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Generalized fractional integrals on Orlicz spaces
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Dedicated to the memory of Professor Yasuji Takahashi

1 Introduction

This is a joint work with Ryutato Arai and Minglei Shi, and an announcement of
[5, 29].

Let R™ be the n-dimensional Euclidean space, and let I, be the fractional integral
operator of order « € (0,n), that is,

I.f(z) = / —-—Mdy, z € R™.
RP |$ _ y|n—a

Then it is known as the Hardy-Littlewood-Sobolev theorem that I, is bounded
from LP(R™) to LY(R™), if o € (0,n), p,q € (1,00) and —n/p + o = —n/q. This
boundedness was extended to Orlicz spaces by several authors, see [4, 6, 15, 22, 30,
31, 32], etc. The LP-L? boundedness of the commutator [b, I,] with b € BMO was
considered by Chanillo [3]. The result was also extended to Orlicz spaces by Fu,
Yang and Yuan [7] and Guliyev, Deringoz and Hasanov [8].

In this report we consider generalized fractional integral operators I, on Orlicz
spaces. For a function p : (0,00) — (0, 00), the operator I, defined by

Tz —
i@ = [ HE=Wg)ay cerr (L)
re |z =y
where we always assume that 1
p(t)
—=dt < 0. (1.2)
o ¢t

If p(r) = 7%, 0 < a < n, then I, is the usual fractional integral operator I,. The
condition (1.2) is needed for the integral in (1.1) to converge for bounded functions
f with compact support.
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The operator I, was introduced in [20] whose partial results were announced in
[19]. In these papers we assumed that p satisfies the doubling condition;

1 p(r) .1
— < —=< f —<-<2 1.
Cl — p(s) — C].? 1 2 — s _— ) ( 3)
and that r — p(r)/r™ is almost decreasing;
) o) e o, (1.4)
sm re

where C) and C are positive constants independent of 7, s € (0,00). Under these
conditions we proved the boundedness of I, on Orlicz spaces.

In this report, instead of these conditions, we assume that there exist positive
constants C, K; and K, with K; < K3 such that, for all » > 0,

Kor
t
sup p(t) < C’/ &dt. (1.5)
r<t<or Kuir

The condition (1.5) was considered in [25] and also used in [28]. If p satisfies (1.3)
or (1.4), then p satisfies (1.5). Let

r*(log(e/r))" Y2, 0<r <1,
- 1.6
p(r) {e—("”, L <r<oo. (1.6)

Then p satisfies (1.2) and (1.5), but doesn’t satisfy (1.3) or (1.4). Therefore, the
results in this report are improvement of one in [20]. Moreover, we consider the
commutator [b, I,] with functions b in generalized Campanato spaces. To prove the
boundedness of [b, I,] on Orlicz spaces we need the sharp maximal operator M* and
generalized fractional maximal operators M,, see (1.8) and (1.9) below for their
definitions. Moreover, we need a generalization of the Young function.

First we recall the definition of the generalized Campanato space and the sharp
maximal and generalized fractional maximal operators. We denote by B(z,r) the
open ball centered at z € R™ and of radius 7, that is,

B(z,r)={yeR": |y —z| <r}.

For a measurable set G C R", we denote by |G| and x¢ the Lebesgue measure of G
and the characteristic function of G, respectively. For a function f € Li (R") and
a ball B, let

/8 :]{gf:]if(y)dyZ U;W/Bf(y) dy. (1.7)

Definition 1.1. For p € [1,00) and ¢ : (0,00) — (0,00), let £, ,(R"™) be the sets
of all functions f such that the following functional is finite:

1 ) 1/p
1fllzyp@n) = sup e (]ilf(y)—fsl dy> :

B=B(z,r

where the supremam is taken over all balls B(z,r) in R™.
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Then ||f||z, , &) is a norm modulo constant functions and thereby £, ,(R") is a
Banach space. If p=1and ¢ =1, then £, ,(R") = BMO(R").
The sharp maximal operator M* is defined by

Mif(e) = sw |£) = faldy, @€ R (1.8)

where the supremum is taken over all balls B containing z. For a function p :
(0,00) = (0,00), let

M,f(z)= sup p(r) f L Vwldy, weR (1.9)

B(z,r)>z

where the supremum is taken over all balls B containing z. We don’t assume the
condition (1.2) or (1.5) on the definition of M,. The operator M, was studied in
[27] on generalized Morrey spaces. If p(B) = |B|*/", then M, is the usual fractional
maximal operator M,. If p = 1, then M, is the Hardy-Littlewood maximal operator
M, that is,

Mf(z —sup][ff |dy, ze€R™

B>z

The operator M is bounded from LP(R") to itself, if 1 < p < oc.

