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On the effects of spatial expansion and contraction
on several semilinear partial differential equations

Makoto NAKAMURA (4 8% (LB RZE - BE)) *

Abstract

The derivation of several second order partial differential equations is con-
sidered based on the scalar-field equation and its non-relativistic limit in the
uniform and isotropic space. The field equation is derived as the Euler-Lagrange
equation for a Lagrangian given in the spacetime which is a solution of the Ein-
stein equation for non-Hermitian line elements. Some results on the Cauchy
problem of the limit equation are introduced. The derivation of some equa-
tions for vectors and their energy estimates are also introduced. A dissipative
property of the spatial expansion is remarked.

1 Introduction

In this paper, we first consider the derivation of several semilinear second order par-
tial differential equations based on the field equation and its nonrelativistic limit in
the spacetime generated by the Einstein equation for complex-valued line elements.
Second, we consider the effect of the spatial variation (expansion or contraction) on
the Cauchy problem of the limit equation.

For m, ¢, A, i(#£0) € R and 1 < p < oo, let us consider the semilinear Klein-
Gordon equation

2 2 m*c* 2 1
829 — PDsd+ g — AN =0, (L1)
the semilinear Schrodinger equation
2
ii%atu + Agu + NuPPlu =0, (1.2)
the semilinear elliptic equation
2 2 m*c! 2 p—1
Ofd+ c“Npop + 72 ¢ —c*ANolP" 9 =0, (1.3)
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and the semilinear parabolic equation

g—g—latu — Agu — iMu[P"lu =0, (1.4)

where we have put Ay = 30, 0?/(8x7)2. For the elliptic equation (1.3), the
variable ct can be naturally regarded as one of spatial variables. The terms A|¢[P~1¢
and A|u|P~u are fundamental semilinear terms in the nonlinear theory to describe
the self-interaction of the solution. For the last parabolic equation (1.4), we note
that the dimension of A/m in the SI units is M2S~! (M: meter, S: second), which
is equivalent to the dimension of the thermal diffusivity K of the heat equation
Oiu — K1Azu = 0, and also to the dimension of the diffusion coefficient K5 of the
diffusion equation dyu — KA u = 0.

To consider the derivation of the above equations, let us consider the follow-
ing line element. For any natural number n and any fixed real numbers w =
W%+ ,w") € (=m/2,7/2]'*", we consider a (1 + n)-dimensional space M!*" de-
fined by

M = {2z € C1H" | 2% = 22" 2% € R, 0 < a < n},

where C denotes the set of complex numbers. We consider a generalization of the
Einstein equation for non-Hermitian complex line elements of the form go5(2)dzdz?,
where {gns}to<a,s<n are complex-valued functions for z = (20,---,2") € M!*™,
Under the cosmological principle, we give the solution of the generalized Einstein
equation as

2,2\ 2 N
Japdz®dz? = —2(d20)? + a(2°)%¢? <1 + k4r ) Z(dzj)Q, (1.5)
j=1

1/2
where ¢ > 0 is the speed of light, q(# 0), k € C are constants, r := {22:1 (z”‘)g} :
and a(-) is a complex-valued function which denotes the scale-function of the space.
There is a large body of literature on the generalization of the Einstein equation for

Hermitian line elements and general dimensions (see e.g. [1, 2, 3, 4, 5, 6]).
For any function f on M!*" we consider the derivative 9, f(z) for z € M!'*" by

e . f(zoa"' ,za—l’za_}_heiwa’za-i-l’“. ,Zn)_f(z)
Ouf(2) == flzl~r+% e . (1.6)
heR\{0}
Since z = (2°,--+,2") € M*" is parametrized by z = (2°,--- ,z") € R!*" by the
relation
2% = z%e™”, (1.7)

if we put fi(x) := f(2) with (1.7), then we have 0,f(2) = e " 9f.(x)/0xz*. Let us
consider the background spacetime M!™™ with the line element (1.5). We put ¢ = 1
and k£ = 0 in (1.5). As the equation of motion of the massive scalar field described
by a complex-valued function ¢ = ¢(2%, -+ ,2") with the mass m and a potential



A@P~1¢?/(p+1) for A € C and 1 < p < oo, we derive the second order differential

equation
2 4

1 ndpa mee 1 _
2 (‘9(2) + —ao—@o + 7) ¢+ 30:0 + Al '¢ =0, (1.8)

where h is the Planck constant, 9y := 0/92° and A, = > ie 02/(827)%. We also
show that the nonrelativistic limit of (1.8) yields the equation

2 1
ii%@w—k FAzu+)\|uwlp—1u: 0 (1.9)

with a suitable transform from ¢ to u = u(2?,--- ,2") (see (2.18), below), where
i := (—1)1/2 and w is a weight function defined by w(2°) := by(a(0)/a(2°))™/? for
a constant by € C. By the transform (1.7), the equations (1.8) and (1.9) give the
equations (1.1), (1.2), (1.3) and (1.4) when a(-) = 1.

