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Introduction

Let m € Nand 1 < N € N be constants of dimensions. Let 2 C RY be a bounded
spatial domain with a smooth boundary I' := 0. Also, let J# be a product Hilbert

space defined as J# := L%(Q;R™) x L?(T;R™).

In this paper, we study on the relationship between a convex function @, : J# — [0, 00]
of singular type, and a class of convex functions ®’ : [0, 00] — S#, for k > 0, § > 0, of

regular types, defined as follows.

[u,ur] € # C H# — ®.(u,ur)

2
::/[Du{+/|ulr—up|RmdF+-€—~/||Vpup||2dF,
Q T 2 r

with the effective domain
# = (BV(Q;R™) N L2(Q;R™)) x HY(T; R™),

and for every xk > 0 and § > 0,

[u,ur] € ¥ C H# + @ (u,ur)

12 ) 2 ,
= [ (6020 + Svul?) ds+ 5 [ [0l ar
Q 2 2 Jr
with the (uniform) effective domain

u € HY(;R™), ur € HY(T;R™)
and u, = ur on I'

V::{ [u, ur] € 2

In the context, [, |[Du| denotes the total variation of a function u € BV(;R™). |- [rm
denotes the m-dimensional Euclidean norm, and || - || denotes the Frobenius norm for
(m x N)-matrices. The notations “.”, “d[” and “Vr” mean “the trace of a Sobolev

|I‘?

function on Q”, “the area element on I” and “the surface gradient on I'”, respectively.
Besides, {fs}s>0 is a class of functions, consisting of the Frobenius norm fy := || - || and

its approximating sequence {fs}s>0, as § — 0.
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The convex function @, is a governing energy for the following system:

D
Bpu — div (TEZ_) 50 in (0,00) x ©, (3)
dur — 2 Arur + (%ﬁ)hm 50 and u). = ur on (0,00) X T, (4)

which is formulated as a kind of transmission system, consisting of the vectorial singular
diffusion equation (3), and the vectorial dynamic boundary condition (4). Meanwhile, for
every £ > 0 and § > 0, the convex function ®’ corresponds to a governing energy of the
following regularized system for (3)—(4):

Ay — div (8f5(Vu) + £*Vu) 3 0 in (0,00) x £, (5)
Our — 2 Arur + (8f5(Vu) + £2Vu).nr 3 0 and uj, = ur on (0,00) x T, (6)

consisting of the regularized diffusion equation (5), and the corresponding dynamic bound-
ary condition (6). Here, for any 6 > 0, 0fs denotes the subsidderential of f;.

When the unknowns u and ur are scalar-valued, we can now find a relevant previous
work [10], which dealt with the singular system (3)—(4). The main results of [10] were
concerned with: '

(a) the Mosco-convergence of the governing convex energies, under the scalar-valued
settings of unknowns;

(b) the well-posedness and comparison principle for “weak-solutions”;

and in this context, the weak solutions were defined on the basis of Cauchy problems of
evolution equations, governed by the subdifferentials of corresponding convex energies.

As a natural consequence, it can be expected to obtain some extended results similar
to [10], under the vectorial setting of unknowns. In fact, for the regularized system (5)—(6),
the validity of the expectation was reported in [9], together with the precise representation
results for the vectorial weak solutions.

However, if we consider the singular system (3)—(4), then we should note the gap
between the mathematical treatments of the transmission condition u), = ur as in the
regular dynamic boundary condition (6), and the singular one (4). More precisely, the
transmission condition works as a functional constraint in the definition (2) of regular
energies ®, but it does not work in the definition (1) of singular energy ®,.. This gap
brings us a question to ask the rigorous mathematical expression of the transmission
condition, which is replaced by the weak solutions to the singular system (3)—(4).

The previous result (a) of Mosco-convergence will provide an important clue to address
this question, and the generalization approach in vectorial frameworks will lead to the
enhancement of mathematical theory that enables us to handle various singular situations,
as in Bingham type flow, Ginzburg-Landau type equations, and so on.

In view of these, we set the goal of this paper to prove the following Main Theorem,
that corresponds to the generalization for the previous result (a).

Main Theorem 1. To conclude the Mosco-convergence ®,, := @i’; — &, on J#, for any
limiting sequence:
0<d,—>0and 0< Kk, —0, asn — oo,

under the vectorial setting of the unknowns.
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In this paper, the discussion for Main Theorem 1 is developed in accordance with the
following contents. In Section 1, we prepare preliminaries of this study, containing the
notations for the treatments of vectorial functions. On this basis of Section 1, we state
Main Theorem 1 in Section 2 and the Key-Lemma A and B to fill the above-mentioned
the gaps. The results are proved through the following Section 3. Finally, Section 4 is
given the proof of Main Theorem 1, based on the preceding Sections.

