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Abstract

Let G be an affine connected algebraic group acting regularly on an
affine Krull scheme X = Spec(R) over an algebraically closed field K of
any characteristic. We study on the minimal calculation of the ring R of
invariants of G in R and their class groups by cutting prime semi-invariants
which form free modules over RS,
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1 Introduction

Let G be an affine algebraic group over an algebraically closed field K of arbitrary
characteristic p. Let R be an integral domain containing K as a subfield. We say
that (R, &) a K-regular action of G on R, if G acts on R as a rational G-module
over K which induces the homomorphism G — Autg_ggebra(R) (e.g., [12]). Let
U(R) denote the group of all units in R and Ug(R) the quotient group of U(R)
by the multiplicative group U(K) = K* of K. In general Ug(R) is torsion-free, as
K is algebraically closed. We say that a non-zero element f of R is said to be a
non-zero semi-invariant of R relative to y, if the map

X:GBJH@EU(K)
is a rational character of G. In order to calculate rings of invariants and their class
groups, we can cut some prime semi-invariants and explain this viewpoint in the
following example:
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Example 1.1 Let C[X,, X, X3] be the 3-dimensional polynomial ring over the
complex number field C. Let G, be the multiplicative group C* whose action on
this algebra in such a way that G, 3t acts on {X,, X9, X3} by

diag[t?,t ¢!

Then we have

(1) C[X1, Xa, X3]Cm = C[X, X2, X, X2 X3, X1 X2,

(2) The stabilizer (G,,)x, = (diag[l, —1,—1]) of Gy, at X1 on {X1, Xo, X3}.

(3) C[X1, Xy, X3](Emx1 = C[X,, X2, X0 X3, X2].

(4) The divisor class group Cl(C[X,, Xy, X3)%™) = Z /2Z which is isomorphic to

Hom((Gn)x,, C*) = Cl(C[X, Xy, X3](Gm)x1),
(5) There is the isomorphism
C[X1, Xo, X3)( @)% /(X — 1) = C[X1, X, X5]Cm

induced by
Y C[Xy, X, X5] — C[Xy, X3, X3

(P(X1) = L,p(X2) = X, 9(X3) = X3).
The purpose of this paper is to generalize the assertion of this example to

in the case of factorial (or Krull) domains with affine algebraic group actions in
characteristic-free.

2 Preliminaries
Let Q(A) denote the total quotient ring of a ring A and
Ht,(A) := {P € Spec(A) | ht(P) = 1}.

For an integral domain A and a subring B of A such that B = Q(B)N A and
Q(B) C Q(A), we denote by

Ht, (A, B) := {P € Ht1(A) | P B € Ht,(B)},

Ht{” (A, B) := {$ € Ht,(A) | ht(B N B) > 2)}
and, for p € Hty(B), by

Overy(A) == {B € Ht1(A4) | PN B =p}.
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Especially suppose that A is a Krull domain (e.g., [1]). Let v4 q be the discrete
valuation defined by P € Ht;(A) of A. Denote by Div(A) (resp. PDiv(A), Cl(A))
the divisor group (resp. the group of principal divisors, the divisor class group)
of A. For a subring B of A such that B = Q(B) N A, B is a Krull domain (e.g.,
[1, 3]) and every Overy(A) is non-empty and finite. Let e(,p) = va p(pA) be the
ramification index of P € Overy(A) for a prime ideal p € Ht,(B). If all ramification
indices of minimal prime ideals are equal to 1, the extension B — A is said to be
divisorially unramified (cf. [7]).

Consider an action of a group G on a ring R as automorphisms. For a prime
ideal B of R, let

To(P) = {o € G| o(x) ~z € P (x € B}

which is referred to as the inertia group of 9 under this action (for the classical
case, see [5]). Let Z'(G,U(R)) be the group of lcocycles of G on the unit group
U(R) of R. For a 1-cocycle ¥,

Ry :={rc R|o(z)=x(o)z (¢ € G)},

which is a module over the invariant subring RY.
The next theorem is a generalization of [11] and is fundamental in this paper:

Theorem 2.1 (cf. [7]) Let R be a Krull domain acted by a group G as automor-
phisms. For a cocycle x € Z*(G,U(R)), Ry is a free RE-module if and only if the
following conditions are satisfied:

(i) dim Q(RY) ®pc R, =1
(i) There is a nonzero element f € R, satisfying

Vp € Hty (RY) = 3P € Overy(R) such that vrg(f) < vryp(pR)).