2 Derivation of the field equation

In this section, let us derive the line element (1.5). In the following, Greek letters
a, 8,7, -+ run from 0 to n, Latin letters j,k,#,--- run from 1 to n. We use the
Einstein rule for the sum of indices of tensors, for example, T%, := Y »_ T, and
T7j:= 3%, T?;. For any function f on M'*", we put f.(z) := f(z) with (1.7). We
define the integral [i;11. f(2)dz by

/ f(2)dz := €' Xa=0" / fe(z)dz. (2.1)
Mit+n R1+n

We consider a bilinear symmetric complex-valued functional (-,-) on the vector
space spanned by the vectors {04 }o<a<n- We put gog(z) := (0a,93). We denote by
(9as(2)) the (14n) x (1+n)-matrix whose components are given by {gas(2) }o<a.<n-
Put g(2) := det(gas(2)). Let (g*?(2)) be the inverse matrix of (gos(2)). We consider
a line element

—(cd1)? = (d0)? := gup(2)d2®d2P, (2.2)

where 7 denotes the proper time and we take the square root of (cd7)? as —7m <
arg (cdt) < m. We define dz by

dz=d2° A Ad2" = Z sgn(o) dz®© ... dz7™"),
g

where o denotes the permutation of {0, - ,n}.
We define the Christoffel symbol by

1
sy = 59" (Op95y + 04985 — Dsgpr) - (2.3)
We define the covariant derivative Vg for T by

VT%(z) := 0gT*(2) + I'*5,(2)T7(2).
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In general, we define

V,;Taﬁmm,,,, — aé'Taﬁl“/ + FaéeTEﬁ...I“/m + Fﬁ(SETas-.,uum R
o= FE{SILTaﬂmeu»-- - FE(SVTQBM/J.E--- -

for any tensor 7% ,.....
We define the Riemann curvature tensor

RS gy i= 05T%y — 04 T005 + T[0Ty — T0 T

which is derived from R°,3,T% = (V3V, — V,V3)T°. We define the Ricci tensor
Rop = R",p,, and the scalar curvature R := ¢®® R,3. We define the Einstein tensor
by Gap := Rap — gapR/2. The change of upper and lower indices is done by gag
and g®8, for example, G%3 := g*7G.5.

Let A € C be a constant, which is called the cosmological constant. Let us con-
sider the variation by gag of the Einstein-Hilbert action [4n (R + 2A) (— 9)' /2 dz.
Then the Euler-Lagrange equation for the action is given by the Einstein equation
Gop — Agap = 0 in the vacuum. For a stress-energy tensor T%g, we define the
(1 + n)-dimensional Einstein equation

G — Ag®s = k T, (2.4)

where & is a constant and we assume that & is written as x = kg/c* for some constant
ko which is independent of ¢. For the case n = 3 and real line elements, the constant
x is called the Einstein gravitational constant which is given by x = 87G/c*, where G
is the Newton gravitational constant. For the case n > 3 and complex line elements,
we are able to generalize the constant s to
o 2(n — 1)7rn/2g ’ (2'5)
(n—2)'(n/2)ct
where I' denotes the gamma function. We have obtained the generalized Einstein
equation (2.4) with (2.5) for complex line elements.
Let us derive the line element (1.5) as the solution of the Einstein equation (2.4).
We assume that the space is uniform and isotropic, and we consider the line element

n
Japdz®dzP = —c2(d2%)? + () ef(n) Z(dzj)g, (2.6)
j=1
where h and f are complex-valued functions. This line element is uniform in
the sense that for any two points P and @ in C", the ratio of the coefficients
eh(@)ef(r(P)) /eh(z%)ef(r(@)) is independent of 2°.
By direct calculations, we have Goj =Gy =0,