It is known that the usual fractional maximal operator M, is dominated point-
wise by the fractional integral operator I,, that is, Myf(z) < Cl,|f|(z) for all
z € R™. Then the boundedness of M, follows from one of I,. However, we need a
better estimate on M, than I, to prove the boundedness of the commutator [b, I,].
In this report we give a necessary and sufficient condition of the boundedness of M,,.

Here we recall the proof of Hardy-Littlewood-Sobolev theorem by Hedberg [11].

Theorem 1.1 (Hardy-Littlewood-Sobolev (1928, 1932, 1938)).
If o€ (0,n), p,g € (1,00) and —n/p+ a = —n/q, then

I, : LP(R™) — LYR"™) bounded.
Proof by Hedberg (1972). We prove that, for f € LP(R™) with || f||z» = 1,
af(2)|? S Mf(z)P, ze€R"™

Then, using the boundedness of the Hardy-Littlewood maximal operator M on

LP(R™), we have
[t [ oy s [ s =1

To prove the above pointwise estimate, let

of(2)] s/ / / .
B [T~y yl" & le—yl<r  Jlo—y|>r L



Then we can get

/

P 1/p'
1
Jo < || fllze / <m) dy ~ T
lz|>r 'x’

Let 7 = M f(z)™P/™. Then r® = M f(x)~?/" = M f(x)P/9~! and
o (@)] < o+ Jo S M ()P, =

In this report, to prove the boundedness of I, from L*(R") to LY(R™), we show
the pointwise estimate

o (B0 <o (ML)

for f € L*(R") with || f||ze = 1.

2  Young functions and Orlicz spaces

For an increasing function @ : [0, co] — [0, o0, let
a(®) =sup{t > 0: ®(t) =0}, b(®)=inf{t >0: P(t) = co}.

Then 0 < a(®) < b(®) < oc. Let @ be the set of all increasing functions & :
[0, 00] — [0, 00] such that

tl.iIEO(I)(t> =®(0) =0, (2.1)
® is left continuous on [0, b(P)), (2.2)
if b(®) = oo, then tlim P(t) = P(o0) = o0, (2.3)
if b(®) < oo, then ) }71(% 0<I>(t) = ®(b(P)) (< 00). (2.4)

Any function in @ is neither identically zero nor identically infinity on (0, 00).
For @ € &, we recall the generalized inverse of ® in the sense of O'Neil [22,
Definition 1.2]. For ® € @ and u € [0, o0, let

31w = {inf{t >0:®(t) >u}, ue0,00),

00, U = 0.

(2.5)

Then &' is finite and right continuous on [0,00) and positive on (0,00). If ® is
bijective from [0, 0o] to itself, then ®~! is the usual inverse function of ®. Moreover,
we have the following relation, which is a generalization of Property 1.3 in [22].

O(D ' (u) <u< ®HP(u)) foralluel0,o0] (2.6)

Definition 2.1. A function ® € @ is called a Young function (or sometimes also
called an Orlicz function) if ® is convex on [0, b(®)).

By the convexity, any Young function @ is continuous on [0, b(®)) and strictly
increasing on [a(®), b(®)].
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We define three subsets Y (i = 1,2,3) of Young functions as
YU = {®e by : b(®) = cc},
VO = {d € Oy : b(P) < 00, B(b(D)) = o0},
VO = {d € Oy : b(®) < 0o, B(b(P)) < c0}.

o o0, |
b(P) = 0 i

O (@) t O a(®@) TORE
B(1) o |
ol a(@) b(ib) t

For ®, ¥ € &, we write ® ~ U if there exists a positive constant
®(C™) < U(t) < ®(Ct) forall t € [0, 00].
Definition 2.2. (i) Let @y be the set of all Young functions.

(ii) Let @y be the set of all ® € @ such that ® ~ ¥ for some ¥ € &y

For ® € &y, we define the Orlicz space L®(R™) and the weak Orlicz space
wL®(R"). Let L°(R™) be the set of all complex valued measurable functions on R™.

Definition 2.3. For a function ® € &y, let

L*(R™) = {f € L°(R") : /R ®(e|f(z)|) dz < oo for some € > o} :

s =it {30 [ 0V a1},

wL®(Q) = {f € L°(R™) : sup ®(t)m(ef,t) < oo for some € > O} ,

te(0,00)

[fllwze = inf {)\ >0: sup @(t)m(it) < 1} ,
te(0,00) A
where m(f,t) = [{z € R": |f(x)] > t}].



