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degree 3
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1 Siegel Eisenstein series

Let I'Y = Sp(g,Z) be the symplectic group of rank g, i.e. matrix size 2g.
For an integer [,

F(?(l):{(é g>erf’1cs(}m0dz}, F&:{(*é g)epg}7

are the subgroups of I'9. Let ¢ be a Dirichlet character modulo I. If [ = p
is an odd prime, we denote ¢ = xo the trivial character, and ¢ = x, the
quadratic character. We fix a positive integer k such that ¢(—1) = (—1).
Then we define the Siegel Eisenstein series of degree g, level | with character
¥ by

E}, ,(2) = > ¥(det D) det(CZ + D).

(& D)ere\E W
Here Z € Hy := {Z € Sym9(C) | Im(Z) > 0}. The right hand side converges
if k> g+ 1, and Ef, , is an element of My(I(l),v) the space of Siegel
modular forms of weight k level [ with character 1. Siegel Eisenstein series
is one of the most important objects among the Siegel modular forms.

Aim. We want to have an explicit formula of the Fourier coefficients of
Ef o

This aim is quite simple and natural, however the answer is not so easy.
In the full modular case (I = 1 case), under the various contribution of many
mathematicians, finally Katsurada gave the explicit formula [Ka]. For the
case of [ > 1, known results are as follows.

e Mizuno ([Mi, 2009]) g = 2, I: square-free odd, v: primitive
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e G. ([Gu, 2015])) g = 2, [ = p: odd prime, ¢: primitive
e Takemori ([Tal, 2012]) g = 2, I: any integer, ¢: primitive

e Takemori ([Ta2, 2015]) g: arbitrary, I: odd, ¥ = []
wp # Xp-

p|l ¥p is primitive,

Mizuno calculated the Fourier coefficients of Siegel Eisenstein series of
degree 2, by using the Maass lift of the Eisenstein series of Jacobi forms.
The author calculated the Euler p-factor of the Fourier coefficients of Siegel
Eisenstein series of degree 2 and level p, for an odd prime p. By the same
method, Takemori [Tal] calculated the Fourier coefficients for an any level I.
Moreover in [Tal], he found quite simple expressions, that is an important
progression. Based on this result, he got the explicit formula for an arbitrary
degree g ([Ta2]). In this paper, first he constructed some type of Siegel
modular forms, whose Fourier coeflicients are quite simple. Then he showed
that such Eisenstein series indeed coincides with our Elg,l, b

The results above are the case of primitive characters. In the case of
the trivial character, one of the remarkable results is due to Bocherer([Bo)).
Let U(p) be the Hecke operator of level p acting on My (I (p),%) so that
> C(N)e(NZ)— > C(pN)e(NZ). Then Bécherer showed

E{ oo (2) € (U@ (E],(2)) [0< i< g~ 1),
here E,‘g , is the Siegel Eisenstein series of level 1. Thus the Fourier co-
efficients of EY s reduced to that of E}, that is already known by
Katsurada. However finding the coefficients of the linear combination has
an another difficulty and it is not yet known.

Similarly by looking at the action of U(p) operator precisely, Dickson
([Di]) gave the explicit formula of the Fourier coefficients of E? Lo for a
square-free level [. Moreover, he also calculated all the Siege Eisenstein
series, associated with each cusp. We remark that their methods works well
only for the square-free level, since acting U(p) for any times, we can get
only the modular forms of level p, not level p™.

The main result of this article is to give an explicit formula of the Fourier
coefficients of E};p’w, for an odd prime p and primitive character . If v is
not quadratic, this is a part of the results of Takemori ([Ta2]), we mainly
consider the case ¥ = x,.



2 ramified Siegel series

Let E,g 14 be the Siegel Eisenstein series of degree g, weight k, level [ with
character 1. We write the Fourier expansion

B2 = Y C(N)e(NZ).
NeSym? (Z)*
N>0

Here Sym?(Z)* denots the set of half integral matrices, and we put e(M) =
exp(2my/—1Tr(M)) for a square matrix M.

To describe the Fourier coefficients C'(IN), we define the Siegel series with
character. For that we need to prepare some notations. Let

My = {(C,D) € My(2)®* | C, D is symmetric and co-prime}.

Here (C, D) is symmetric if C'D = D'C, and (C, D) is co-prime if there
exist X,Y € My(Z) such that CX + DY = 1,. If we put

M ={(C,D) € Mgy | det C # 0},
we have a bijection
GLy(Z)\M§ — Sym?(Q) (C,D) — CiD.
For a fixed integer [, we put
Sym?(Q)’ := {C'D € Sym?(Q) | (C,D) € MY, C =0 mod I}.
For T = C71D € Sym9(Q), we define §(T') = |det C|, u(T) = det(T)5(T).

Definition. Let 1) be a Dirichlet character modulo I. For s € C and N €
Sym?(Q), we define the Siegel series with character ¥ by

Sg(th, N, 5) := > b(W(T)5(T) *e(TN).