1 Preliminaries

In this section, we outline some basic notations, as preliminaries of our study.

Notation 1 (Notations in real analysis). For arbitrary «, 8 € [—00, 00|, we define:
aV B :=max{a, B} and a A  := min{a, f};

and in particular, we write [a]" := &V 0 and [8]” := —(0 A B).

Let d € N be any fixed dimension. Then, we simply denote by a - b and |a|gs the
standard scalar product of a,b € R? and the d-dimensional Euclidean norm of a € R,
respectively. Also, we denote by

B? := {a € R?||a|ge < 1} and §%! := {a € R?||a|gs = 1}

the d-dimensional unit open ball centered at the origin, and its boundary, respectively.
In particular, when d > 1, we set:

[a]* == [[ad]*, ..., [aa)*] and [b]” := [[b1]™,. .., [bwm] ], for all a,b € R%.

Besides, we often describe a d-dimensional vector a = [ay, ..., a4 € R? as a = [d@, aq] by
putting @ = [ay,...,as-1] € R¥L. As well as, we describe the gradient V = [0y, ...04) as
V = [V, 8,] by putting V = [y, ..., 8;_1], and we describe V, &}, Oy,, and so on, when we
need to specify the variables of differentials. For every two vectors a, b € R?, we denote
by a ® b the tensor product of a and b, i.e.:

aiby -+ aiby
a®b:=a'b= oo, € R¥x4,
agbi -+ agby
Additionally, let m € N be another dimension (besides d) in this paper. For arbitrary
(m x d)-matrices A = [a;;], B = [b;;] € R™*? with components a;;,b;; € R (i = 1,...m,

j=1,...,d), we denote by A : B and ||A] the scalar product of A and B and the
Frobenius norm of A, respectively, i.e.:

A:B:=) > ayb; €Rand ||A]l:=VA:A€R, forall A, BeR™

j=1 i=1



For any d € N, the d-dimensional Lebesgue measure is denoted by £¢, and unless
otherwise specified, the measure theoretical phrases, such as “a.e.”, “dt”, “dz”, and so
on, are with respect to the Lebesgue measure in each corresponding dimension. Also, in
the observations on a Cl-surface S, the phrase “a.e.” is with respect to the Hausdorff
measure in each corresponding Hausdorff dimension, and the area element on S is denoted

by dS.

Notation 2 (Notations of functional analysis). For an abstract Banach space X, we
denote by |- |x the norm of X, and denote by (-, - )x the duality pairing between X and
the dual space X* of X. In particular, when X is a Hilbert space, we denote by (-, - )x
the inner product in X.

Notation 3,(Notations in convex analysis). Let X be an abstract real Hilbert space. For
any proper lower semi-continuous (l.s.c. from now on) and convex function ¥ defined on
X, we denote by D(¥) its effective domain, and denote by OV its subdifferential. The
subdifferential OV is a set-valued map corresponding to a weak differential of ¥, and it
has a maximal monotone graph in the product space X x X. More precisely, for each
2 € X, the value 0U(z) is defined as a set of all elements z; € X which satisfy the
following variational inequality:

(25,2 — 20)x < U(z) — ¥(z), for any z € D(¥).

The set D(0V) := {z € X |9¥(z) # 0} is called the domain of OV, and it is often said
“[20, 28] € OF in X x X” to mean “zp € D(0¥) and 2§ € 0¥(%) in X” by identifying the
operator 0¥ with its graph in X x X.

On this basis, we recall the notion of “Mosco-convergence” for sequences of convex
functions.

Definition 1.1 (Mosco-convergence: cf. [8]). Let X be an abstract Hilbert space. Let
U : X — (—00,00] be a proper ls.c. and convex function, and let {¥,}52; be a sequence
of proper l.s.c. and convex functions ¥, : X — (—o00,00], n € N. Then, it is said that
¥, — U on X, in the sense of Mosco, as n — oo, iff. the following two conditions are
fulfilled.

(M1) Lower-bound: lim__, V,(%,) > ¥(3), if 2 € X, {%.}32, C X, and 2, = Z

n—oo0 — M =
weakly in X as n — co.

(M2) Optimality: for any 2 € D(¥), there exists a sequence {2,}52; C X such that
Z, = 2in X and ¥, (2,) = ¥(2), as n — oo.

Next, we prepare the notations associated with the spatial domain {2 and those based
on the settings of this domain.

Notation 4 (Notations for the spatial domain). Throughout this paper, let 1 < N € N,
let  C RY be a bounded domain with a C*°-boundary I' := dQ and the unit outer normal
nr € C°(T;RY). Besides, we suppose that 2 and T' fulfill the following two conditions.
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(£20) There exists a small constant rr > 0, and the mapping
dp:xeﬁaiglﬁlx—y| € [0,00)
forms a smooth function on the neighborhoods of I:
IL(r):={ze€Q|dr(z) <r }, for every r € (0,rr).

