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NEWFORMS OF HALF-INTEGRAL WEIGHT

SOMA PURKAIT (TOKYO UNIVERSITY OF SCIENCE)

This report is a summary of a joint work with Prof. Moshe Baruch on the space of
newforms of half-integral weight.

Let M be odd and square-free and k be a positive integer. In a remarkable work,
Niwa [8] comparing the traces of Hecke operators proved existence of Hecke isomorphism
between Siy1/2(I'0(4M)), the space of holomorphic cusp forms of weight k + 1/2 on the
congruence subgroup I'c(4M) and Sz (I'0(2M)), the space of weight 2k cusp forms on
['o(2M). In [5, 6] Kohnen considers a certain Hecke operator on Sgy1/2(T'g(4M)) which
is an analogue of Niwa’s operator at level 4. This operator has two eigenvalues, one
positive and one negative and the Kohnen plus space is the eigenspace of the positive
eigenvalue. Kohnen considers a new space S, :;e/vzv(/lM ) inside his plus space and proves
that this new subspace is Hecke isomorphic to S5%(T'g(M)), the space of newforms of
weight 2k and level M, giving first instance of Atkin-Lehner type newform theory for
half-integral weight forms. Ueda [11] generalises Niwa’s trace computations and gen-
eralizes Kohnen’s newform theory to the case M odd. Further Ueda proves existence of
isomorphism between Sy1/2(I'o(8M)) and Ss;(I'9(4M)) and with Yamana [13] defines the
plus space i, ,(8M) to consist of f = 37", ang" € Sk412(Lo(8M)) such that a, = 0
for (—1)*n =2,3 (mod 4) and gave newform theory inside this plus space. In particular
they proved isomorphism between S,jﬁe/‘;'(8M ) and SEEV(To(2M)).

In the case M = 1, Loke and Savin [7] gave an interpretation of the Kohnen plus
space in representation theory language using a 2-adic Hecke algebra of level 4. We
extend the approach of Loke and Savin and study genuine Hecke algebras of the Kub-
ota double cover of SLy(Q,) modulo certain compact subgroups S and genuine central
characters v of S. This allow us to obtain certain pairs of conjugate classical operators
on the space Sgi1/2(I'0(2"M)) for v = 2,3. We consider the common —1-eigenspace of
these pairs of conjugate operators for each prime dividing the level and denote it by
Syi1/2(2"M). We prove that this common eigenspace space Sy41/2(2”M) is hecke isomor-
phic to S5g™(Fo(2"~'M)) and satisfies multiplicity one in the full space S1/2(2"M).

Further if f = "> | a,¢™ is in the minus space at level 811 then a,, = 0 for (—1)¥n = 0,1
(mod 4). We do not expect such Fourier coefficient condition for minus space at level 4M.

1. PRELIMINARIES AND NOTATION

Let k, N denote positive integers with 4 dividing V. Let G be the set of all ordered
pairs (o, ¢(2)) where o = (24) € GLa(R)" and ¢(2) is a holomorphic function on the
upper half plane H such that ¢(z)? = t det(a)~"/?(cz + d) with ¢ in the unit circle S*. For
¢ = (a,4(2)) € G define the slash operator [[(]z+1/2 on functions f on H by f|[¢]x11/2(2) =
f(az)(¢(2))~%1. For an even Dirichlet character y modulo N, let

Ao(N,x) = {a" = (a,j(a,2)) €G | a € To(N)} < G.
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where j(a,z) = x(d)eg' (£) (cz + d)}/?, here g4 = 1 or i according as d = 1or3
(mod 4) and (%) is as in Shimura’s notation [10]. The space of holomorphic cusp forms
Ses1/2(To(N), x) satisfy fllo]kr1/2(2) = f(2) for all @ € Ag(N,x). We have Hecke
operators {7y }pn, {Up2}piv o0 Sky1/2(To(V), X)-

Let éfg((@p) be the non-trivial central extension of SLs(Q,) by pe = {£1}, given by

Kuobta 2-cocycle defined as below. For g = (Ccl 3) € SLy(Q,), define

_Je ifec#0
T(g)_{d ife=0

if p = o0, set s,(g) = 1 while for a finite prime p

(c;d), if ed # 0 and ordy(c) is odd
(9) = 1 else.

