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ON THE RELATION BETWEEN UNIFORM K‐STABILITY AND

CHOW STABILITY OF TORIC VARIETIES

Naoto Yotsutani

Faculty of Education, Kagawa University

Abstract. The aim of this note is to announce the current research progress
in [HIY18] concerning the relation between uniform K‐stability and as‐
ymptotic Chow stability for polarized toric varieties.

1. PRELIMINARY TORIC GIT STABILITY

1.1. Polarized toric varieties. Let  \triangle be an  n‐dimensional lattice polytope
in  \mathbb{R}^{n} which is described by an intersection of half spaces:

(1.1)   \triangle=\bigcap_{i=1}^{d}\{x\in \mathbb{R}^{n}|\ell_{i}(x) :=\langle x, 
v_{i}\rangle+\lambda_{i}\geq 0\}
where  \lambda_{i}\in \mathbb{Z},  v_{i}\in \mathbb{Z}^{n} is primitive and  d is the number of facets of  \triangle . We
denote the interior and the boundary of  \triangle by  \triangle^{o} and  \partial\triangle respectively. The
set of vertices of  \triangle is written by  \mathcal{V}(\triangle) . Analogously  \mathcal{F}(\triangle) denotes the set
of facets. For a finite set  S, a convex polyhedral cone of  S is a set of the
form

Cone(S)  := \{\sum_{u\in S}c_{u}u|c_{u}\geq 0\}
We observe that a convex polytope  \triangle gives a convex polyhedral cone   C(\triangle)\subseteq
 \mathbb{R}^{n}\cross \mathbb{R} , called the cone of  \triangle and defined by

 C(\triangle) :=\{c\cdot(u, 1)\in \mathbb{R}^{n}\cross \mathbb{R}|u\in\triangle,
c\geq 0\}.

If  \triangle=Conv(S) , then this is described as  C(\triangle)=Cone(S\cross\{1\}) . Defin‐
ing  S_{\triangle}=C(\triangle)\subset \mathbb{Z}^{n+1} , one can see that  S_{\triangle} is an affine (finitely gener‐
ated) semigroup by Gordan’s lemma. Let us denote its semigroup ring by
 \mathbb{C}[S_{\triangle}] . The character corresponding to  (m, k)\in S_{\triangle} is  \chi^{m}t^{k} , and  \mathbb{C}[S_{\triangle}] is
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graded by height, i.e.,  \deg(\chi^{m}t^{k})=k . Consequently, we obtain the graded
 \mathbb{C} ‐algebra

  \mathbb{C}[S_{\triangle}]=\bigoplus_{k\in \mathbb{Z}}R_{k}, R_{k}:=\{f\in 
\mathbb{C}[S_{\triangle}]|\deg f=k\},
from a polytope  \triangle . We define the polarized toric variety  (X_{\triangle}, \mathbb{L}_{\triangle}) by

 (X_{\triangle}, L_{\triangle})  :=(Proj  \mathbb{C}[S_{\triangle}], \mathcal{O}_{X_{\triangle}}(1)) .

Observe that the semigroup  S_{\triangle} is generated by  (\triangle\cap \mathbb{Z}^{n})\cross\{1\} in the above
construction. This implies that the line bundle  \mathbb{L}_{\triangle}=\mathcal{O}_{x_{\triangle}}(1) is very ample.

1.2. Set up and notation. We fix our notation as follows.
 \bullet Throughout the paper  \triangle\subset \mathbb{R}^{n} denotes an  n‐dimensional convex

lattice polytope in  \mathbb{R}^{n} with the form (1.1).
 \bullet  (X_{\triangle}, \mathbb{L}_{\triangle}) is the associated polarized toric variety as constructed in

Section 1.1.

 \bullet For  i\in \mathbb{Z}_{\geq 0},  E_{\triangle}(i) denotes the Ehrhart polynomial of  \triangle satisfying

 E_{\triangle} (  i )  := \#(\sum_{a\in\triangle\cap(\mathbb{Z}/i)^{n}}a)=\dim H^{0}(X_{\triangle}, 
\mathbb{L}_{\triangle}^{i}) .

