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Mixed Morrey spaces

Toru Nogayama (Tokyo Metoropolitan University)

Abstract

We introduce mixed Morrey spaces and show some basic propertics.
These propertics extend the classical oncs. We investigate the bounded-
ness in these spaces of the iterated maximal operator. Furthermore, as a
corollary, we obtain the boundedness of the iterated maximal operator in
classical Morrcy spaces.

1 Mixed Morrey spaces

In this section, we define the Mixed Morrey spaces M (R"). To do this, we
prepare some definitions. Throughout the paper, we use the following notation.
The letters p, ¢, 7, ... will denote n-tuples of the numbers in [0,00] (n > 1),
P=(p1,- ) q@ = (q1,---,qn), 7 = (r1,...,7,). By definiton, the inequality,
for example, 0 < p' < oo means that 0 < p; < oo for cach ¢. Furthermore, for
= (p1,...,pn) and r € R, let
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where p; = f_"—l is a conjugate exponent of p;. Let Q@ = Q(x,7) be a cube having
center z and radius r, whose sides parallel to the cordinate axes. |Q] denotes the
volume of the cube Q. By A < B, we denote that A < CB for some constant
C >0, and A ~ B mecans that A < B and B < A.

In [4], Benedek and Panzone introduced mixed Lebesgue spaces.

Definition 1.1 (Mized Lebesgue spaces). [4] Let p'= (p1,...,p,) € (0,00]". Then

1
P3 Do

HjHﬁ = Hf”(p] P2seePn)
pn

£ v
- / </ </ |f(1,'1,172,._.’1’,”)’1’1(1351) m dx2> e ’
R R R



where f @ R"™ — C is a mcasurable function. If p; = oo, then we have to
make appropriate modifications. We define the mized Lebesgue space LP(R™) or
L®rp2-pn)(R™) to be the set of all f € LO(R™) with ||f||; < oo, where LO(R™)
denotes the set of measureable functions on R™.

Remark. Let pe (0, 00]™.

(i) If for cach p; = p, then

1

115 =1 = ([ 170Pa2) " = 11,

LP(R™) = LP(R™). (1)

and

(i) Let f be a measurcable function on R™. For any (22, z3,...,z,) € R"71

Il (@2, .. zy) = (/R |f (21, ... ,x”))md:f;l> 1

is a measureable function and defined on R"~!. Moreover, we define

Hqu: Hf”(Pl-,PQqu]) = ”[||f”(P11P2~,-~1‘P1~1)}H([)j)’

fllpr.p2.p;—r) denotes |f1,if j = 1 and ¢ = (p1, ..., p;),j < n. Note
fllg is a measurcable function of (z;41,...,z,) for j < n.

where
that

First, we define Morrey spaces. Let 1 < ¢ < p < co. Define the Morrey norm
I+ llaz by

[ fllmz = sup {|Qﬁ‘% </Q |j(a:)]qu> ’ : @ is acubein IR”} (2)

for a measurable function f. The Morrey space MP(R") is the sct of all measur-
able functions f for which || f|[y is finite.

Next, we define mixed Morrey spaces.

Definition 1.2 (Mia:ed Morrey spaces). Let ¢ = (q1,...,q,) € (0,00]" and p €

(0, 00] satisty >°7 g
Then define the mized Morrey norm || - || pzgn) by
q

T OO : .
HfHM” Rr) = bUP{|Q| ( ' q">“fXQ”q‘ : Qisacubein R }

We define the mized Morrey space MZ(R") to be the sct of all f € LO(R") with
[l mzgrny < 0o



Remark. Let ¢ € (0, 00]™.

(i) If for cach ¢; = g, then by (1),

e 3¥‘?)quQuq=:mm%‘%<2?ﬂ%>anQna::Mw%‘%HfXQHw

Thus, taking supremum over the all cubes in R™, we obtain

HfHMfIl(R") = ||f“M§’(Rn),
and
P [ _ T
MER™) = MEH(R™),
with coincidence of norms.

(ii) In particular, let
n

p= .
1/Q1++1/(1n

Then, since
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sup {[|/xelly : @ is a cube in R"} = || f]7,
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we obtain )
LI(R") = MYR"),

with coincidence of norms.

2 The boundedness of the iterated maximal op-
erator

In this section, we show the boundedness of the iterated mximal operator in the
mixed spaces.

First, we recall the maximal operator. For all measurcable functions f, we
define the Hardy-Littlewood maximal operator M by

1) = sup X&) [,
AUC)Q£|Q'4U@Mm

where Q denotes the set of all cubes in R™. Let 1 < k& < n. Then, we define the

maximal operator M, for x; as follows:

: 1 ,
Ajkf(l) = sup m/'f(‘rl, ey Yky e ,I”)|dyk,
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where [ is an interval. Furthermore, for all measurable functions f, define the
iterated maximal opcrator M, by

1
B

for every ¢t > 0 and z € R™.