Define the 2-cocycle g, on SLy(Q,) as follows:
ap(g,h) = (7(gh)7(g), T(gh)7(h)), 55(9)sp(h)sp(gh).
Then the double cover é\l:2(Qp) is the set SLy(Q,) X po with the group law:

(g’ 61)(}7“? 62) = (ghu 5162ap(gvh))‘
For any subgroup H of SLy(Q,), we shall denote by H the complete inverse image of
H in SLy(Q,). We consider the following subgroups of SLy(Z,):

ko) ={ (& 1) 5@ < ce 'z},

b . n
Ki(p") = {(Z d) € SLy(Z,) : c€p"Zy, a=1 (mod p Zp)}.

By [4] for odd primes p, §IJ42(QI,) splits over SLy(Z,) and the center M, of é\I:z(Qp) is
direct product {7} x p1o. However SL»(Q3) does not split over SLy(Z) but instead splits
over subgroup Ki(4). The center M, of SLy(Q3) is a cyclic group of order 4 generated by
(=1,1).

For an open compact subgroup S of SLQ(Qp) and a genuine character v of S, let
H(SLz(Qp)//S v) be the subalgebra of COQ(SLZ(QP)) given by

{f € C(SLa(Qy)) « f(kgk') =F(RYF(K')£(3) for § € SLa(Qy), k, K € S}
under the usual convolution which for any fi, f> € C’f‘)(é\iz(@p)), is defined by

fox folR) = /sﬁz<@p> £1(9) 12(5 Ry dg = /ﬁz(@p) £1(h3) f2(GV)dg,

where dg is the Haar measure on éig(@,,) such that the measure of m is one.

Loke and Savin [7| considered a genuine Hecke algebra for §]Z2(Q2) corresponding to
m and a genuine central character. In the next section we shall study genuine Hecke
algebras for §I:2(Qp) corresponding to m and a given genuine character of M, for
general odd prime p. We will then consider the case of m. While doing so we will also
compute the full integral weight Hecke algebra of GLy(Qs) correponding to Ho(4) (here
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here Hy(p™) denotes the subgroup of GLy(Z,) consisting of elements with (2, 1)th entry
in p"Z,) and verify “local Shimura correspondence” in these cases.
We set up the following notation: For s € Q,, t € Q,, consider the following elements

of SLy(Q,):

w0 = (g 3) w0 = (3 1) w0= (L ) mo= (5 2).

2. LocAL HECKE ALGEBRAS - GENERATORS AND RELATIONS

In this section, we will first consider genuine Iwahori Hecke algebras of éig (Qyp) for any
odd prime p. We will then study the case of 2-adic Hecke algebra at the level 8 extending
the work of Loke and Savin that deal with the Iwahori-type 2-adic Hecke algebra.

2.1. Iwahori Hecke Algebra of é\ﬂz(@p) modulo Ky(p), p odd. Fix an odd prime p.

Let 4 be a character of Ky(p) such that it is trivial on K;(p). Since g‘l’gg & (Zy/pZy)* we

can define 4 by a character of (Z/pZ)*. Define genuine character v on Ky(p) by defining
V(A  €) = e¥(A) for A € Ko(p).

We say H(SLQ(QP)//KO( ),Y) “genuine ” Iwahori Hecke algebra of §I:2(Qp) with respect
to Ko(p) and central character y. We want to describe it using generators and relations.

Lemma 2.1. A complete set of representatives for the double cosets of SAIZZ(QP) mod
Ko(p) are given by (h(p™),1), (w(p™™),1) where n varies over integers.

We say that H(éfg(Qp)//Ko(p),fy) is supported on g € é\flz((@p) if there exists a f €

H(é\f@((@p), Ko(p),7) such that f(g) # 0. We note that in general H(é\iz((@p),Ko(p),'y)
need not be supported on the double coset representatives (h(p™), 1), (w(p™™), 1). However
we can prove the following

Proposition 2.2. If v is a quadratic character then H(SAI:Z(QP)//KU(p),'y) is supported

on the double cosets of Ko(p) represented by (h(p™),1) and (w(p™),1) where n varies
over integers.