6% = St Bawm? - e (14 -l + 222 2)




2c2

et (e m-o L 2 ) )
2o (LY 22

2 r 2 r2’

; o [n—1 n
=g {-— <3gh - Z(aoh)g)

where f’ := df /dr. Since the space is isotropic, the coefficient of 27z must vanish.
So that, f must satisfy f” — f'/r — (f')2/2 = 0, by which we obtain

k22\ ~2
0 ¢ (1457 (27)

for constants q(# 0),k € C. We define a function

Let us consider the stress-energy tensor 7%g of the perfect fluid
Taﬁ = diag(pc2, iy 2 _p)

for constant density p and pressure p. We put p := p+ A/kc? and p := p — A/k.
Then (2.4) is rewritten as G%3 = & - diag(pc?, —p,--- ,—p). This equation shows
that the cosmological constant A > 0 is regarded as the energy which has positive
density and negative pressure in the vacuum p = p = 0 for k > 0, by which we regard
the cosmological constant A as “the dark energy.” The equation G% = kpc?g®, is
rewritten as

n—11{/8a\? k2 Ke?
0= — \_ .5 2.9
2 {( ca ) " ghas n 28
The equation G/ = —kpg’, is rewritten as
n—1 2 Oka da\? k2 K .
.07 —c = — . 2.10
2 {n—2 c2a+(ca +q2a2 n—2 P (LIRS
which is rewritten as the Raychaudhuri equation
d3a n—2 pc? D
%a _ _ e[PE P 2.11
c2a n—1" ( n m—2 (2.11)

by (2.9). Multiplying a™ to the both sides in (2.9), taking the derivative by 2z°
variable, and using (2.10), we have the conservation of the mass

do(pca™) + pdoa™ = 0. (2.12)
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For any number o, we assume the equation of state

P =opc. (2.13)
Then a(2°) must satisfy
d3a(2%) n—2+no o2
2a(2%) ~  nn-1 P
with
~_n—1 n (8a(0))* (a(0)) """ (2.14)
P= Ty a(0) a(29%) '

by (2.11) and (2.12). We consider the solution which has the curvature k = 0 given
by

. Lo\2/n(140)
a() = a(0) (1 + ﬁ%) if o# -1, (2.15)
a(0) exp (%8;”) if o =-1.

Let us derive the equations (1.8) and (1.9). For any A € C and any complex-
valued C? function ¢ on M'*", we define the Lagrangian

h

1 a8 1 /me\2 , A 1.2
= —=g*"0 - - —) —|o? :
(0) 1= ~30" 06050 — 5 () 6 + =216l 16
Then with the constraint condition argd¢ = arg ¢, the Euler-Lagrange equation for

the action [, L(¢)(—g)/?dz is given by

1 2
(—g)172 0a((~9)"/?9*°850) — (%) ¢+ Ag[P~l¢ =0, (2.16)

which is rewritten as the equation (1.8). For any constant by € C, we define a weight
function w(2%) and a function b(2°) by

a(0) ?

w(z%) = by (E@O—))R/Q, b(2°) = w(z°) exp (;i%z()) , (2.17)

where we note b(0) = by. We transform ¢ to u by the equation

B(2%, 2" = (20, 2M)b(2). (2.18)
We assume mz°/h € R. Then the nonrelativistic limit (¢ — oo) of this equation
yields (1.9).
3 The Cauchy problem

In this section, we introduce some results on the Cauchy problem of the equation
(1.9) without proofs. The equation (1.9) is rewritten as

2m 1 A _
iz—h—atu % WAU ~ luw[P~ = 0 (3.1)



0 1

by a transformation (1.7) with ¢ := 2%, w® = 0, w := w! = --- = W™. We consider
how the spatial variance affects the existence of the solutions. Let Ty be the maximal
existence time of the scale-function a(-) defined by (2.15). Since the equation (3.1)
has a variable coeflicient, we use a change of variable s = s(t) := fot a(t)2%dr.
We put Sy := s(Tp). We use conventions a(s) := a(t(s)) and w(s) := w(t(s)) for
s €[0,Sp) as far as there is no fear of confusion. A direct computation shows

if a3(4—n(l+0))>0,

2 .
Sy = { @a1(4-n(1+0))
00 if a1(4—n(l1+0))<0.