(21) There exists a small constant r, € (0,rr], and for any zr € I' and arbitrary p,r €
(0,74, the neighborhood:

7€ (-rr),y € —zp, and }

Gep(p,r) = +ar+Tn
zr(p ) { Y T T |y _ (y . nr(wr))’nr(xr‘ﬂ < P
is transformed to a cylinder:

Mo(p,r) ={ £ =1[6,én] €RY | £ € pBY L and &y € (—n,7) |,

by using a uniform C*-diffeomorphism =, : G4 (74, 74) — o(7s, 7). Additionally,
for any xzr € T', there exists a function 7, € C*(r,B¥N-1), a congruence transform
Ay : RY — RY and a C®-diffeomorphism H, . : Ay Gop (74, 7.) — Ho(rs,7s) such
that:

(w0) E;. = Hyp 0 Ay as a mapping from Gup (74, 7.) onto Ho(rs, 74);
(wl) 7.(0) =0, and V7,.(0) = 0 in RN
(w2) for every p,r € (0,7.],

NaxGan(0,7) = Yar(p7) = { = [5,3w] €RY | [0 — e @)] € To,7) },
and in particular,
Ao (TN Gar(p,7)) ={ ¥y =[5, %x(@)] €RY | § € pB¥ };
(w3) for every p,r € (0,74,
Hop 2y = [§,yn] € Yar(p,7) = € = Haopy == [, yn — Y2r (9)] € To(p, 7).
Remark 1.1. From (Q0), we may further suppose the following condition.

(22) For any ¢ > 0, there exists a constant p? € (0,7,] such that:

10: S g, |fYCEFIC’1(pW) S o and { E;rl[ga 79:1'*(5) + 1"*] ] ge PIBN_l } N ].-‘(7’*/2) = w?

for any zr € I" and any p € (0, p7].

Notation 5 (Notations in BV-theory: cf. [1,4-6]). Let 1 < N € N, m € N be fixed
constants of dimensions, and let 2 C RY be a bounded domain with a smooth boundary
I := 00 as in Notation 4. Then, we denote by M(Q)™ (resp. M,(©2)™) the space of all
finite R™-valued Radon measures (resp. the space of all R™-valued Radon measures) on (2.



In general, the space M(Q)™ (resp. Mioc(2)™) is known as the dual of the Banach space
Co(Q; R™) (resp. dual of the locally convex space C.(Q2; R™)).

A function z € L'(Q;R™) (resp. z € LL (©;R™)) is called a function of bounded
variation, or a BV-function (resp. a function of locally bounded variation, or a BVq.-
function) on (, iff. its distributional differential Dz is a finite R™*V-valued Radon mea-
sure on © (resp. a R™*N-valued Radon measure on 2), namely Du € M(Q)™*" (resp.
Du e MIOC(Q)mXN).

We denote by BV (€2;R™) (resp. BVioo(€%;R™)) the space of all BV-functions (resp.
all BV)e.-functions) on 2. For any z € BV(Q;R™), the Radon measure Dz is called the
variation measure of z, and its total variation |Dz| is called the total variation measure of
z. Additionally, the value |Dz|(£2), for any z € BV (§;R™), can be calculated as follows:

|Dz|(Q) = sup{ /z-div@dac ® € CHQ;R™N) and ||®]| < 1 on }
Q

The space BV (Q; R™) is a Banach space, endowed with the following norm:
|2|Bvarmy = |2|L1@mm) + |D2|(€2), for any z € BV(Q;R™).

Also, BV (Q; R™) is a metric space, endowed with the following distance:
[z,w] € BV(;R™)? = |2 — w|pigrm) + l/ |Dz| — / |Dw|‘ ;
Q Q

The topology provided by this distance is called the strict topology of BV (Q; R™) and the
convergence of sequence in the strict topology is often phrased as “strictly in BV (Q; R™)”.

In the meantime, there exists a (unique) bounded linear operator 7r : BV (Q; R™) —
LY(T;R™), called trace such that Tr¢ = ¢|r on T for any ¢ € C'(Q;R™). Hence, in
this paper, we shortly denote the value of trace Trz € L*(TI';R™) by z).. Additionally,
if 1 <7 < oo, then the space C°(Q;R™) is dense in BV (;R™) N L™(Q;R™) for the
intermediate convergence (cf. [4, Definition 10.1.3. and Theorem 10.1.2]), i.e. for any
z € BV(Q;R™) N L"(Q; R™), there exists a sequence {z,}2; C C*(Q) such that z, — z
in L"(Q;R™) and [, [|Vz,||dz — |Dz|(Q) as n — oo.

