate the large time behavior of solutions to (NR) and prove that the positive
stationary solution plays a role of threshold to classify initial data into two groups; namely corresponding
solutions of (NR) blow up in finite time or exist globally.

4.1 Local Well-posedness

First we state the local well-posedness of problem (NR).

Theorem 4.1. Assume (u10,u20) € L®(Q) x L>®(Q). Then there ezxists T > 0 such that (NR) possesses
a unique soltion (u1,uz) € (L=(0,T;L°(2)) N C([0,T); L*(R)))? satisfying

(41) \/fatul, \/‘Zat’u/z, \/iAul, \/ZAU/Z € L2 (0, T, L2 (Q))

Furthermore, if the initial data is nonnegative, then the local solution (u1,us) for (NR) is nonnegative.

Proof. It is easy to see that (NR) has a unique local solution by the standard abstract theory [1] and
L>-energy method [15]. In fact, we consider the following approximate problem:

Opur — Aug = [ug]arfuz]ar — bus, z€N, t>0,
Osus — Ausg = auy, €N, t>0,
Byuy + auy = dyug + Blug| " 2upy =0, z €8, t>0,
ui(z,0) = uio(z), u2(z,0) =uz(z), z€Q,

(42)

where, M > 0 is a given constant and cut-off function [u]s is defined by

M, u>M,
[ulsr =qu,  |Jul<M,
-M, u<-—-M.



Since u ~ [u]p is Lipschitz continuous from L2() into itself, it is well known that (4.2) has a unique
global solution (u1,usg) satisfying (4.1) by applying the abstract theory on maximal monotone operators
developed by Brézis [1].

By multipying the first equation of (4.2) by |u;|"~2u; and using integration by parts,

1d

Sl @Ol + (- 1) / V[0l 2 + o / wrds = / o T T / Wl
rdt Q a0 Q Q

Hence
L Jr @ < o (@) a5

Divide both sides by |u1||}=* and integrate with respect to ¢ on [0, ], then we get

lur@llzr < llwaollzr +/0 lles (D) zr llua ()| Lo dr.

Letting 7 tend to oo (Lemma 2.4), we derive

t
l[ur(®)llze < lusoll e +/0 llua (7| oo fluz(7) | Lowdr.

Similarly, we can get the following L estimate for us ;

. t
l[uz ()L < llugollze +/0 alu (7)| o=

Therefore setting y(t) = ||ui(t)|| Lo () + llu2(t)]| L (), We get

y(t) < 9(0) + / (¥2(r) + ay(r) dr.

Thus applying Lemma 2.5, we find that there exists a number 7' > 0 depending only on ||u1o]| e (0) and
[lugol| Lo () such that
y(t) <y(0)+1 a.e. t€[0,7].

In other words, we get
w1 ()l e @y + lua (@)l @y < lutollze (@) + llugolleo () +1 a.e. t€[0,T].

Hence choosing M > |luo|| () + 120 Lo () + 1, We can see that (u1,uz) gives a solution for (NR) on
[0, T] by the definition of cut-off function [u] .

To get the regularity estimate and the uniqueness of the solution for (NR) is easy and usual, so we
omit the details. In order to prove that the solution for (NR) is nonnegative, we consider the following
equations:

Orur — Auy = |uq||ug| — bug, z€eN, t>0,

Osug — Aug = auy, €N, t>0,
(abs-NR) e T T , ’

Oyug + auy = Gyug + Blug|" Pus =0, z €N, t>0,

u1(z,0) = u1o(z) >0, ua(x,0) = ugo(x) >0, z€Q.

Just as before, we see that (abs-NR) has a unique local solution. Furthermore, multiplying the equations
of (abs-NR) by u] := max{—u1,0} and u3 := max{—usg,0} respectively, we get u; > 0 and ug > 0. Thus,
we deduce from the uniqueness of the solution for (NR) that the solution u;, us for (NR) is nonnegative.

]

o1



92

4.2 Threshold Property

Finally, we study the threshold property and prove that every positive stationary solution for (NR)
gives a threshold in the following sense.