 \bullet For  i\in \mathbb{Z}_{\geq 0} , we set the sum polynomial of  \triangle which is the  \mathbb{R}^{n} ‐valued
polynomial and is given by

 s_{\triangle} (  i )  := \sum_{a\in\triangle\cap(\mathbb{Z}/i)^{n}}a=\frac{1}{i}\sum_{a\in i\triangle
\cap \mathbb{Z}^{n}}a.
Let  Aut^{0}(X_{\triangle}) denote the identity component of the automorphism group
of  X_{\triangle} . Then there is a maximal torus  T=(\mathbb{C}^{\cross})^{n}<Aut^{0}(X_{\triangle}) by De‐
mazure’s structure theorem. Denoting the normalizer of  T in  Aut^{0}(X_{\triangle}) by
 N(T) , we define the Weyl group  W(X)  :=N(T)/T.

1.3. Chow stability. Next we define Chow form and Chow stability of irre‐
ducible projective varieties. See [GKZ94] for more details. Let  X\subset \mathbb{C}P^{N}

be an  n‐dimensional irreducible complex projective variety of degree  d . Re‐
call that the Grassmann variety  \mathbb{G}(k, \mathbb{C}P^{N}) parameterizes  k‐dimensional
projective linear subspaces of  \mathbb{C}P^{N} The associated hypersurface of   X\subset

 \mathbb{C}P^{N} is the subvariety in  \mathbb{G}(N-n-1, \mathbb{C}P^{N}) which is given by

 Z_{X} :=\{W\in \mathbb{G}(N-n-1, \mathbb{C}P^{N})|W\cap X\neq\emptyset\}.
It is known that is  Z_{X} is an irreducible hypersurface with  \deg Z_{X}=d in the
Plücker coordinates. In particular,  Z_{X} is given by the vanishing of a section
 R_{X}^{*}\in H^{0}(\mathbb{G}(N-n-1, \mathbb{C}P^{N}), \mathcal{O}(d)) . We call  R_{X}^{*} the Chow form of
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X. Note that  R_{X}^{*} is well defined up to a multiplicative constant. Let V  :=

 H^{0}(\mathbb{G}(N-n-1, \mathbb{C}P^{N}), \mathcal{O}(d)) and  R_{X}\in \mathbb{P}(V) be the projectivization of
 R_{X}^{*} . We call  R_{X} the Chow point of  X . Since we have the natural action of
 G=SL(N+1, \mathbb{C}) into  \mathbb{P}(V) , we can define stabilities of  R_{X} as follows.

Definition 1.1. Let  X\subset \mathbb{C}P^{N} be an irreducible,  n‐dimensional complex
projective variety. Then  X is said to be Chow polystable if the Chow point
 R_{X} of  X is  SL(N+1, \mathbb{C}) ‐polystable i.e., the  SL(N+1, \mathbb{C}) ‐orbit of  R_{X} in
V is a closed orbit.

Definition 1.2. Let (X, L) be a polarized variety. For  i\gg 0 , let  \Psi_{i} :   Xarrow

 \mathbb{P}(H^{0}(X, \mathbb{L}^{i})^{*}) be the Kodaira embedding.

(1) Suppose that  \mathbb{L} is very ample.  (X, \mathbb{L}) is said to be Chow polystable
if  \Psi_{1}(X)\subset \mathbb{P}(H^{0}(X, \mathbb{L})^{*}) is Chow polystable.

(2)  (X, \mathbb{L}) is called asymptotically Chow polystable if there is an  i_{0}

such that  \Psi_{i}(X) is Chow polystable for each  i\geq i_{0}.

1.4. Chow weight of  (X_{\triangle}, \mathbb{L}_{\triangle}^{i}) . Let  (X_{\triangle}, \mathbb{L}_{\triangle}) be a polarized toric variety
with the moment polytope  \triangle\subset M_{\mathbb{R}} . We fix any  i\in \mathbb{Z}_{>0} . Let  (\mathscr{X}, \mathscr{L})arrow
 \mathbb{P}^{1} be any  T‐equivariant test configuration of  (X_{\triangle}, \mathbb{L}_{\triangle}^{i}) .