Remark 1.2. (cf. [1, Theorem 3.88]) Let Tr : BV (Q; R™) — LY(I'; R™) be the trace for
the vectorial functions. Then, it holds that:

/z|F -(¥nr)dl’ = / z-div Udz + / VU : Dz, for any ¥ € CL(R™; R™N),
r Q Q

Moreover, the trace 7r is continuous with respect to the strict topology of BV (Q; R™).
Namely, the convergence of continuous dependence holds:

Trzn — Trz asn — oo, for z € BV(Q;R™) and {z,}52, € BV (;R™),

in the topology of L!'(T'; R™), if z, — z strictly in BV (€;R™). However, in contrast with
the traces on Sobolev spaces, it must be noted that the convergence is not guaranteed, if
zn — z weakly-x in BV (Q; R™), and even if we adopt any weak topology for the above
convergence (including the distributional one).
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Notation 6 (Extensions of functions: cf. [1,4]). Let u be a positive measure on R, and
let B C RY be a pu-measurable Borel set. For any p-measurable function v : B — R™, we
denote by [u]*™ an extension of u over RY. More precisely, [u]*™ : R¥ — R™ is a Lebesgue
measurable function such that [u]®™ has an expression as a u-measurable function on B,
and [u]®™ = u, p-a.e. in B. In general, the extension of [u]* : R¥ — R™ is not unique,
for each v : B — R™.

Remark 1.3. Let 1 < N € N, and let Q C RY be a bounded open set with a C"'-boundary
I. Then, for the extensions of functions in BV (Q; R™) and Hz(I'; R™), we can check the
following facts.

(Fact 1) (cf. [1, Proposition 3.21]) There exists a bounded linear operator & : BV (; R™)
BV (RY;R™), such that:

- & maps any function u € BV (Q;R™) to an extension [u]*™ € BV (RY;R™);

— for any 1 < ¢ < oo, Eq(WH(Q;R™)) ¢ WH(RN;R™), and the restriction
Ealwra@rmy : WH(Q;R™) — WH(RY; R™) forms a bounded and linear op-
erator with respect to the (strong-) topologies of the restricted Sobolev spaces.

(Fact 2) (cf. [4, Theorem 5.4.1 and Proposition 5.6.3]) There exists a bounded linear
operator & : H2(I';R™) — H'(RN; R™), which maps any function ¢ € Hz(I;R™)
to an extension [g]*™* € H'(RY;R™).

Based on this, we state the notations of surface-differentials.

Notation 7 (Notations of surface-differentials). Under the assumption (€20) in Notation
4, we can put:

2
L tan

) :={ @eLl*RY)| @-nr=0,ae onl },

and define the Laplacian Ar on the surface I, i.e. the so-called Laplace-Beltrami operator,
as the composition Ar := divp oV : C°(T") — C(T') of the surface gradient:

Vre = V([p]™ — (Vdr ® Vdr)V]g]™,
and the surface-divergence:
divrw = div[w]™ — V([w]*™ - Vdr) - Vdr.

As is well-known (cf. [11]), the values Vrp and divr w are determined independently with
respect to the choices of the extensions ™ € C*®(R"Y) and w*™ € C®°(R;RY), and also,
the operator —Ar can be extended to a duality map between H!(T') and H~*(T'), via the
following variational identity:

<—Ap(p, ¢>H1(p> = (thp, VI"(/))LZ(F;RN), for all [Lp, 1/)] c H! (F)2.

Finally, we here prepare the notations concerned with the tensor analysis.



Notation 8 (Notations in tensor analysis). In this paper, from now on, we denote by Vz
the (distributional) gradient of any vectorial function z = [z;] € L} (Q; R™), defined as:

loc

8121 e C'?Nzl
Vz:="%Vz,...,Vz,] = Lo : e D (Q)™N,
O1zm ++ ONnZm

and, we denote by div Z the (distributional) divergence of any matrix-valued function
Z = [zj] € LL.(Q;R™Y), defined as:

N

Zajzij:I € DI(Q)m

J=1

divZ :=

Similarly, for any vectorial function z = [z;] € H(I'; R™), we define the surface-gradient
Vrz of z by Vrz := YVrz1,...,Vrz,] € LE,(T)™, and we define Arz := [Arz] €
H-Y(T;R™).

Finally, we prescribe other specific notations.

Notation 9. Let Rq > 0 be a sufficiently large constfmt, such that Bg := RoBY D
Q. Besides, for any v € BV(Q;R™) and any g € H2(I;R™), we denote by [u]s* €
BVioo(RY; R™) N BV (Bo; R™) N H'(Bg \ Q; R™) an extension of u, provided as:

u(z), if z € Q,

= RN — [U];x(x) = { [g]ex(x)7 if x € Bg \ﬁ’

with the use of an extension [g]** € H'(RY;R™) of g.