For the rest of this section we shall assume ~ to be quadratic.
2.2. Generators and relations. Let T'= {(h(t),¢) : t € Q), e = £1} and Nt o)1)
be the normalizer of T in éig((@p). Note that Ng o \(T) is generated by elements

(h(1), ) (w(t),e) for t € Q). We shall extend the character v of Ko(p) to the normalizer
group Ng, @) T). We note the following relations:

(T)
(h(s), 1)(A(1), 1) = (h(st), (s,1),),  (w(s), D)(w(t),1) = (h(=st™"), (s,1),),
(h(s), D(w(t),1) = (w(st), (s, —1),), (w(s), )(h(t),1) = (w(st™),(=s,1),).
Let €, = 1 or (—1)!/2 depending on whether p = 1 or 3 (mod 4). Thus £ = (_;_1) For
t=p"u € Qy, define

N 1 if n is even - 1 if n is even
v(h(t)) = F(h(u)) {5,, (_) ifnisodd. (W) =7(hw) {5,, (;) if n is odd.

p
Using the relations above one can check that v indeed extends to a character of
N5t (T)-
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We define the following elements of H (é\I:Q(Qp) //Ko(p),7) supported respectively on
the double cosets of (h(p™),1) and (w(p~™),1): For n € Z, and k, k' € Ko(p),

X,y (R(R(p™), DE') = F(k)F((h(p"), 1))F(K'),

Xwtp-m ) ((w(p™"), DF) = 7(R)T((w(p™), D)T(K).
Let Tn = Xheny,1) and Up, = X(y(p-ny,1y- Then Proposition 2.2 implies that 7, and U,
forms a C-basis for H(SLy2(Q,)//Ko(p), 7).

Proposition 2.3. We have following relations:
(1) If mn >0 then T * Tn = Toin-
(2) Forn >0, U Ty, = Uny1.
(8) Formn >0, T_, Uy =Upy1.
(4) Forn>0, Uy x T_p, =U_,.
(5) Forn>0, T, xUy =U_p,.
(6) Forn>1, Uy xU, =75(-1) - T,.
(7) Forn>1, U, xUy =~5(—1) - T_,,.

For the proof of the above proposition we need explicit decomposition of double cosets
into union of single cosets which can be obtained using triangular decomposition of Ky(p).
As a consequence we can obtain simple convolution formulae (as in [2]) in many cases.

We consider two choices for 7y as a character of (Z/pZ)*, either -y is trivial or v is given

by the Kronecker symbol v = (5) Then we have following proposition.

Proposition 2.4. We have following relations.
(p—DUs+p if v is trivial
S ST
» )P T=\%)

P if v is trivial
ep(p— UL + (’71) p ifvy= (;)

(8) If v is trivial, then Ty xUy = p Uy and T_; = 1/p - U * Ty x Us.

We obtain the following theorem.

Theorem 1. The “genuine” Iwahori Hecke algebra H(é\ﬂz((@p)//[(o(p)7 ) for v trivial or

(;) 1s generated as an C-algebra by Uy and U, with the defining relations given by above
proposition.

(2) Uz =

Corollary 2.5. We have the following isomorphisms of Hecke algebras:
H(SLa(Qy)//Ko(p), 1) = H(SL2(Qy)/ /Ko(p), <;> ) 2 Twahori Hecke alg. of PGLy(Qy).
2.3. Hecke Algebra of SLy(Q;) modulo Ko(8). Loke and Savin [7] described genuine
local Hecke algebra of SL(Qs) with respect to Ko(4) and central character of M.

Let v be a genuine character of Ky(4) = K;(4) X M, determined by its value on
(—1,1) such that it is trivial on Kj(4). This character can be extended to the nor-
malizer N, (T) by defining v((h(2"),1)) = 1 for all integers n and y((w(1),1)) =
(1—{-7((—[7,12))/\/§ =: (g, a primitive 8th root of unity. Let H(Ko(4),y) be genuine Hecke
algebra of SL(Q,) with respect to KZ(4) and ~. Let T, = Xnen)1), Un = Xwe-r)1) €
H(SL2(Q2)//Ko(4),7) (defined as in the odd prime case).
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Theorem 2. (Loke-Savin [7|) For m,n € Z,
(1) If mn >0 then T * Tn = Tman-
(2) Uy * Ty, = Upyy and T, Uy = Uy _,p.
(3) Ul *L{n = 7;,,ﬁ1 andUn *Z/{l = J1-n-

The Hecke algebra H(SAI/JQ(QQ)//KO(AL)J) s generated by Uy and Uy modulo relations
Uo — 2V/2)(Up +V/2) =0 and U? = 1.