Theorem 1.3 (Theorem 1.1 [Ono13], Corollary 2.7, [LLSW17]). ln the
above, the Chow weightfor the degeneration  (\mathscr{X}, \mathscr{L})arrow \mathbb{P}^{1} is given by

(1.2)  Q_{\triangle}(i, g) :=E_{\triangle}(i) \int_{\triangle}gdx-vol(\triangle)
\sum_{a\in\triangle\cap(\mathbb{Z}/i)^{n}}g(a)
where  g is the corresponding rational piece‐wise linear concave function
over  \triangle . In particular,  (X_{\triangle}, \mathbb{L}_{\triangle}^{i}) is Chow polystable iff  Q_{\triangle}(i, g)\geq 0 holds
for any Weyl group invariant concave piece‐wise linearfunction

 g\in PL(\triangle;i)^{W(X)}=\{g\in PL(\triangle;i)|g(w\cdot x)=g(x) \forall 
w\in W\},
and equality holds when and only when  g is an affine linear.

Applying (1.2) to linear functions, one can see the following.

Corollary 1.4 (Corollary 4.7 [Ono13]). If  (X_{\triangle}, \mathbb{L}_{\triangle}^{i}) is Chow semistablefor
 i\in \mathbb{Z}_{>0} , then

 Chow_{\triangle} (  i )  :=E_{\triangle}(i) \int_{\triangle}xdx-vol(\triangle)
\sum_{a\in\triangle\cap(\mathbb{Z}/i)^{n}}a\equiv 0.
In short, the equality

(1.3)   \sum_{a\in\triangle\cap(\mathbb{Z}/i)^{n}}a=\frac{E_{\triangle}(i)}
{vo1(\triangle)}\int_{\triangle}xdx
holds.
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By the equality (1.3), one can see that  Q_{\triangle}(i, g) is invariant when adding
an affine linear function to  g , and is homogeneous with respect to  g.

Proofof Theorem 1.3. Since  Q_{\triangle}(i, g) is invariant under adding a constant,
we may assume  g\geq 0 . Let  (\mathscr{X}, \mathscr{L})arrow \mathbb{P}^{1} be a  T‐equivariant toric test
configuration of  (X_{\triangle}, \mathbb{L}_{\triangle}^{i}) and  g be the corresponding piece‐wise linear
function. Hence  \mathscr{X} is an  (n+1) ‐dimensional toric variety with the moment
polytope

 Q_{g}:=\{(x, \lambda)\in \mathbb{R}^{n}\cross \mathbb{R}_{\geq 0}
|0\leq\lambda\leq g(x)\}
We observe that

(1.4)   vol(Q_{g})=\int_{\triangle}g(x)dx, E_{Q_{g}}(i)-E_{\triangle}(i)=
\sum_{a\in\triangle\cap(\mathbb{Z}/i)^{n}}g(a)
In the proof of Proposition 4.2.1 in [Dona02], the weight of  \mathbb{C}^{\cross} ‐action on

 \wedge^{E_{\triangle}(m)}H^{0}(\mathscr{X}_{0}, \mathscr{L}^{m}|_{\mathscr{X}
_{0}}) is given by

 w_{m}=\dim H^{0}(\mathscr{X}_{Q_{g}}, \mathscr{L}_{Q_{g}}^{m})-\dim H^{0}
(X_{\triangle}, \mathbb{L}_{\triangle}^{m})
 =E_{Q_{g}}(m)-E_{\triangle}(m)
 =a_{n+1}(i)m^{n+1}+a_{n}(i)m^{n}+\ldots

where

  a_{k}(i)=a_{kn}i^{n}+a_{k,n-1}i^{n-1}+\ldots
Note that there are asymptotic expansions

 E_{Q_{g}}(m)=vol(Q_{g})m^{n+1}+\mathcal{O}(m^{n}) ,  E_{\triangle}(m)=vol(\triangle)m^{n}+\mathcal{O}(m^{n-1})

by the Ehrhart theorem. As in [RT07], the Chow weight for the degen‐
eration  (\mathscr{X}, \mathscr{L})arrow \mathbb{P}^{1} is given by the normalized leading coefficient of
 a_{n+1}(i) , we compute

 w_{m}-mE_{\triangle}(m) \frac{w_{i}}{E_{\triangle}(i)}
 =(E_{Q_{g}}(m)-E_{\triangle}(m))-mE_{\triangle}(m) \frac{E_{Q_{g}}(i)-
E_{\triangle}(i)}{E_{\triangle}(i)}
 = vol(Q_{g})m^{n+1}-vol(\triangle)\frac{E_{Q_{g}}(i)-E_{\triangle}(i)}
{E_{\triangle}(i)}m^{n+1}+\mathcal{O}(m^{n})