For 0 < g < n/2 and 0 < S < Sy, we consider the Cauchy problem given by

Aa(s)?
- e2iw

ﬂ%masu@,z) + = Buls, 2) (fuwf~'u) (5,2) = 0,

w(0,-) = u(+) € Ho(R")

(3.2)

for (s,x) € [0,5) x R™, where H#°(R") denotes the Sobolev space of order po > 0.
Since u = u(t, -) is a global solution of (3.1) if it exists on [0, Tp), we say u = u(s, ) =
u(t(s),-) is a global solution of (3.2) if it exists on [0, Sp).

Let us consider the well-posedness of (3.2). For any real numbers 2 < ¢ < co and
2 < r < oo, we say that the pair (g,r) is admissible if it satisfies 1/r + 2/ng = 1/2.
For p190 > 0 and two admissible pairs {(g;,7;)};=1,2. we define a function space

X00([0,8)) i= {u € C((0,8), H(R™); max [l oo sy < o)
with a metric d(u,v) := |lu — v|| xo(0,s)) for u, v € X#([0,S)), where

”UHLOO((0,S),L2(]R“))mﬂj=1‘2 L% ((0,5),L73 (R™)) if u =0,
lull xx(0,s)) == ¢ 8
ell o 0.9). e mmpnn, 2, L9 (0.9 B2 ey I 12> 0.

Here, H*(R™) and ij o(R™) denote the homogeneous Sobolev and Besov spaces,
respectively. Since the propagator of the linear part of the first equation in (3.2) is
written as exp(dihexp(—2iw)sA/2m), we assume 0 < +w < 7/2 to define it as a
pseudo-differential operator. We note that the scaling critical number of p for (3.2)
is p(po) :=144/(n — 249) when a(-) = 1. We put

4 4 2u0 \ !
o= |, (1 |
Pi(ko) * n — 2u9 ( - 2u0 n(l+ a))

for o # —1.
We have the following results for time-local, time-global and blowing-up solutions
for the problem (3.2).

Theorem 3.1. Letn>1, A€ C, 0 < p50 < n/2, and 1 < p < p(po). Let w satisfies
0< tw < 7/2 and w # —7/2. Assume po < p if p is not an odd number. There
exist two admissible pairs {(q;,7;)}j=1,2 with the following properties.
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(1) (Local solutions.) For any ug € H" (R™), there exist S > 0 with S < Sy and
a unique local solution u of (3.2) in X*0([0,S)). Here, S depends only on the norm
||u0||H“0(R") when p < p(uo), while S depends on the profile of ug when p = p(ug).
The solutions depend on the initial data continuously.

(2) (Small global solutions.) Assume that one of the following conditions from
(i) to (vi) holds: (i) po = 0, p = p(0), (i) o > 0, p = p(po), a1 > 0, (i)
1 <p<plp), ar >0,0 < -1, (w1 <p< p(u), a1 <0, 0>-1, (v)
p1(o) < p < p(wo), a1 >0, 0 > =1, (vi) o > 0, 1 < p < p(po), a1 >0, 0 = —1.
If ||“0||Huo(Rn) is sufficiently small, then the solution u obtained in (1) is a global
solution, namely, S = Sp.

Corollary 3.2. Let po = 0 or pop = 1. Let A > 0. Let 1 < p < 1+ 4/n when
po=0. Let 1 <p<1+4/(n—2) and a1(p—1—4/n) > 0 when ug = 1. For any
ug € H*(R™), the local solution u given by (1) in Theorem 3.1 is a global solution.

Corollary 3.3. Let igp =1, A< 0, a1 >0 and 1 < p<1+4/n. Letw =0 or
w = m/2. For any ug € HY(R™), the local solution u given by (1) in Theorem 3.1 is
a global solution.

Corollary 3.4. Let o =1 and A < 0. Let w # 0,7/2. Put py := 2/(sin 2w)? — 1.
Let po < p < 1+4/(n—2). Let aa(p—1—4/n) < 0 and Sy = oo. For any
ug € H'(R™) with negative energy

1 2, Aagluo(z) P!
= ——d .
/R" 2|Vu0(:v)| + o z <0, (3.3)

the solution u given by (1) in Theorem 8.1 blows up in finite time.