We now describe the genuine Hecke algebra H(SLy(Q,)// Ko(8),7) for certain characters
v of Ko(8).

We define character v of K¢(8) as follows. Since K,(8)/(K1(8) x M) is generated
by (h(5),1), define v on K;(8) x M, so that it is trivial on K;(8) and takes (—I,1) to
primitive 4th root of uity. So now it is enough to define v on (h(5),1). Since (h(5),1) has
order 2 there are two choices for v((h(5),1)). We will call the resulting two characters of

K (8) as x1 and xa:

1 ifu=1,5 (mod 8Zy)

xal(ht), 1) = {7((—1, 1)) ifu=3,7 (mod8Zy),’
1 ifu=1 (mod 8%Z,)
_)A(-1,1)  ifu=T7 (mod 8Z,)
x2((h(u), 1)) = o fu=5 (mod8Zy)
—((=1,1)) ifu=3 (mod 8Z,).

Note that for v = x1, x2 and (4, €) = (z(s),1)(h(w), 1)(y(t),1)(I,€d) € Ko(8) we have
M (A6 =(x(s), 1) - y(h(u), 1) - y(y(t), 1) - 7(1, €0) = y(h(u), 1) - ¥(I, d).

For simplicity, we put g := (g,1) € §I/12(Q2).
We have the following proposition. The proof is a routine calculation.

Proposition 2.6. A complete set of representatives for the double coset STJQ(QQ) modulo
Ko consists of g where g varies over the following elements of SLy(Q,):
h(2"™), w(2") forn € Z,
h(2")y(4), h(2")y(2) for n >0,
y(A27), y(DRE™), w2 )y(2), (2w (@), y (2w (2 ")y(2) forn > 1,
w(2™My(4), y(4w(2™), y(Dw@™)yA), y(2w2")y(4), y(4w(2)y(2) forn > 2 and
y(2w(27)y(6).

We need to now compute the support of H(//ovKy(8),x1) and H(ovK(8),x2). We
first have the following lemma on vanishing.

Lemma 2.7. The Hecke algebra H(SLy(Q,)//Ko(8), x1) vanishes on the double cosets of

Ko(8) represented by 7(2), y(2)w(2™"), w(27")7(2), 5(2)w(2~")7(2), h(2")7(2), T(2)R(27"),
FT2F6) forn > 1 and GBI, JABE ) for n > 2

The Hecke algebra H(§IZ2(Q2)//K0(8),X2) vanishes on the double cosets of Ko(8) rep-
resented by J(4), g(4)h(27™), h(2M)F(4) for n > 1, T(2)W(2 1)F(6), and y(2)w(27)y(4),
y(4)w(27)y(2), w(27)y(4), g(4)w(2™), g(4)w(27")F(4) where n > 2.
Proof. By ([3, Lemma3.1]) H(SAIZQ(QQ)//W(ES), ~v) is supported on g if and only if for every
k€ K; := Ko(8) N §Ko(8)g~" we have v([k~!, §7!]) = 1. So to check the vanishing at §
we need to just find suitable k.
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For example, for A = y(2)w(27™"), take B = <:§ g) Then B € K5 and
——1 ——1 5422 9 )
[B ’ A ]*<<8+3.22n+1 _3)7 71>7
The above commutator is of the form (<_03 j3> (mod 8Z,), —1) and in its tri-

angular decomposition (as in equation 1) § = 1. Since x; takes value —1, the van-
ishing of H(SLy(Q2)//Ko(8),x1) follows on the double coset of A. The vanishing of

H(SL2(Qq)//Ko(8), x1), H(é\]_/JQ(QQ)//KO(g), X2) at the double cosets listed in the lemma
follow similarly. O

We next illustrate the case of support of H(ﬁlg(Qz)//Ko@), X2) on F(2) before giving
our proposition describing the complete support.
We note that

a—2b b a b
Koo = {(<c+2(a—d) 4 2b+d> £ : (c d) € Ko, ordy(b) 2 1}'

has a triangular decomposition K ; = NKiTKiNXi where
NEwe) = {(z(s), £1) : ordy(b) > 1}, T =TFKo  NEKva) = NKo,

2 2
For B = x(s) where orda(s) > 1 (let s # 0) we have BT1A™1BA = L+ 2_84_;_ 4s _2255+ l)

and s;(B~'A™'BA) = (—s,2s — 1), when ordy(s) is odd, 1 else. Thus for ord,(s) > 2 we
have s3(B"'A™'BA) = 1. If s = 2u with u a unit,

(=s, =25+ 1), = (—2u, —du+1), = (=2, —4du+ 1), (—u, —4u + 1),
= (-2,-3), = 1.