 =m^{n+1}( \int_{\triangle}gdx-\frac{vo1(\triangle)}{E_{\triangle}(i)}\sum_{a\in
\triangle\cap(\mathbb{Z}/i)^{n}}g(a))+\mathcal{O}(m^{n})
Here we used (1.4) in the last equality. The assertion is verified.  \square 
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1.5. Uniform  K‐stability. It is crucial to see the coercivity of the K‐
energy map when we consider the existence problem of constant scalar
curvature Kähler metrics on a certain polarized manifold  (X, \mathbb{L}) . It has
been conjectured that the coercivity property of the  K‐energy map is cor‐
responding to uniform  K‐stability of  (X, \mathbb{L}) . In [Hisa16], this conjecture
was justified in the case where  (X, \mathbb{L}) is a polarized toric manifold. The
toric reduction of uniform  K‐stability is the following.

Definition 1.5 (Hisamoto, [Hisa16]). Let  (X_{\triangle}, \mathbb{L}_{\triangle}) be a polarized toric va‐
riety with the moment polytope  \triangle\subset M_{\mathbb{R}} . For a rational piece‐wise linear
convex function  u over  \triangle , we define

  \mathcal{L}_{\triangle}(u) :=\int_{\partial\triangle}ud\sigma-
\frac{vo1(\partial\triangle)}{vo1(\triangle)}\int_{\triangle}udx.
Then  (X_{\triangle}, \mathbb{L}_{\triangle}) is said to be uniformly  K‐polystable in the toric sense if
there exists a constant  \delta_{\triangle}>0 such that

(1.5)  \mathcal{L}_{\triangle}(u)\geq\delta_{\triangle}\Vert u\Vert_{J}
where  \Vert u\Vert_{J} is the  J‐norm defined as

  \Vert u\Vert_{J} :=\inf_{\ell}\{\frac{1}{vo1(\triangle)}\int_{\triangle}(u+
\ell)dx-\min_{\triangle}\{u+\ell\}\},
and  \ell runs over all the affine functions.

2. THE MAIN RESULT

The main result of this note is stated as follows.

Theorem 2.1. Suppose  Chow_{\triangle}(i)\equiv 0 holds for  i\gg 0 . If a polarized
toric variety  (X_{\triangle}, \mathbb{L}_{\triangle}) is uniformly  K‐polystable in the toric sense, then
 (X_{\triangle}, \mathbb{L}_{\triangle}) is asymptotically Chow polystable in the toric sense.

2.1. Approach. One can see that  Q_{\triangle}(i, g)=0 for affine linear functions
by the assumption of  Chow_{\triangle}(i)\equiv 0 in Theorem 2.1. Hence it suffices to
show that for  i\gg 0,  Q_{\triangle}(i, g)>0 when  g\in PL(\triangle;i)^{W(X)} is NOT affine

linear, in order to prove Theorem 2.1.

2.2. Sketch of the proof of the main Theorem. Since  Q_{\triangle}(i, g) is invari‐
ant when adding an affine linear function to  g , we may assume that  u=-g

is a rational piece‐wise linear convex function normalized at  0 in the sense
that

  \inf_{x\in\triangle}u(x)=u(0)=0 , and   \int_{\partial\triangle}ud\sigma=1.
The key lemma below is an improvement of Lemma 3.3 of [ZZ08], not

only it has estimates on the coefficients but also it holds for general rational
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piecewise linear functions. We summarize key ideas of the proof of Lemma
2.2 in Appendix.

Lemma 2.2 (Euler‐Maclaurin Formula). Assume  \triangle is a lattice polytope and
 u is a nonnegative rational piece‐wise linearfunction, then

  \sum_{a\in\triangle\cap(\mathbb{Z}/i)^{n}}u(a)=i^{n}\int_{\triangle}udx+
\frac{i^{n-1}}{2}\int_{\partial\triangle}ud\sigma+\sum_{k=0}^{n-2}\alpha_{k}
i^{k},
where

  \alpha_{k}\geq-C_{n,k;\triangle}(\int_{\partial\triangle}ud\sigma+
\int_{\triangle}udx) , k=0, n-2
for some constant  C_{n,k;\triangle}>0 depending only on  n,  k, and  \triangle.