Theorem 4.2. Let (U1, TU2) be a positive stationary solution of (NR), then the followings hold.
(1) Let 0 < uyo(z) < U(z), 0 < ugo(z) < Ua(z), then the solution (u1,uz) of (NR) exists globaly. In
addition, if 0 < uyo(z) < LT (z), 0 < ugo(z) < loa(z) for some 0 <1y <l < 1, then

lim (ui(z,t),u2(z,t)) = (0,0), pointwisely on Q.
t—+o00

(2) Assume further o < 2B and let uio(z) > 11U (z), uso(x) > lota(x) for some ly > ly > 1, then the
solution (u1,uz) of (NR) blows up in finite time.
We first prove the following comparison theorem for the proof of Theorem 4.2.

Lemma 4.3 (Comparison theorem). If (u19,u20), (v10,v20) are two initial data for (NR) satisfying

0<uip<wvw, O0=Zugp<wy onQ,

then the corresponding soltions (u1,us2), (v1,v2) remain in the initial data order in time interval where
the solutions exist, i.e., u1(z,t) < vi(z,t) and ua(z,t) < va(z,t) a.e. z € Q as long as (u1,us) and
(v1,v2) exist.

Proof. Let wy = u; — v, we = uz — ve. By (NR) we have

Oyw1 — Aw; = wyug + viwy — bwy, zeQ, te(0,T),

(43) Oywy — Aws = awy, z€Q, te(0,Tn),
d,w1 + aw; = d,ws + B (}u2|7‘2uz - |v2|“*_21;2) =0, z€90Q, te(0,T),
wy(z,0) <0, ws(z,0) <0, z e,

where T,,, > 0 is the maximum existence time for (u1,us2) and (vi,ve). We set
wht=wv0, w = (-w) V0,

where a V b = max{a, b}. It is easy to see that wt, w™ > 0 and

+

w=wt—w”, |w=w"+w".

Multiplying the first equation of (4.3) by wi, we get

/atwlwfrda:——/ Awlwfda::/wluzwfdxvl—/vjwzwf'dm—b/ wlwf'dac.
Q Q Q Q Q

Here, we see that

1d 1d 2
opw w+da:=/ wadz:——/ widi = =— [ (wf)" da.
/a R {w1>0} . 2dt Jwyz0y 2dt n( )

Similarly,

—/ Awlwi"dw=/Vw1-wadx+a/ wlwf'dS
Q Q a0

=/ [Vw1|2dx+a/ wde:/ IVwﬂzda:+a/ (wf“)zdS.
{w12>0} {w120} Q o9
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Hence noting that v; > 0, we obtain for any T € (0,7,,)

1d
57 (wf)zd:zr+/ |wa"]2dx+a/ (wf)2d5=/w1uzw1 dx+/v1w2w;'dz—~b/ wiwy dz
Q Q a0 Q Q

=/ (wi — wi) upwidz
Q
+/v1 (w}'—w{)wfdz-—b/ (wf')zda:
) Q
SHuz”L?LW/Q(wf)zdx

+ ”'UIHL,}‘?LW / wl Wy Fdx
Q

< O (ot O 2@ + lwd Ol3eqey ) »
where LFL® := L*°(0,T; L>(£2)). Hence we get
1d
(44) 5 71t Ol < € (ot O aq) + lwf O3z -

Next we do the same calculation for the second equation of (4.3). We also have

1d 2 12 + a
53 | D) o+ [ [VuPae- || @wyutas < 5 (ot Qs + Iuf @)

and
— /60(6 wo)wy dS = ﬁ/ |uz|7 2y — |vo|7 2@2) wy dS
=p ‘{ : ([’UQP—Z’LLQ - |v2|7‘2v2) (ug —v2)dS > 0.
Uz >v2
Therefore
4.5 14 t <= )12 )2
(45) 5 ol Oy < 5 (lof sy + I OFa(a)) -