Here the condition (3) holds, if R, - R_, # {0}.

Algebraic groups are affine and defined over a fixed algebraically closed field K
of an arbitrary characteristic p. Let X(G) be the group of rational characters of
an algebraic group G expressed as an additive group with zero. The K-algebras R
are not, necessarily finite generated as algebras over K.

A subset N of a set M with an action of G is said to be G-invariant, if N is
invariant under the action of G on M. In this case G|y denote the group consisting
of the restriction |y of all o € G to N, which is called the group G on N.

Pseudo-reflections on finite-dimensional vector spaces are defined in [2] and
should be generalized as follows:



Definition 2.2 (Pseudo-reflections of actions) Suppose that R is a Krull K -
domain with (R, G) a regular action of an algebraic group G. Define the subgroup

m(R,G>:~< U Ia<a3>>
PeHt1 (R,RS)

of G which is called the pseudo-reflection group of the action (R, G).

Finiteness of pseudo-reflections of regular actions characterize reductivity of
algebraic groups. We have

Theorem 2.3 (cf. [8]) Let G be the identity component of an algebraic group G.
Then the following conditions are equivalent:

(1) G° is reductive.

(i) R(R,G) is finite on R for any Krull K-domain R with a regular action of G.

3 The abstract descent of class groups

In this section, suppose that A is Krull. For a subset I" of Q(A) satisfying v-I' C A
for some v € A, let div4(T") be the divisor of T'A on A. On the other hand, let 14(D)
be the divisorial fractional ideal of A defined by the divisor D on A. Consider a
K-subalgebra B of A satisfying Q(B) N A = B. For each p € Ht,(B), set

dy= Y vap(pA)diva() € Div(A).

PeOvery (A)

Define the subgroup

E*(A,B):=( € 2Zd,)®Bup(4,B)

peHt1(B)
of Div(A) where Bup(4, B) = @gpenr, 4y mi(prpyz2 Zdiva(P) . Let
@} p: E*(A, B) — Div(B)
be the homomorphism defined by the composite of the projection

E'(A,B)—~ @ 2zd,

peHt(B)
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and the isomorphism

@ Zd, BZapd HZanIVS ) € Div(B)

peHt1(B)

Set Diva(U(Q(B))) := {diva(y) | v € U(Q(B))} C PDiv(A). Then
PDiv(B) 3 D — diva(Ig(D)) € Diva(U(Q(S)))

is an isomorphism whose inverse is the restriction ®% slpiva(uasy) - Since

Diva(U(Q(B))) C E*(A, B),

we define E(A, B) := E*(A, B)/Div4(U(Q(B))). Moreover define the subgoup
L(A, B) = {f € U(Q(A)) | diva(f) € E*(A, B)}

of U(Q(A)). Then:

Theorem 3.1 Under the circumstances as above, we obtain the sequences

0 — (Diva(U(Q(B))) + Bup(4, B))/Diva(U(Q(B)) — E(A, B) — CI(B) — 0

o, LA B)/UQ(B)
A)/0(B)

— E(A, B) — ClI(A)
which are exact.

We introduce the concept of redundant prime elements which partially generate
the subring C of A over B as follows:

Definition 3.2 (Paralleled linear hulls) Consider an intermediate subring C
of A such that C = Q(C)YNA and B C C. The pair (C,{f1,..., fm}) is defined to
be a paralleled linear hull of B with respect to f; (1 < i < m), if the composite of
the inclusion and the canonical epimorphism

B = C
X@ lcan.
C/(CE C(fi— 1))

induces an isomorphism, f; (1 <i < m) are algebraically independent over Q(B)
and

CI(B) = CI(C).
Note in general C' # B[f1,. .., fml]-
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4 Graded structures and paralleled linear hulls

Let S be an integral domain which is a Z™-graded algebra
=@
iczm
over Sp. Then if S is Krull, so is Sy, because So = Q(Sp) N S.