2 Main Theorem

We begin with specifying the assumptions in our study.

(A0) £ > 0 is a fixed constant, x > 0 and J > 0 are given constants. Also, 1 < N € N,
m € N are fixed constants of dimensions. ) is a bounded spatial domain in R¥
with a smooth boundary I' := 01, arid the unit outer normal to T, that fulfills the
conditions (20)-(€21) in Notation 4.

(A1) {fs}ss0 C Wh°(R™N) is a class of convex functions fulfilling the following items:

loc

(@0) fo := || - || on R™¥ andfor any § > 0, 0 < f5; € C*(R™Y) is a convex
function such that f5(O) = 0;

(al) there exist constants Cy > 0, for k = 0, 1,2, such that

{ fs(W) = [W|| = 6Co,

for any § > 0 and W € R™*¥;
IV fs(W)|l < CL|[W] + Ca,

(a2) for any W € R™N | f5(W) — ||[W]| as 6 — 0.
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Let % := L*(£;R™) x L?(I'; R™) be the product Hilbert space defined in Introduction.
Also, let # and ¥ be the subspace of 5, that are respectively given in (1) and (2) as
the effective domain of the singular convex function ®, and the regular ones ®?, for x > 0
and 0 > 0.

Now, the Main Theorem of this paper is stated as follows.

Main Theorem 1 (Mosco-convergence for convex energies). Let @, : 5 — [0,00] be
the functional, given in (1), and for every & > 0 and § > 0, let ® : S — [0,00] be
the convex function, given in (2). Let {kn,}32; C (0,00), {0,}52; C [0,00) be arbitrary
sequences, such that:

kn — 0 and 6, — 0, asn — oo. (2.1)

Then, it holds that:
d, = @iﬁl — @, on JZ, in the sense of Mosco, as n — oo.

The proof of the Main Theorem 1 will be based on the following Key-Lemmas and
Remarks.

Key-Lemma A (Key-property of ®,). The functional ®, : 5 — [0,00), given in
(1), is proper ls.c. and convex function on 2.

Remark 2.1. Key-properties of ®, for k > 0 and & > 0, were verified in [9]. So, we can
now say that the functional ®%, for every x > 0 and § > 0, is proper lLs.c. and convex
function on JZ.

Key-Lemma B (Approximating sequences for vectorial BV-functions). For any
W = [, r], there exists a sequence {,}32, C H*(T'; R™), such that:

W), = wp in Hz(T;R™), for any £ € N,

and
Wy — W in L2(Q;R™),

. . . . as £ — oo.
/[|ng|| dx—)/|Dw|+/|w|P—wp|Rm dr,
Q Q r

3 Proofs of Key-Lemmas

In this section, we show the Key-Lemmas in the preceding section.

Lemma Al. For anyv € BV(Q;R™) and any g € H2(T; R™), let [v]e* be the extension
of v, defined in Notation 9. Then, [v]5* belongs to BV (Bq;R™) and it holds that:

D]y = Dv + V[g*LY | g\ + (0 — 9) ® (—nr)HY " in M(Bo)™ ", (3.1)
and therefore,

|D]S] = |Dvl + IV[g]™ |l ga\my HVie — glrnHY " [0 in M(Ba). (3:2)



Proof. The proof of Lemma Al will be directly obtained by applying the general theories
(cf. [1, Theorem 3.84 and Corollary 3.89], [4, Example 10.2.1] and [5, Theorem 5.8]).
However, we report the proof for the reader’s convenience. '

Let us fix any Borel set B C Bg, and let us take any function ¥ € C(Bg; R™N),
satisfying | ¥|| < 1 on Bg. From Remarks 1.2-1.3, it can be seen that:

/[v]gx-div‘lldx:/ y.divxpdeF/ [ - div ¥ dz
B BNQ B\Q

=—/ \Il:Dv—/ \II:V[g]exd:c-l-/ (v — g) - (Inp)dl’
BNQ B\Q Bnr

< / \Do| + /_nwg]e*ndw / (o — glgem T
BNQ B\Q BAT'

The above calculation implies that:
|D]|(B) < / |Du| + / Vg da + / o, — glamdl,  (33)
BNQ B\Q BAT

and
[v];" € BV (Bg; R™).