Thus by (4.4), (4.5) and Gronwall’s inequality, we get

ot (s + Ief OlfFaq) < (I O + lwf OlfF2@) ¢ ¥t € [0,Tn).
Since wi(0) = w3 (0) = 0, the above inequality means wi” = wi = 0. Hence, we have the desired
result. O

Proof of Theorem 4.2. (1) If 0 < uyp < Uy and 0 < ugy < Uy, then since (u1,u2) is a global solution for
(NR), 0 < u1(z,t) < T (z) and 0 < ug(z,t) < Uy(z) follow directly from Lemma 4.3. That is, we have

sup lui(£)llzee() < ITillzeo).  (1=1,2)
te[0,T)
Hence the solution (uj,us) exists globally.
In addition, let u1o(z) < l1T1(z), u20(z) < lyTUa(z) for some 0 < I3 < Iy < 1. Since the comparison
theorem holds, without loss of generality, we can assume that uig(z) = Liu1(z), u(z) = laua(z) and
I <ly < 1. We consider du; := u1(t + h) — u1(t) and dug := ug(t + h) — ua(t) for A > 0 and get the
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following equations from (NR).

O (0u1) — A (6uy) = (Gur) ug(t + k) +ui(t) (Suz) — b (duy),

O (duz) — A (dug) = a (duy),

3y (Jur) + a (6uy) = 8, (Sug) + B (Jua(t + h)["2ua(t + k) — |ua(t)|"~2us(t)) = 0,
du1(0) = u1(0+ h) — u1(0), Suz(0) = ua(0 + h) — ua(0).

(4.6)

Multipying the first and second equation of (4.6) by [0u;]* and [§us]™ respectively and using integration
by parts and repeating the same argument as for (4.4), we obtain the following inequality:

||[5U1]+||%2(n) + |H5u2]+”%2(n) < (”[5“1 (0)]+”%2(Q) + ||[5“2(0)]+||%2(n)) et
We divide both sides of this inequality by h?:

2 2
é& * 5’11,2 i < Ct
h h = “
L2 (Q) L2(Q)
Since we know that uy, ug is differentiable on a.e. ¢ by the regularity results of Theorem 4.1, by letting
h ™\, 0, we obtain

=, o[

2 2
L2(Q) ’ L2(Q) '

el 12y + Bwua] 12y < (I1Bet (O (e + NBetsa (O] [3a(qy ) .
We here note that since (I1%1, loTs) is strict upper solution for (S-NR), it holds that

Osu1(0) = Augg + uiougo — busg
= [ ATy + l1lsT Ty — bl
<y (AT + Tyl — b)) = 0,
Oyu2(0) = Augg + aurg
= I, AUy + al Uy

<l (Auz + aw1) =0,

which imply that [0;u1(0)]* = [6;u2(0)]T = 0. Hence we find that d;u; < 0 and Gus < 0, ie., ui(z,t)
and uy(z,t) are monotone decreasing in ¢ for a.e. z € Q. Thus

Jim (ua(2, 1), uz(z, 1)) =: (@ (2), 2(2))

exists and (@, U2) is a nonnegative stationary solution of (NR) satisfying (0,0) < (@1, d2) < (I1%, l2U2) <
(@W1,T2). By the ordered uniqueness of positive stationary solutions (Lemma 3.5), (41 (z), @2(x)) is nothing
but (0, 0).

(2) Let v = 2 and a < 2. By the comparison theorem, we can assume without loss of generality that
uo(z) = LT (), ugo(z) = loUa(x) for some l; > I3 > 1. Suppose that the solution (u1,us) for (NR)
exists globally, i.e.,

(4.7) sup [|ui( )|z <00, (i=1,2) VT >0.
tG[O,T]

Now we are going to constract a subsolution. For this purpose, we first note that there exists a sufficiently



small number £ > 0 such that

(4.8) {a(12 — L)y +¢eloiz <0 on Q,

e+ (1—1I)T <0 on Q.