Definition 4.1 (half primary Z™-freeness) We say that S is half primary Z™-
free with respect to {f1,..., fm}, if

for any i; 2 0 and f;, 1 £ j < m, is homogeneous prime element in S of degree
0,...,0,1,0,...,0) having 1 at the j-th part.

Theorem 4.2 Suppose that S is a Z™-graded Krull domain. If S is half primary

Z"™-free with respect to {fi,..., fm}, then (S, {f1,..., fm}) is a paralleled linear
hull of Sy.

Put Zoo:={k € Z | kK <0} and let Z7 be the direct product of k-copies of
Z o. For a subset W of S, let W™ be the set consisting homogenous elements of
Win S. Let
Us := {h € S"™ | h # 0,deg(h) € VAN

For a subset Q of Spec S, let Q"™ be the set of all homogeneous prime ideals
in Q. A divisor

D= Z ag divs(P)

PeHL1(S)

of Div(S) is said to be homogeneous, if all prime ideals in
suppg(D) := {P € Ht:1(S) | agp # 0}
are homogeneous. For a subset of D of Div(.S), we put
D™ .— D € D | D is homogeneous},

Ht1(8)0"™ = Hta ()™ \{S 1., Sfim}

and

Div(S)h™ := {D € Div(S)"™ | suppg(D) N {Sf1,...,Sfn} = 0}.



Lemma 4.3 Under the circumstances as above we have
(i) Cl(U5'S) = {0}
(i) Div(S)geme — CI(S) is an epimorphism.
(i45) Hty(S)hom 5 9P —— PN Sy € Ht(Sp) is bijective and (P, PN Sp) = 1.
(iv) The composite Div(S)home < E*(S, Sp) ‘i:; Div(Sp) is an isomorphism and

mduces
PDiv(S) N Div(S)B"m" = PDiv(Sp).

This follows from the idea of M. Nagata on homogenecous localization (e.g., [3]).
By Lemma 4.3 we must have the isomorphism

CL(S) = CI(So).

The remainder of the sketch of the proof of Theorem 4.2 is omitted.

5 Toric quotients

In this section let (R, G) be a regular action of a connected algebraic group G on
a Krull domain R containing K as a subring.

Using Nagata’s pseudo-geometric rings ([5]) and Rosenlicht’s theorem on Uk (R')
of affine normal domains R', we can generalize the result of [4] without the assump-
tion of finite generations of R as follows.

Theorem 5.1 (cf. [10]) Let f be a nonzero element of Q(R). If Rf is invariant
under the action of G, then K f is G-invariant and, moreover if B N RE # {0} for
any P € Ht1(R) such that vegp(f) <0, then

olf)
f

G0 € U(K)

s a rational character of G.

By this theorem, for a nonzero f € R satisfying that Rf is G-invariant, the
symbol 6 is denoted to the homomorphism

(Sf,giGBUH#EU(K).

Lemma 5.2 We have:



(i) If the set UpeA Overy(R) consists of principal ideals, then it is a finite set,
where A := {p € Ht,(RY) | |Over,(R)| > 2}.
(i1) If the set Ht§2)(R, RY) consists of principal ideals, then it is a finite set.

This finiteness follows from Theorem 2.1 and rank(%(G)) < oc.

Assumption 5.3 Suppose that the both sets of Lemma 5.2 consist of principal
1deals of R.

By this there exist non-associated prime clements fi, ..., f;, of R such that
{Rf1,...,Rfm} NOvery(R)| = |Overy(R)| — 1
for every p € Ht;(R®) and
{Rfr.... . RENC | Overy(R)) = HtP (R, R).
peHt1(RY)

According to Theorem 5.1, the homomorphisms dy,  are rational characters of G.
Let H be the stabilizer

Stab(G : f1,..., fm) = [ |Gy, = [ | Ker(6s,¢)

i=1
of G at the set {f1,..., fm}-
From the choice of f; and Theorem 2.1, we must have

R21 aiafi,G ES R(;Hflaz (5.1)
for any integer a; > 0 (1 <4 < m) and put

RF= 3" Ryas,.CR

which is a K-subalgebra of R”. Clearly R¥ = Rf in the case where the ground
field K is of characteristic p = 0. The equalities (5.1) imply that the subgroup
(0p1.Gv--,04,.c) of X(G) is free of rank m. On the other hand

Rf = Q(RHYNR
and hence the K-subalgebra Rf is a Krull domain with the Z™-graded structure
defined by the homogeneous part

R£ = REL a;

5p;.c

of degree @ = (ai,...,a,) € Z™. Consequently, from (5.1) we infer that, for
S = Rf and Sp = R®, S is half primary Z™-free with respect to {f1, ..., fm}.
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Theorem 5.4 Under the circumstances as above, (R¥,{f1,..., fm}) is a paralleled
linear hull of RS.
This theorem follows from Theorem 4.2.