Next, we invoke [1, Theorem 3.84] to observe that:

/ \f/:D[v]Z"z /\fl:Dv+ _V[g]e":\ildx
Bo Q Bo\2

+/F(U|F —9)® (—nr) : UdI, for any ¥ € C.(Bg; R™). Y
By this identity, we immediately have:
D[] o= Dv in M(Q)™,
{ Dl pg\a = VIgI™LY in M(Bqa \ Q). )
Subsequently, from (3.3)—(3.4), it can be seen that:
Dl lr= (vi — 9) ® (=np)HN ™! in M(D)™N. (3.6)
(3.5)-(3.6) imply (3.1)—(3.2). O

Proof of Key-Lemma A. From (1), the definition of ®,, we immediately see that ®, is
proper and convex. So, we here verify only the lower semi-continuity of ®..
Let us fix any g € H2(T'; R™). Then, by the preceding lemma, the functional:

ve L(QR™ D)
[ 1Dl + [ o1, = gl 0 = DI (Ba) ~ DIl (Ba \ D),
Q r
= if v € BV(Q;R™),

00, otherwise,

3.7)
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forms a proper ls.c. and convex function on L!(2; R™). Moreover, invoking Remark 1.2,
it can be seen that:
| D[val*|(Q) — [D]5¥|(2), as n — oo, (3.8)
whenever {v,}22, C BV (;R™) N L%(Q;R™), v € BV(;R™) N L2(;R™) and v, — v
in L?(©;R™) and strictly in BV (Q;R™), as n — oco.
On this basis, we fix W = [w, wr] and take any sequence {W,, = [wn, wr,]}32, C #/,
such that {W,}5° ; converges to W in the topology of 2. Then, on account of (3.7)—(3.8),
the lower semi-continuity of ®, is verified as follows.

lim ®,(W,) > lim (/ |Dwn|—|—/|wn|,p Wr R dF) +— lim Hvrwrnﬂ dr

n—ro0 n—o0 n—oo

> lim ID[wn]ZfFI(Q_) — lim /!’U}p’n—’wPIRm dI‘+—/||prp||2dI‘
n—oo Jp 2 Jr

n—oo

> (Dl @ + 5 [ IV dr = 2.(00).

Thus, we conclude the Key-Lemma A. |

Next, we show the Key-Lemma B. This Key-Lemma can be obtained by means of a
similar demonstration technique to that as in [10, Section 4]. Accordingly, we need to
prepare the following this lemmas to prove Key-Lemma B.

Lemma B1. Let RY be the upper half-space of R, i.e
RY ={ [£,¢én] eRY | E€R ! andéy >0 }.

Then, for any w € H*(RY1; R™)N BV (RN-1;R™), there exists a sequence {[@]™}r>0 C
HY(RY;R™)NBV(RY;R™), and for any 7 > 0, there ezists a small constant r7, € (0,7.],
such that the following items hold.

re, <7 and [w [, &v) = 0, for anyr € (0,77]

i " T (3.9)

and a.e. [§,€én] € RY, satisfying En > 1;
[@]7 s = @ in Hz(RN-L,R™), for any r € (0,77]; (3.10)
|[[W]]:X|L2(R_I*\_’;Rm) S T, and [‘Dﬂw]}f‘xl(Ri’) S |w1L1(RN_1§Rm) + Ts (311)

for any r € (0,77].

" Proof. For any r > 0, and any function w € H'(RV~1;R™) N BV (RY};R™), we can

define the sequence in the following form:

[w]() = [wI( én) = [1 = rén] @ (é),

i (3.12)
for a.e. £ € R¥"! ae. &y > 0and any 7 > 0,

and then, with [10] in mind, we can immediately check that {[@]®*},~o C H*(RY;R™)N
BV (RY;R™). So, for any 7 > 0, let us take a small constant r7, € (0, 7], such that:

€ (0,7, ‘/%AN_l |w|gm d€ < 7 and %'/RN |Vrw]| d < . (3.13)



By means of (3.12)-(3.13), we can verify the condition (3.9). Also, let ® := [0,¢] €
C'(RY;R™N) be an arbitrary matrix-valued function with a zero matrix O € R™ -1
and any m-dimensional vector ¢ € C*(RY~1;R™), the condition (3.10) can be calculated

as follows.

[ @l D@ == [ [0 @ ()@
= [ 1=l -div o de - [ VIl 00)de

—— [ =17 onp) @) e
- / [VI=lz) : 0.+ (onl=D) €) - 2(0)) de

- [ @)@ - 0@ = [ @ o@dE

N-1
b R

Additionally, with (3.12)—(3.13) in mind, we can compute that:

11 s ey = [ |11 = 77 EN] D (E) [ 0
®RYE™) ™ fon

_ ( / o _r-1§N)2d§N> ( RG] dé)

= f/ |w(§~)|]]2§md§~ < 72, for any r € (0,77),
3 Jow

and

=A@ = [ VIl @) at
< [ Il de+ [ |Ontl)©) e

= [ =r e @l + [ =rxon (€ @)lende

L T -
L[ el [ @l

= |w|p@N-1,8m) + 7, for any r € (0,77].