Here we used the fact that @;(z) > 0, Ua(z) > 0 on Q, which is assured by Hopf’s type maximum
principle. Let uf(z,t) = l1e°'u; (z) and u}(z,t) = loe**Uy(x). Then using (4.8), we get

8tu’1‘ — A’U,T = u’{us + buf = Elledﬂl — llestAﬂl — lleEtﬂllzestﬁz + bllegtﬂl
= Ellestﬁl + llest (ﬂ]ﬂz — b"lf]_) - l1eatﬂ112€€tﬁ2 + bllegtﬂl
< €l165tﬂl + l16€tﬂ1ﬂ2 — l]lze”ﬁlﬁz = {E + (1 - lz)ﬂz} lleEtﬁl <0,
Opul — Auj — aut = elae® Ty — lpe®* ATy — ali e,
= &‘lz@Etﬂz + lze”aﬂl = allestﬁl

= {Elgﬁz +a(l2 - ll)ﬂl}esc <0.

Moreover 0,uj + aui = 0, O,u3 + Buj = 0 on 9 and uf(z,0) = l1T;(z), us(z,0) = laTa(z). Hence by
the comparison principle, we have

(4.9) ui(z,t) <wui(z,t), ub(z,t) < us(z,t).

Multiplication of equations in (NR) by ¢; and integration by parts yield

d
(4.10) — /ulcpld:ﬂ +(b+)\1)/u1tp1dx=/ulugwld:c,
dt \Jg Q Q

d
(4.11) - (/ uzgoldx) + /\1/ usprdz + (B — a)/ ugp1dS = a/ uyp1de,
dt \Ja Q a9 Q

where A; and ¢; are the first eigenvalue and the corresponding eigenfunction for (3.1). We here normalize
1 so that [|¢1]lL1(@) = 1. Substituting (4.11) and uy = £(dus — Auy) in (4.10) and using integration
by parts, we get

(4.12) % {% (/Q u2<p1dw) 4= )\1 /{;uztpldx—}- (ﬁ - a) /BQ UQ<p1dS}
+ (b-l— /\1) {% <‘/Q u2(p1dz‘) + A1 /Q’LLQ(p1d:L' + (,3 - a) AQ ’u,z(pldS}

_ 1d 2 2 )\1 2 g [0 / 2
=52 /ﬂ Bprds + /Q [Vualprde + 3 /Q s+ (p-3) [ uoss,

where we note that

—/(Aug)uzgoldz=/Vuz«V(uz(pl)dm—~/ (Oyug)usp1dS
Q Q o9
=/ |Vu2|2<p1dw+/u2VuQ-V<p1dac+5/ ugcpldS
Q Q o0
- 1
=/ |Vuz|2<p1dx+—/Vug-Vgo1dz+,3/ udp1dS
Q 2 Ja a0

=/ [Vug[2prda + :\l/uggold‘z——a—/ u§<p1ds+ﬁ/ udp1dS.
Q 2 Ja 2 Jaa )

99
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Here we assume 8 —a > 0. (For the case § — a < 0, we can prove the same result by the slight
modification.) From (4.9), it holds that

A A 1
——1-/ u%cpldx — (b + )\1))\1/ UQLple = —1 / u%goldz + )\1 / {—uz — (b + )\1)} uzgoldx
2 Ja o 4 Ja o l4

A 1

2> —1/ ugtpld$+)\1/ {—u; - (b+)\1)}uz<p1dm
/\l 2 1 et

2= 'Uzz(Pldﬂ?-‘r)\l —me —(b"‘)‘l) ’LL2<pld.Z',
1 Jq 0 4

where m := min_ g loT2(z) > 0. Hence there exists ¢; > 0 such that

A

(4.13) ‘s

uzgoldm - (b+ )\1)/\1 / UZ(ple Z %/ u%goldzv Vit Z tl.
Q Q

Similarly, since we see that

( )/mugcpldS— (b+A1)(B-a) /muzsoldS

=_;. (ﬂ—%)/ﬁnuéwldm/m{% (5-%) ug—(b+/\1)(ﬁ—a)}u2(p1ds‘
%(ﬁ—%)/@ﬂu%wdé‘—k/@n{%(ﬁ_
%(ﬁ——)/mu§<p1d5+/m{%(ﬁ_