Then || - ||ze and || - ||yze are quasinorms and L®*(R™) C LL.(R"). If & €
®y, then || - ||ze is a norm and thereby L®(R"™) is a Banach space. For ® ¥ ¢
Py, if ® ~ ¥, then L*(R") = LY(R") and quasi-norms | - ||z and || - || v are
equivalent. Orlicz spaces are introduced by [23, 24]. For the theory of Orlicz spaces,
see [14, 15, 16, 17, 26] for example.

Definition 2.4. (i) A function ® €  is said to satisfy the A,-condition, denote
® € Ay, if there exists a constant C' > 0 such that

®(2t) < CP(t) forallt>0. (2.7)

(ii) A function ® € @ is said to satisfy the V,-condition, denote ® € V,, if there
exists a constant k > 1 such that

1
O(t) < ﬁfﬁ(kt) for all ¢ > 0. (2.8)

(iii) Let Ay = ¢y N Ay and Vy, = &y N V,.
The following theorem is known, see [15, Theorem 1.2.1] for example.

Theorem 2.1. Let ® € ®y. Then M is bounded from L®(R™) to wL®(R™). More-
over, if ® € Vy, then M is bounded on L*(R™).

See also [4, 12, 13] for the Hardy-Littlewood maximal operator on Orlicz spaces.

3 Results

Theorem 3.1. Let p: (0,00) — (0,00) satisfy (1.2) and (1.5), and let &,V € Dy,
a(®) =0 and b(P) = co. Assume that there exists a positive constant A such that,
for allr € (0,00),

/’"@dt @_1(1/Tn)+/°op_(fwdt < ATASM). (3.1)

Then, for any positive constant Cy, there exists a positive constant Cy such that, for
all f € L2(R™) with f # 0,

|fpf($)|> ( M f(z) )

V| ) <P ——"). 3.2
(s <2 (& &2
Consequently, I, is bounded from L®(R™) to wL¥(R"). Moreover, if ® € Vs, then
I, is bounded from L®(R") to L¥(R").

See [5, 21] for examples of ® ¥ € &y which satisfy the assumption in Theo-
rem 3.1. See also [18] for the boundedness of I, on Orlicz space L*(§) with bounded
domain 2 C R™.

Next we state the result on the operator M, defined by (1.9) in which we don’t
assume (1.2) or (1.5).
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Theorem 3.2. Let p: (0,00) — (0,00), and let &, ¥ € Py .

(i) Assume that there exists a positive constant A such that, for all r € (0,00),

(sup p<t>> 21 < AT (1)) (3:3)

0<t<r

Then, for any positive constant Cy, there exists a positive constant C; such
that, for all f € LE(R™) with f # 0,

IM,,f(x){) ( Mf(z) )

Ul —rr" )| <P ——F—). 3.4
(G ) <+ (G e
Consequently, M, is bounded from L®(R") to wL¥(R™). Moreover, if ® € Vs,

then M, is bounded from L*(R™) to LY (R").

(ii) Conversely, if M, is bounded from L®(R") to wL¥(R"), then (3.3) holds for
some A and all r € (0,00).

Theorem 3.3. Let p: (0,00) — (0,00) satisfy (1.2).

(i) Let ®, ¥ € AyNVy. Assume that v+ p(r)/r"¢ is almost decreasing for some
e € (0,n). Assume also that there exists a positive constant A and © € V,
such that, for all r € (0,00),

L/rﬁgzdt@-%1ﬁm)+/WOBQL?%ilﬁfldt§‘4@—%1ﬁﬂy (3.5)
b(r)®~ (1)) < ATTH(L/rT), (3.6)

and that there exist a positive constant C, such that, for all r,s € (0,00),

<Cplr—s|— /Bg—)dt
0

rntl

p(r)  p(s)

T-n Sn

<l<2 (@37
S

Ifb € Ly 4(R™), then [b,1,] is bounded from L*(R™) to L¥(R™) and there exists
a positive constant C such that, for all f € L*(R"),

1B, Ll fllLe < Cllblle, 1Ll e (3.8)

(ii) Conversely, let ®,V € &y, and assume that there exists a positive constant A
such that, for all r € (0,00),

T/ < Ary(r) @ (1),

If [b,1,] is bounded from L*(R™) to L¥(R™), then b is in L1 4(R™) and there
exists a positive constant C, independent of b, such that

10l 22,0 < CIlIb, La]llLo 2, (3.9)

where ||[b, Iy]||Ls v is the operator norm of [b, I,] from LT(R™) to L¥(R™).
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