Thus, we obtain Lemma B. O

Lemma B2. For any © € H'(I;R™) and any £ € N, there exists a function 0, €
HY(Q;R™), satisfying 0y(x) =0, for a.e. z € Q\T'(279),

IA}ZIF’= 1/)1" m H%(F,Rm), and |'ﬁg|L2(Q;Rm) S 2—8’ IDﬁgl(Q) S l'ﬁl"|L1(I‘;Rm) + 2~Z'

155



156

Proof. Let 0 > 0 be arbitrary, and let p? be the constant as in (©2). Then, just as
in [10, Lemma 2], we can apply (£20)—(21) to take:

o mg €N, {w%}k}znj’l CT,and G} := Gug  (p7,7:), for all k € {1,...,mg}, as in (Q1),
such that

L(r./2) C GS = UG (3.14)

e the partition of unity {nk} C C(RN) for the covering G7, such that
mg o
0<ny € CX(GY) fork=1,...,m3, and Zn,‘c’ =1 on I'(r,/2). (3.15)
k=1
Next, for any 7 > 0, taking into account (21) and Lemma B1, we put
o= min{rfvglk =1,...,m%},

and define a function @y : RV~ — R™, as follows:

: (ngor) ((E7)~ 15) )
wi(£) := iféep’B¥tand k=1,...,mg, forae &cRVN" (3.16)

0, otherwise,

where Ef 1= Ezg, with Af := Agg and HY := Jforall k € {1,...,m3}.
Based on these, we define a class of functlons {vT |o,7 > 0}, as follows:

Z[[wz i)f( Efz),
if z € Gg, for some k € {1,...,m3}, (3.17)

0, otherwise,
for a.e. z € Q and all 0,7 > 0.

Then, as direct consequences of (3.14)—(3.17) and Lemma B1, it is inferred that:

o7 € HY(;R™), 97 = op in H3(T;R™),

(3.18)
and 97 = 0 a.e. on Q\ I'(7), for all o, 7 > 0.

Also, in the light of (3.11), (22) and Lemma B1, we compute that:

9 ixam) = [/\Zuwz (o) dm]% <3 | [ =ager «]’
k=1 +

<mgr, for all 0,7 > 0, (3.19)
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and
J vz = [ H;‘n;jvx[[wzﬂ;z(amﬂ o
< :LZ; /G vl e s
= i /YWZQ) Vo [0 (HEw) | dy
= ?j ( / (V=IO de + / [V O Cer IR O df)
S i ( /MHV&[[WZH?:‘@!I d€ + |V %ar | g pgmmery / MCHCARG d5>

< (14 Vel e, > / Ivelstiz o] ¢

o
me

<0+ ([, 1ot @lndé )
=1 RN-1
mg
<(1+0)) (/ g |or g dr+7>
k=1 Ggnr
< (14 0)|op|proggmy + mQT(1 +0), for all 0,7 > 0. (3.20)

Now, for any £ € N, let us take two constants o, 7¢ € (0, 1], such that:

(14 00)|or| i ermy < 00| @mm) + 2757,
for £ € N. (3.21)
7o+ m&fre(l + o) < 2741
Then, on account of (3.18)-(3.21), we will conclude that the function 9, := 97 €
H(Q;R™), for each £ € N, will fulfill the required condition. O

Based on these, the Key-Lemma B is demonstrated as follows.

Proof of Key-Lemma B. The proof of Key-Lemma B is a modified version of [7, Theorem
6] and [10, key-Lemma A]. For any @ € BV(Q;R™) N L*(; R™), we can find a sequence
{@e}2, € C=(;R™), such that:

|@e — W|r2(@rmy < 277! and 1/ IV || dz —/ ID1D|} <27%1 for any £ € N,
Q Q

and from Remark 1.2, we can say that:

Pejp — Wy in LHT;R™), as £ — oo.
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Next, we apply Lemma B2 as the case when 9r := 1 — @y in H 2 (I; R™). Then, for
any £ € N, we can take a function 1, € H(Q;R™), such that:
’(Z)er = 9r =dr — Sallr in H% (F;Rm)y

el 2omrmy < 2757 and [ DYhy|(Q) < [dr — Ggie|pr ormy + 2767 (3.22)

Now, let us define:
W == Gg + b in L2(Q;R™), for any £ € N. (3.23)
Then, one can easily check that:
Wy = ey + Yoy = r in H3(T;R™), for any £ € N, (3.24)
and
w}[ - ’lZ)IL2(Q;]Rm) < |¢)[ - 1f)|L2(Q;Rm) + |1Z}[|L2(Q;Rm) < 2_2, for any ¢ € N. (3.25)
Also, with (3.22) in mind, we can complete that:
/ ”V’LZ)@” dIE + / |'lfle|r. = ’lI}]j*]Rm dP
Q r
< [196ddz+ [ 1Vl do
Q Q
< / IVéell d + / libr — Peiclm T + 27, for any £ € N. (3.26)
Q r