there exists t, > 0 such that

)5 = 0+ A)(6 - ) fuziras

IR

) me® — (b+ A\1)(8 — a)} ugp1dS,

N R

(19 (8-2) /BQ wr1dS — (b4 A1) (8- o) /m Sl s -;- (5-2) /m wBedS Vit

Therefore by (4.13), (4.14) and (4.12), we have

d(d d d
(415) d {'d— ([) U2(p1d11])} + (b+2A1)EZ (/Quchldx) + (,B s a)(—ﬁ </an ’LL2(pldS>
1d / ) A1 / / 2
>-— usp1de usprder+ = (B — = usp1dS Vi>tg:=1tVts.
2 dt ( z‘Pl vy 2901 (ﬁ ) - 2$1 3 1 V2

Now we integrate (4.15) with respect to t over [t3, ], so we get

(4.16) ;t {/ ugprdz + (B — a)/ /an uchlde‘r}

1 ¢
21/ug(pldx-—(b+2)\1)/u2<p1dx—l/u%(tg)wldz+~ (ﬁ—g)/ / ulp dSdr
2Ja Q 2Ja 2 27 Jiz Joa
+/3tu2(t3)<.01dii,
Q

where we neglected positive terms. Moreover we can see that there exists t4 > t3 such that

1 1 1
(4.17) §/u§<p1dx—~(b+2/\1)/uz<p1dz—5/ug(t3)galdx+/ Opua(ts)prdx > Z/ ulprda
Q Q Q Q Q
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for t > t4 by the same argument as before. Therefore from (4.16) and (4.17), we have

d t il 2 1 ay [ 2
(4.18) 7 {/ ugprdz + (B — a)/ / ugcpldeT} > Z/ usprde + 3 (ﬂ - 5)/ / uzp1dSdr.
Q ts JOQ Q ts JoQ

By Schwarz’s inequality and ||¢r]|z1(q) = 1, we get

1 1 .
Z/ngcpldm > 1 (/Q uztpldz) ;

and

+ 2
%(ﬂ_%) /tS/ ujp1dSdr > (’3 2)||901”L°°1(Q)|8Q|t_t3 {/t3 /anu%mdeT}

—1 ﬁ‘% 1 { 3 t }2
P (el (R / /anuzwlde'r .

By the above inequalities and (4.18), for ¢ > t5 :=t4 V (t3 + 1), we finally get

- d t
% {/Q ugprde + (B — ) /t3 /muzgoldeT}
1 2 1 ay [t .
2‘/Quz<f’1dx +3 (,B = 5) /ts /an uyprdSdr
2 b-2
dsd
(/n uzs&ldw) 2 @1l Lo () [0QU(B — @)2 t — ta { f-a) /ta/ U21 T}
2 t
ZC’t —1t3 {(/Q uz@ldm) - ((ﬁ — a)/t /an Uz(pldeT> }
t 2
Ct_:-_t— {/QUZ‘Ple‘—F (ﬂ—a)[s AQUZwldeT} .

Set y(t) := / ugp1dz + (8 — @) / / ugp1dSdr, then this inequality is transformed into the form of

o

'y

2

RN

the following differential inequality:
d c
{a{y(t)} > ) 2,
y(ts) > 0.
By the direct calculation, it is easy to see that there exists T* > t5 such that
tgl;l y(t) = +o0.

This contradicts the assumption that (uy,us) exists globally.

Remark 4.4. Since we use a contradiction in order to prove that solutions blow up in finite time on the
proof, we obtain there exists T' > 0 such that

it [lus (Bl gy = 00 0r  Jim [lun(8)]| (@) = o0

However we can show easily that these L*°-norms of u; and us blow up in same time, i.e., it holds that
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there exists T' > 0 such that

lin [lur()lzeo(@) =00 and - lim [lus(t)] L (@) = oo
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