As before, since ord,(s) > 1 the d-factor in the triangular decomposition of [( B, €)~1, %(2)]
is 1 and so

o [xe((R(B),~1)) = —1x 1 =1 if ordy(s) = 1
(B, 97, 7)) = {1 e
For B = h(u) and B = y(t) in Ky2) we check that [(B, €)~!, 7(4)] € K1(8) x {1} and so

X2 takes value 1.
We have the following proposition.

Proposition 2.8. H(éiz(QQ)//Ko@),xl) is supported on precisely the double cosets of
Ko(8) represented by

{h(2"), W) }nez UF(4) U {R(2")7(4), FAR(2T)}n21U
{y(@w(2™), w(27)y(4), FA)W(2")F(4)}n>-

H(é\f/z(Qz)//Ko(S), X2) is supported on precisely the double cosets of K(8) represented
by

{R(2"), W2 ) }nez U 7(2) U
{FE@we2™), w2 72), 5w )F(2), M2"F2), T2 )}z
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2.4. Generators and Relations. Let v be either x; or x,. Following Loke and Savin [7]

we extend the character to the normalizer subgroup Ng;, (Qz)(T ) as before.

For n € Z, define as before the elements 7, and U, of H(ﬁQ(QQ)//KO(S), 7v) precisely

supported on the Ko(8) double cosets of (h(2"),1) and (w(27"), 1) respectively. We obtain
the following relations in H(SLy(Q2)//Ko(8),7).

Lemma 2.9. (1) If mn > 0 then Ty * Tp = Tman.
(2) Forn <0, Uy x T, = Uy, and forn >0, T, x U, =U;_,,.
(8) Forn >0, Uy x Ty, = Usyr, and forn <0, TpxUs =Us_,,.
(4) Form > 2, Uy * U, = Ty and Up, x Uy = T{ .
(5) Form <1, Uy * Uy, = Trno and Up, x Uy = Ty,

2.5. The algebra H(ﬁg(@g)//[(@(g), X1). Consider the case when v = y;.
Since H(éiz((@g)//Kg(S), X1) is supported on Ko(8)7(4)Ko(8), we define V to be an ele-
ment of H(gfq(Qz)//Ko(&, X1) that is supported precisely on Ky(8)y(4) Ko (8) such that
V(y(4) =1.
We obtain the following relations.

Proposition 2.10. (1) VsV =1.

(2) Z/{l*V:L{l :V*L{l.

(3) Us + Uy = 2.

(4) Uy xUy = 2+ 2V.

(5) Up % Vs Uy =2 V5 Uy % V.

(7) Uy *V =Uy =V x Uy and consequently, % * (% —4) * (%—% +2)=0.

Let Uy = Lth, Uy = Ly and Uy = sl

Theorem 3. The Hecke algebra f](é\sz(Qz)//Ko(S),xl) 1s generated by Z:{\l, Zj{; and V
modulo the relations:
—~2
(1) L{l =1 + V
—~2
(2) Uy =1.
(3) Uﬂ/ - VU1 :Ul.
(4) UVUy = VULV .

2.6. The algebra H(é\sz(Qg)//KO(S), x2). Now take v = xs.

Define Z] € H(SLy(Q2)//Ko(8), x2) supported only on the double coset of 7(2)w(271)7(2)
such that Z|(7(2)w(271)y(2)) = 1. Note that

@(2), H@(2), 1)([F(2),1) = (z(1/2),1)

and this normalizes Ko(8). As before we get that Z] x Z] = 1.

Define V' € H(SLy(Q3)//Ko(8), x2) supported precisely on Ko(8)7(2)Ko(8) such that

V(F(2),1) = Sl

Let U, = \/%Z/ll and U, = %L{Q_

Theorem 4. The Hecke algebra H(SLy(Qy)//Ko(8), x2) is generated by Uy, Us and Z
modulo the relations:

(1)U =1.

115



116

SOMA PURKAIT (TOKYO UNIVERSITY OF SCIENCE)

(2) Z/{g =1+ Z.

(3) Uy 2} = Uy = Zily.