Next, the class group C1(RY) = CI(R®) shall be studied by the abstract descent
method. For this purpose we introduce the notation as bellow: Consider a K-
subalegba M of R such that M D {fi,..., fm} and Q(M) N R = M which is
invariant under the action of GG. Since M is a Krull domain, for a subset D of the
divisor group Div(M) of M, let us define the subset

Dyory :={D € D | suppy (D) N{Mf1,..., Mfr} =0}

without prime elements f; as supports of divisors. The group G acts on Div(M)
naturally. If D is an G-invariant subset, let D¢ denote the set consisting G-invariant
divisors of D and, for a simplicity, denote D?(M) by the set D¢ N Dy

As R is invariant under the action of G on R, we see Ht; (Rf)bme = Ht, (Rf)“
and
Div(RT)§™ = Div(RN)§ 4s)- (5.2)

Recalling Q(R¥) N R = R, we have
wrs E7(R,RT) — Div(RY)

which is an isomorphism, since Bup(R, Rf) = {0} follows from Assumption 5.3.
For any p € Ht; (RF)§o™, ht(pNRE) = 1 and Overynpe (RF) = {p}, which shows the
set Overy(R) consists of a unique prime ideal and is G-invariant and Overy(R) =
Overynga(R). Thus we have the commutative diagram

Div(R)§p N E*(R, Rf) —— E*(R, RY)
l %Jfb;ﬁnf
Div(Rf)?(Rf) — Div(RY)
and Div(R)F g N E*(R, RT) = Div(R)§ .. Putting
L(R, RT); = {g € L(R, RT) | divk(g) € Div(R)sm)},
we have the exact sequence
0 — L(R,R?)¢/(U(R) N L(R, RT)§) — Div(R)§ ) N E*(R, RY) — CI(R).

Moreover putting

L(R?) s == {h € U(Q(RT)) | divgs(h) € Div(R)§ s},
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by Lemma 4.3 and (5.2) we have the exact sequence
0 — L(RT)¢/(U(RT) N L(RT) ) — Div(RT)§ sy — CURT) — 0

and L(RT);/(U(RS N L(RT)y) = U(Q(RY))/U(R®) whose isomorphism demoted
to @}f’ RG-
Consequently under the circumstances as above, we see

Theorem 5.5 If R is factorial , then

L(R, RT)¢/(U(R) N L(R, RT)y)
L(RT) ¢ /(U(RT) N L(RT)s)

CI(RY) = CI(RY) =

_ L(R> Rf)f/(U(R) N L(R, Rf)f)
&7 o (U(Q(RE)) /U(RE))

For any g € L(R, Rf), as divg(g) is G-invariant and

suppr(dive(g)) C {P € Ht'(R) [ TN R # {0}},
the subspace Kg is G-invariant and ¢, € X(G). Suppose that
U(R) N L(R,RT); C RY. (5.3)
Then CI(R®) = L(R, Rf);/L(Rf);. Put
X(H)rs = {856ln | g € L(R, RT)s}.
In case of p = 0 we see R = R and obtain

Corollary 5.6 Suppose that R is factorial and the condition (5.3) holds. If p =0,
then

CI(RY) = X(H)p ¢.
Moreover by [6, 8, 12] we have

Corollary 5.7 Suppose that R is affine factorial K-domain with trivial units. Let
(R, G) be a stable regular action of an algebraic torus G (i.e., Spec(R) contains
a non-empty open subset consisting of closed G-orbits, see [12]). If p = 0, then
CURY) = X(H/R(R, H)).

In this case, the extension RY — RBEHA) ig divisorially unramified and R g
factorial. Thus this follows from Corollary 5.6 for R = RREH)
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