Remark. Let R be a set of all rectangles in R®. By Mg, denote the strong
maximal opcrator gencrated by a rectangle R:

. o XR(SU)
Mpf(x) = sup X / )y,

Re
Then, the followings follow [10]:
Mpf(x) < M, - M f(zx) = M, f(z),

and

JWR.}((I') < Mj--- Mnf(x)7

and so on. But, the relation between My -« - M, and M,, - - - M; scems unknown.

We describe the boundedness of the iterated maximal operator in the mixed
spaces. First, we consider the boundedness in mixed lebesgue spaces.

Theorem 2.1. Let 0 < p'< oo. If0 <t < min(py,...,pn), then
M fllz < Clif g
for f € LP(R™).
In 1935, Jessen, Marcinkicwicz and Zygmund showed the boundedness of the
strong maximal opcrator in the classical LP spaces [10]. To show the boundedness

of the strong maximal operator in mixed Lebesgue spaces, we use the followimg
lemma, which is showed by Bagby in 1975 [3].

Lemma 2.2. Let 1 < ¢; < oo(i = 1,...,m) and 1 < p < oo. Let (4, ;) be

o-finite measure spaces, and let t = (t1,...,t,) € Q1 X -+ x Q,, = Q. For
flz,t) € LY(R™ x Q),

LM e S [ 17N de

Using this lemma, we prove Theorem 2.1.



Proof. Since

1 1
7 T

= ||]\4,,L - My Dfﬂ H(”—l by
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T

1Ml = || (01, 045 [1£1])

we have only to check the result for ¢t =1 and 1 < p' < co.
Let t = 1. Then the result can be written as

[IMyflly = 1M Mifllg < Cllfl

We use induction on n. Let n = 1. Then, the result follows by the classical case
of the boundedness of the Hardy-Littlewood maximal operator.

Suppose that the result holds for n — 1, that is, for h € LY(R"7!) and 1 <
(QI> ) qn—l) < 00,

||]an,1 e ]wlhn(m-,u-,qn—l) < Cllh‘“(tn ----- gn-1)"

By Lemma 2.2,

182015 = | 192 ] |, S N[ ] = 1605

Thus, by induction assumption, we obtain

H]\/I’IL]\/[IL—I e AIIjHﬁ = HAJH[Mn—l et le]llﬁ
5 “jwn—l T le“ﬁ

= HHA’I”——l st A{lj’”(phm,pn,l) »
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Next, we consider the boundedness in mixed Morrey spaces.
Theorem 2.3. Let 0 < §< oc and 0 < p < oo satisfy

n
1 n—1
SZEjv -

J=1

p < max(qy, ..., qn).

SERS

If 0 <t < min(qi,...,q,p), then
||Mtf||M§(Rn) < CHfHM’qi(R")

for all f € ME(R™).

As a corollary, we obtain the result in classical Morrey spaces.
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Corollary 2.4. Let
-1
0< nTp <q<p<oo.
If 0 <t <gq, then
HMtfHM?,(JRﬂ) < Cllfll v wnys
for all f € MP(R").

To show the boundedness of the strong maximal operator in mixed Morrey
spaces, we usc the following proposition.

Proposition 2.5. Let 1 < § < oo and wy € A, (R) for k=1,...,n. Then,

n 1
My f - @i
k=1

n 1

f-Qui

k=1

S
q

=y

Note that a locally integrable weight w is said to be an A, -weight, if 0 < w <
oo almost cverywhere, and

= ) (i o) <

Proposition 2.6. Let 0 <p < o0, 0 < @< o0 andn € R satisfy

"1 n
0< ———-<n<l
2%y

Then

1

1 llaez ~ sup QP ™ =4 f (M)l
QeQ

Let us prove Theorem 2.3.

Proof. We have only to check fort = 1,1 <p<ooand 1 < §g< co. Forn e R
satisfying

n 1
0<Z__E<77<1’ (3)
=P
once we show
[Mif(Mix)"llz < IIf (Mixq)llg (4)

we get

QS M (Maxo)lle S 1Q1P TS (Maxe) s



Taking supremum for all cubes and using above proposition, we conclude the
result.

We shall show (4). Let Q@ = I X Iy X -+ x I,,. Then,
n n
(Mixe)" (@f‘ ) =& (Myx,)"-
j=1
Here, (Mjx;,)" is Aj-weight if and only if
0<ng <1, (5)
and so (M;x;,)" € A1 C A, for all ¢;. Thus,

n

|](M1f')(M1xQ)”||(7: (M 1f)®( jXI)

Jj=1

S j® ]XI

= Hf(M1XQ) g

Thus, (4) holds. Morcover, by (3) and (5), we get the condition

=y

n—1

p < max(q, ..., qn)-
n

Note that Corollary 2.4 is a special case of Theorem 2.3. Letting g1 = ... = g,
we conclude the result.
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