(4) LIIZ{Ul = Z{L{IZ{.

We further compute the full Hecke algebra of GLy(Q2) corresponding to Hy(4). As a
corollary we obtain that
Corollary 2.11. We have the following isomorphism of 2-dic Hecke algebras:
H(SLa(Q2)/[Ko(8), x1) = H(SLa(Qa)//Ko(8), x2) = H(GLa(Qs)// Ho(8), Xri)
3. TRANSLATION OF ADELIC TO CLASSICAL.

Let k£ be a natural number, M be odd and x be an even Dirichlet character modulo
v —1\k
2VM. Let XO:)((f) )

Let Agi1/2(27M, xo) be the set of adelic cuspidal automorphic forms @ : SLy(A) — C
satisfying certain properties as considered by Waldspurger [15]. By Gelbart-Waldspurger
there is an isomorphism between Ayy1/2(2"M, x0) = Sk+12(T0(2"M)x), @5 <> f,
inducing a ring isomorphism

q : Endc(Ag+1/2(2"M, x0)) — Ende(Sky1/2(To(2"M), x)-

The local Hecke algebra sits inside Endc(Ag;1/2(2M, xo)) as subalgebra and we will use ¢
to translate certain elements in the local Hecke algebra that we described in the previous
section to classical operators on Si.1/2(I'o(2”M)). For simplicity we will deal only with
the case when x is trivial. The quadratic character case can be treated similarly. Thus
the classical operators so obtained satisfy the local Hecke algebra relations noted in the
previous section.

3.1. N =2"M, M odd and p||/M.
Proposition 3.1. Let 71, U; and Uy € H(é\I/Jg(Qp)//Ko(p), 1) and f € Sky12(Lo(27M)).

Then,
(%) —k— 1/23__:_1]‘ (Z + 8> _ p(s_%)/QUpz(f),
(_?) (M) ZfH(as,%s)}kﬂ/z(z), where

p s=0

Il

(1) a(T)(£)(2)

Il
(7)

(2) q(th)(f)(2)

2 v
_ [(p"n—2"Mms m ) ) 5
o5 = ( 2pM(1 - s) p) € My(Z) is of determinant p* and m, n € Z are such

that pn — (2”M/p)m =1, and ¢, (2) = (2"M(1 — s)z + 1)V/2.
(3) q(Uo)(f)(= Z FI1(Bs, 05, ks1/2(2), where

s=0

Bs = (2&[1 np’f 2:;[15> € To(2/My) with My, = M/p and m, n € Z are
chosen as above and ¢g, = (2" M,z + (np — 2" M,s))"/2.
Let us denote q(p~'/2U,) by sz and q(Uy) by @p.
Corollary 3.2. On Sky1/2(I'o(2"M)) we have

(1) sz s an involution.
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(2) (@, —P)(@z +1)=0.
(3) @p = (%1) pl*’“Upszz.
(4) If € Sky1/2(To(2"M/p)) then @p(f) =

We further deﬁne an operator Q’ on Ski1/2(I'0(4AM1)) to be the conjugate of Q,, by
W, W, ie. Q = zQpIV Thus Q’ satisfies same quadratic as Q,, and we have Q’

()" v Wt

Remark 1. We note that for a prime q such that (q,2M) = 1, one can similarly obtain
the usual Hecke operator Toz on Sii1/2(Lo(4M)). In particular, if we take Ty := X(hig)1) €

- k
H(SLaZq), ) then a(Tr) = () pO2H/21,.
Moreover if p and q are distinct primes such that p", q™ strictly divides N then the oper-

ators S € H(SLy(Q,)//Ko(p™), ) and T € H(SLQ(Qq)KO( ™), %) in Ende(Si1/2(To(N))

commute.
In particular the operators Qp, pz on Sky1/2(To(4M)) that we defined above commute
with Tia for primes q coprime to M.

3.2. N =2"M, M odd and v = 2. We consider the central character v of M, such
that v((—1,1)) = —?**1. We make the same choice for the case below when v = 3. We

translate 71, Uy, Uy € H(gflg(Qz)//Ko(4),7) to classical operators on Si1/5(I'0(4M)) .
Proposition 3.3. For f € Siy1/2(T0(4M)),
(1) g(T)(F)(2) = 2°72R2UL(£)(2).
/9 NG
@) )@ =G () (57) ¥ebwlelnate) wherr

W, = <4n m) with a,b € Z such that 8n—mM = 1 and ¢pw(z) = (2Mz+4)"/2.