Furthermore, on account of (3.23)—(3.26) and Key-Lemma A, it is deduced that:

/|Dw|+/[w|r—wp|mmdr
Q r
< @_ (/ ”V’Lf)z” d.’L'+/|1f)g|F “HA)I‘IJRW dP)
{—o0 Q r
< lim / [V@el| da + lim (/ [Wr — Peir [rm dP+2_e>
{00 Jo £—00 r

Q r

Thus, we conclude the Key-Lemma B. ]

4 Proof of Main Theorem

This section is devoted to the proof of the Main Theorem 1.

Proof of Main Theorem 1. First, we verify the condition of lower-bound. So, we assume
that under (2.1): . §
U, = U weakly in 52, as n — o0, (4.1)



for any U := [, ur] € 5#, and any sequence {U, := [iin, @rn] )32, C J#. Then, under the
assumption (4.1), we may suppose the presence of a subsequence {k} C {n} C N and a
constant ® € [0, 00), such that:

® := lim ®,(U,) = Jim & (U1) < o0, (4.2)
— 00

n—0o0

because the other cases are trivial. Additionally, under (4.2), we can say that:

{{f]k}g‘;l C ¥, therefore i, = tipy on I, (4.3)
{U}32, is bounded in # := (BV(Q;R™) N LH(QR™)) x H(T;R™), |
and . 7 in L1(Q: R™ d kly in L2(Q: R™
1vj,k - 'U/Vln ( ) ] ) a’Ill wea. y mn ( : )7 as k — 007 (44)
Ur — Ur weakly in HY(I';R™),

by taking more subsequence if necessary.
On account of (4.2)—(4.4), the assumption (al) and Key-Lemma A, we can compute
that:

® = lim ,(U,) = Jlim (D)

n—o0

> lim [ f5, (Vi) dz + 5 hm ]]V(mkuk)||2 dz + — hm HVpuk]] dr

koo JQ

Z l_l_m (||VukH = 6kCO) dz + hm ]’U,k[r — qulRm dl' + —2— hm IIVrukll dr’

k—o00.J k—o0

k—o0

Thus, we verify the condition of lower-bound. X
Next, we verify the condition of optimality. Let us fix any function U = [G,0r] € #'.
Then, Key-Lemma B enables us to take a sequence {V; = [0y, Or ]} C ¥ such that:

Or,e = Ug)p = Ur in Hz(T;R™), for any £ € N, (4.5)
and

[Dg — '&lLQ(Q;Rm) < 2—2,

for any £ € N.  (4.6)
I/ V|| dw — (/ | D +/|ﬂ[P — Gp|gm dF)‘ <272,
Q Q r

In the meantime, by the assumption (A1), we have
0 < f5(Viy) < Vf5(Vy) : Vg < C1||Vog||* + Ca|| V||, for any £ € N. (4.7)

Then, with (4.6)-(4.7) and the assumption (a2) in mind, we can apply Lebesgue’s domi-
nated convergence Theorem, and can configure a large number n, € N such that:

(sup —) (/ ||va[|2d:v) <272
n>ng

for any £ € N. (4.8)
/fa,. (Vi) dfb‘—/ V]| do| <

2—Z 2
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Now, we define a sequence {U, = [d,, ir,.]}52, C ¥, by putting:

[’ZA}Z, ’ﬁrye] in 4//,

. if np < m < nyyq, for some £ € N,
Uy, = [lin, tr ) == forn=1,2,3,.... (4.9
[’l’}l, ’lA)p’l] in A//,

iflSTl<’l’L1,

Then, in the light of (4.5)—(4.6), (4.8)-(4.9), it is inferred that:

U — Ulse = |0~ | 2arm) + |0, — Gr|r2gmy < 275, (4.10)
for any n > my and some £ € N, '

and

Iq)n([jn) - (I)*(ZA])I

2
[ / (fan(van)ﬂ-"-uvanuz) dx ( / \Da) + / i — il dr)]
Q 2 Q T
2

3 @ ~
= | [9rinal? = 19rirl?) ]
r

l/ﬂfa,,(van) dx—/QHVﬁnI] da +%3A||Vﬁni]2dx

+'/ [V dz — (/ |Da|+/|a,r—ar|mm dF)I
Q Q T

< 27¢, for any ny < n < ngyq, and any £ € N. (4.11)

IA

+

IN

The above calculations (4.9)—(4.11) imply that:
i, — 4 in L2(Q;R™), and &,(0,,) = ®.(U) as n — oo,

required in the condition of optimality.
Thus, we conclude the Main Theorem 1. O
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