Corollary 3.5. Let pg = 1 and A < 0. Let w = 0 or w = 7/2. Let 1 +4/n <
p<1+4/(n—2). Let a1 <0 and Sy = oco. For any ug € H'(R") which satisfies
[|z|uo(2)|| 2(rny < o0 and (3.3), the solution u given by (1) in Theorem 3.1 blows
up in finite time.

4 Equations for vectors

So far, we have considered the partial differential equations for scalars. Our equa-
tions (1.8) and (1.9) are obtained as the Euler-Lagrange equation for a Lagrangian
and its non-relativistic limit. To consider the equations for vectors such as Navier-
Stokes equations and elastic wave equations, we are based on the classical method
by Landau and Eckart. We note that the stress-energy tensor 7“3 must satisfy the
conservation law

VaT® g=0

in the Einstein equation (2.4). We introduce the stress tensor P*?. Let \, u be two
constants. Let p be the pressure. Let v be a contravariant tensor which satisfies



lithe yes 8]-110 = 0. Put

P = —pg™? + Ag*P V07 + (VP + VPu®). (4.1)
Then the nonrelativistic limit yields the equation

lim v, PP = —8Pp + 1ud;07vP + (u + 1)9P8;07,

where we regard 9° := —51580 = 0 in the RHS.

4.1 Navier-Stokes equations

Let us consider the Navier-Stokes equation. Since any velocity tensor u® must satisfy
n .
2 = _CZ(uO)Z + a(x0)2 Z(UJ)Q
j=1

we have lim._,o, u® = +1. Based on this, we assume

lim «® =1 and lim 8,u® =0 for 0 <a<n. (4.2)
c—00 cC—00
Let P8 be the stress tensor with v® := u®. Put
T8 .= (p - %) uuf — poB, (4.3)
c

Put f* :=wd;uF. Let p(z°) := C/a(z")" (the density of mass). Then

lim V7% =0 (4.4)
c—00
are equivalent to
ol =0 (4.5)
and
k ko 60 k f i,k
Oou” + f* + kg 8 ;(')ja]u =0. (4.6)
For the equation (4.6) with (4.5), the energy estimate
A€’ + 0/ + e =0 (4.7
holds, where
e = lukulc JI = }—ujukuk — u78k f]C + Oru —fJ
2 ' 2 0y
) ) ) 1 / Hpa? )
ef = Ji — Eyiuk, Ko=2 (2 _ o’ ),
p 2\ a2

er 1= Kugu® + ’—‘afukagu’“.
p

Here, K satisfies
o 80(12
2427
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4.2 The elastic wave equations

Let us consider the elastic wave equations. For the displacement tensor 7%, and its
relativistic velocity u® := dr®/dr, we put

dr® == r%(r +dr) — r%(7).

Since dr must satisfy

n
—02(d7)2 = — 2( 2 Z d?"]
7=1
we have lim._,o dr®/dr = 1. Based on this, we assume
lim 7 =2% and lim 9;7°°=0 for 1<j<n. (4.9)
Cc—00 c— 00

Let P’ be the stress tensor with v® := 7. We put u® := dr®/dr,
T = (p+ %) ueuP — P8, (4.10)

and h* := 9yr79;00r*. Put p(z°) := C/a(z®)" (density of mass). Then

lim V,7% =0 (4.11)
=300
are equivalent to
d00;r’ =0 (4.12)
and
: A
B3r* + hk + 80 = 8orF + 8k %Bj(’?]rk s ——80;m7 = (4.13)
We put
— B . doa’
(0r7)a := gagOrr”, K= ——. (4.14)
For the equation (4.13) with (4.12), the energy estimate
8()60 + 6jej +e.=0 (4.15)

holds, where
e 1= o (Bor)idor® + —zpajrka?r’“ - —2p(ajrﬂ)2,

. 1 . .
el = 3(90r)(Bor)dor* - aowakmhk + 0% (Bor )i B—a‘fh]

= ;(aor)kﬁ‘ka + %Borjc')krk,

4
ey = K- (80T)k607'k + 7# . Kaﬂ'kaz’l‘k.



Remark 4.1. In the energy estimates (4.7) and (4.15), the energy density ex shows
the dissipative or anti-dissipative property. When the space is expanding, namely,
doa(-) > 0, then K 1is a positive function, which shows that e, is positive for non-
zero velocity u and non-constant displacement r. From this fact, we expect the strong
dissipative effects on the solutions of the equations by the spatial expansion.
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