4M 8
_/_\F32 3
(5) (N =G (57) D MMM b (@lerriale) where

As = (;& :?\;S—:_TZ with m,n € Z such that 4n — mM = 1 and ¢w(z) =

(Mz+4— Ms)Y/2.

Define @2 = q(Uo)/V2 = q(T1)q(th) /2 and W, := q(Uh;) and @), to be the conjugate
of QZ by W4 The Kohnen’s plus space at level 4M is the 2-eigenspace of Q Note that
Qz and Q’ are self-adjoint with respect to the Petersson inner product. The operators Q

and Qp are p-adic analogue of Kohnen’s operator Q2 and it’s conjugate Qg
3.3. N=2"M, M odd and v = 3.
Proposition 3.4. Let 71, Uy, Us, V € H(SLo(Q2)//Ko(B), x1) and f € Sgi12(To(8M)).
(1) a(T)()(z) = 27D 370 F((2+ 5)/4) = 267020, (f) (2).
— 1\ k+3/2 in m
(2) a@U)(NE) = G5) " (5) 201Wa, dwa(2)]ksrjo(2) where Wa = { 0
with n,m € Z such that 8n — mM =1 and ¢w,(2) = (2Mz + 4)'/2.
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(3) qU)(f)(z) = G (52)" 2 1y FlIWs, i (2)]ks/a(2) where

16n —8mMs m .
W = (16M _198Ms 16 with n,m € Z such that 16n — mM =1 and

bwa(2) = ((4M — 32Ms)z + 4)12.

4 aOE = AM( gy 3) -6+ 1 )

Define operators Wg = q(Zjl;) and V, = q(V) on Sgi1/2(T0(8M)) where Zj{;, V are
elements in H(SL2(Q,)//Ko(8), x1). Note that both V; and Wy are involution. Define V

to be the conjugate of V; by Wi.

Corollary 3.5. Siy1/2(I0(4M)) is contained in the +1 eigenspace of Va and q(U?) = 4
on Sk+1/2(F0(4]\1)).

Proposition 3.6. The operators @p, @;, sz, Wg and \74, ‘74’ are self-adjoint with respect
to the Petersson inner product.

Indeed note that the Petersson inner product is essentially the L?— inner product
of corresponding automorphic forms and checking self-adjointness reduces to checking
equality of certain double cosets.

3.4. Comparison with Kohnen’s projection map. Kohnen [6, Page 37| and later

Ueda-Yamana [13] define function Ps(f) = f|[€ + & 'kt1/2 where £ = ((é i) Lemi/).

We have the following observation.

Proposition 3.7. % (ﬁ) Py = VWV, = WV, Ws = 174’.

Extending Kohnen’s definition, Ueda-Yamana [13] define the plus space SZ+1/2(8M) to
consist of [ =30 an,q" € Ski1/2(Lo(8M)) such that a, = 0 for (—1)Fn = 2,3 (mod 4).
Corollary 3.8. S,j+l/2(8]\[) is the +1 eigenspace 0f‘~/4’. The —1 eigenspace of‘~/4' consists
of f such that a, =0 for (—=1)kn =0,1 (mod 4).

Proof. From [6, equation(2)], Ps(f) = v2 (355) (W a,q" =35 a,q") where S resp.
S°® runs over n with (—1)kn = 0,1 (mod 4) resp. (—1)¥n = 2,3 (mod 4). The result

now follows using above proposition. O

4. MAIN RESULT

Theorem 5. Let M be odd, square-free. Let S, ,(4M) C Ski1/2(4M) be the common
—1-eigenspace of operators @p, @; for all p | 2M . Further let S;+1/2(8M) C Skt1/2(8M)
be the common —1-eigenspace of operators @p, @; for allp| M and Vi, i74’.

(1) The space 51;1/2(2"]\1) has a basis of eigenforms under T2, (q,2M) =1 and Up,
p|2M forv=23.

(2) Siy1j2(2"M) = S5¥ (2771 M). (Hecke isomorphism)

(3) Siy1)5(2”M) has multiplicity-one in the full space Sys1/2(2"M)

(4) If f =52 a,q" € S,:+1/2(8]W) then a, = 0 for (=1)*n = 0,1 (mod 4)

Remark 2. In the simplest case M = 1, we note the following observation:
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(1) Sfy1)5(8) = SH(4) © W A*(4) © WaS™(4) where A*(4) = WiS*(4).