3. APPENDIX: BOUNDS ON COEFFICIENTS OF EHRHART POLYNOMIAL

AND THEIR APPLICATIONS

In this section, we discuss some application of the bounds on coefficients
of Ehrhart polynomial.

First, we recall some useful results on Ehrhart polynomial

(3.1)  E_{\triangle}(i)= \sum_{k=0}^{n}e_{k}i^{k}
Recall that one has

 e_{n}= vol(\triangle), e_{n-1}=\frac{vol(\partial\triangle)}{2}, e_{0}=1.
No convex geometric meaning is known for the rest coefficients. How‐
ever, the upper and lower bounds for them have been established by [BM85,
HT09], respectively. We conclude them as follows

Theorem 3.1. Let  \triangle be an  n‐dimensional lattice polytope and  e_{k} are given
by (3.1). Then

(1)

 e_{k} \leq(-1)^{n-k}\mathfrak{s}(n, k)vol(\triangle)+\frac{(-1)^{n-k-1}
\mathfrak{s}(n,k+1)}{(n-1)!},
where  \mathfrak{s}_{n,k} denotes the Stirling numbers of the first kind which can
be defined via the identity

 n-1

  \prod(z-k)=\sum \mathfrak{s}(nn, k)z^{k}
 k=0 k=1
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(2) If  n\geq 3, then for  k=1,  n-1 , we have

 e_{k} \geq\frac{1}{n!}[(-1)^{n-k}\mathfrak{s}(n+1, k+1)+(n!vol(\triangle)-1)
\mathfrak{m}_{k,n}]
Here  \mathfrak{m}_{k,n} is given by

  \mathfrak{m}_{k,n}=\min\{C_{k,j}^{n} : 1\leq j\leq n-2\},
where  C_{k,j}^{n} is the k‐th coefficient of the polynomial

 (z+j)(z+j-1)\cdots(z+j-(n-1))

with variable  z.

The following fact will be frequently used later.

Lemma 3.2. If  \triangle is an  n‐dimensional lattice polytope, then

(3.2)   vol(\triangle)\geq\frac{1}{n!}.
In order to prove Lemma 2.2 used in Section 2.2, we need the following

Lemma 3.3. In fact, Lemma 2.2 follows by an approximation argument of
the following lemma, because a general nonnegative continuous function
can be approximated by nonnegative rational piecewise linear function.

Lemma 3.3. Assume  \triangle is a lattice polytope and  u is a nonnegative rational
piecewise linearfunction, then

(3,3)   \sum_{a\in\triangle\cap(\mathbb{Z}/i)^{n}}u(a)=i^{n}\int_{\triangle}udx+
\frac{i^{n-1}}{2}\int_{\partial\triangle}ud\sigma+\sum_{k=0}^{n-2}\alpha_{k}
i^{k},
where

  \alpha_{k}\geq-C_{k}(\int_{\partial\triangle}ud\sigma+\int_{\triangle}udx) ,  k=0 , ...,
 n-2

for some  C_{k}>0 depending on  n,  k, and  \triangle.

Remark 3.4. Our current approach for proving Lemma 3.3 is the following:
since  u is a piecewise linear function, we shall consider a decomposition of
  \triangle=\bigcup_{s=1}^{p}\triangle_{s} such that  u is linear on each piece  \triangle_{s} . Then we assume that
each  \triangle_{s} is a lattice polytope. Otherwise it suffices to consider a dilation
of  \triangle . Setting an  (n+1) ‐dimensional convex polytope  \mathcal{D}_{s}  :=graph(\triangle_{s}) ,
we further assume that all  \mathcal{D}_{s} are lattice polytopes. Otherwise we shall
consider an  i_{0}u for some  i_{0}\in \mathbb{Z} since (3.3) is homogeneous with respect
to  u . However the main difficulty in this approach is that (3.3) does not
have good invariance under scaling of domain. Hence we may need another
approach for dealing with this difficulty.
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