(2) Let SPT 5(8) is the subspace of Sgi1/2(To(8)) consisting of f = 3777, ang™ such
that a, = 0 for (—=1)*n = 0,1 (mod 4). Then given a newform F of weight 2k and
level dividing 4, there exists a unique Shimura-equivalent form in Siy1/2(8,F) N
Sps 2(8).

Remark 3. We note that the decomposition of the space Sky1/2(To(8M)) is completely
analogous to that of Sax(To(4M)) when we look at it through the local Hecke algebra. We
tllustrate this in the case M = 1.

Sok(To(4)) = (Sax(To(1)) ® q(U1)Sak(To(1)) ® q(Ue)Sar(I'o(1)))
® (S (To(2)) @ q(Us) S5 (To(2))) @ 3™ (Lo(4))-

In the above Uy, Uy are elements in the Hecke algebra of PG Ly(Qq) corresponding to the

subgroup Ho(4) coming from Weyl elements (§ '), (§ ') respectively [2]. Also we can

obtain the following relations from that paper, q(Us)q(Uy)Sar(To(1)) = q(U1)Sax(To(1)).
Now let’s look at the space Sii1/2(Fo(8M)). We have

Ser1/2(Fo(8)) = (AT (4) @ q(Uh) AT (4) @ q(Uz) AT (4))
© (S (4) @ qUhp)S™(4)) & S (8).
Here Uy, Us are elements in the Hecke algebra H(SAfJQ(Qp)//KO(8),X1) coming from the
Weyl elements w(27), w(272%) respectively. Recall from [3] that A*(4) = W,ST(4) =
q(U1)S™(4). As in the integral weight we have q(Us)q(Uy)AT(4) = q(Uz)ST(4) = ST(4) =
q(U)A*(4).

Example 1. The space S3/2(I'0(152)) is eight dimensional and there are four primitive
Hecke eigenforms of weight 2 and level dividing 76, namely Fig of level 19, G3g, Hzg of
level 38 and Prg of level 76. We have

53/2(F0(152)) = 53/2(152, Flg) D 15’3/2(1527 Ggg) 5%} 53/2(152, Hgg) (&) 53/2(152, K75).

We compute the Shimura decomposition [9]. As we would expect from the above remark,
S3/2(152, Fig) is 3-dimensional space and is spanned by

fl — q+q5 _ 2q6 _ q9 o q17+2q25 + 2q"}0 + 2q/12 _ 3q45 +O(q50)
F2=q* — 2" — 29" + 20" + ¢® — 24 + 3¢% + 2¢® — ¢*° + O(¢"°)
f3 — q7 7q11 _ 2q16 +q19 +2q28 +q35 72q39 ___q43 +2q44 _ q47_§_0(q50>7
S3/2(152, G3g) is 2-dimensional space and is spanned by
91 =q-— 2q5 + qG + 2q9 o q17 _ q25 o 3q26 _ 4q30 +3q38 +5q42 4 O(q50)
92 = +q" — q' — 2% — 3¢ + ¢ — ¢® 1 2¢° + ¢ + 24" + O(g™),
Ss/2(152, Hyg) is 2-dimensional space and is spanned by
hl=q® +2¢° — 3¢™ — g — 2¢' — ¢ + 22 + ¢® + O(¢*)
h2 = ¢® — ¢+ ¢'% — ¢ — ¢¥ — ¢® — 24" + ¢** + O(¢™)
and S3/5(152, K76) is 1-dimensional space and is spanned by
/
k1l = q2 _qIO _ q14+q18+2q21 _ q22 _ 2q29 _2q33 _q34+2q37+q38 _ 2q41 +O(q50)
The Kohnen plus space 5’3+/2(152) is four dimensional and is spanned by { fa, f3, g2, h2}.
We further note that S3/5(76, F19) is two dimensional and spanned by {f1+ f3, f2— f3
/
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and 55/2(76) is two dimensional spanned by {gl — ¢g2,hl — h2}. The minus space at level
152, 5'3’/2(152) is one dimesnional spanned by k; and is Shimura equivalent to K7g. Note
that k; satisfies the Fourier coefficient condition as noted in the theorem.
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