TeSym? (Q) mod 1
The right hand side converges when Re(s) > 0.

Now we consider the Fourier coefficients C(N) of EY, - 1t suffices to
treat the case of N > 0, since if rank N = r < g, then C'(N) comes from the
Fourier coefficients of E} ; ,(Z).
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Proposition 2.1. For N > 0, we have

C(N) = &(N,k)Sy(¢, N, k)

with (172 L
~ 2-9(g- —2mi)9 .
N, k) = det N)k-(o+1)/2,
g—1
Here we set I'y(k) = r9l9—1)/4 H [k —1i/2).
i=0

The calculation of £(IV, k) is due to Siegel [Si]. Next we show that the
Siegel series has an Euler product expression. For each prime number p, let

Sy109(Q)y = Uyzg 5 Sym*(2). 16 p | L we put

Symg((@);j = Sym?(Q)" N Sym?(Q),.

Then T € Sym9(Q) has a decomposition I" = 1. T with Ty € Sym9(Q),,
uniquely modulo Sym9(Z). Let I = [[_; p;*. Then T € Sym9(Q)’ if and
only if T),, € Sym9(Q)y, for all i. T =3 Ty, + >0 Te € Sym?(Q),
we have

o(T) = H 6(Tp,) H 0(Ty,), v(I)= H v(Tp,) H 6(Tg,) mod [.
pi g pill aifl
Thus we have

Se(,N,s) = [ S¥w,N,s), with

g:prime

ST W) ST) Ce(TN) gt

TeSym?(Q)g mod 1

> Y (T)6(T)e(TN) ifq |l

TeSym?(Q),; mod 1

SI(Y, N, s) =

S3(, N, s) with q | [ is called the ramified Siegel series, that is the main
topics of this article.

Remark. The usual Siegel series (without character) is defined by
SIN,s) = > §(T)*e(TN),
TeSymI(Q)q mod 1

whose explicit formula is given in [Kal. It is known that Sg(N,s) = P(q~*
with a rational function ¢(X). Then for ¢ 1 I we have S¢(¥,N,s) =
P(y(q)a™).
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The remark above shows that it suffices to compute the ramified Siegel
series S5 (1, N, s) with p | [. It is convenient to regard that Siegel series are
defined locally. Assume p | ! and e = ord,[. We set the notations over @,
or Zy, as follows. Let

MS(Zyp) = {(C, D) € My(Zy) | (C, D) is symmetric co-prime, detC # 0},

then GLg(Zp)\MG(Zp) =~ Sym?(Qy). For T = C~'D € Sym?(Qy), we set
§(T) = podp(detC) (T = §(T) det(T). Let

Sym?(Q,) ={C~'D | (C,D) € M¥(Z,), C =0 mod p°}.

The Dirichlet character 9 is extended to the character of Z, by compos-
ing the natural surjection Z, — Z/p°. Finally e, is defined by e,(X) =
exp(2mip(Tr(X))) for X € My(Zy,) with the natural isomorphism

1
0 Qp/Zp~ | | =2/2.
nZOp

Then we have

Sg(N, ¥, s) = > b (T)) 8(T)*ep(TN).

TeSym? (Qp)’ mod Zyp

To compute the ramified Siegel series, we rewrite them again using the
symmetric co-prime pair. Let

M, (p°) = {(C,D) € MY(Zp) | C =0mod p, detC = p' (i > 1)},

then
SLy(Z)\My(p°) — Sym?(Q,) (C,D)+ C~'D

is bijective. Since the co-prime condition is not easy to handle, we set
./,\/lvg(pe) ={(C, D) | (C, D) is symmetric, C' = 0 mod p®, detC = p* (i > 1)}.

Lemma 2.2. Assume that (C, D) € MJ(Zy) is symmetric pair and det C #
0. Then there exists M € My(Zy) such that

C=MC', D=MD', (C',D')ecMZy).
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By this lemma, we have

SP(W, N, s) = > (det D)(det C) e, (C"DN). (2.1)
(C.D)ESLy(Zp)\ My (p°)
D mod C

Indeed, if (C, D) € ./\79(]35) is not co-prime, then we have C = MC’', D =
MD'. Since det C is p-power, we have det M = 0 mod p, thus det D is also

divisible by p. Because of the term v (det D), the contribution of such pair
(C,D) is 0.

3 Calculation for degree 3 case

From now on, we assume g = 3, | = p is an odd prime, and ¢ is a primitive
Dirichlet character modulo p. Since

SE(¢, N[U], s) = ¢(det U)"2S2(y, N, s), U € GLy(Zy),
we may assume /N is a diagonal form. Thus we consider the case

(8]
N =p™ Bp" , (p,afy) =1 (3.1)
’\/pH_t

Let A = SL3(Zy) and A7 := v~ 1Ay for v € GL3(Q,). We put

(o
Tijk = P ik
p1+_7+
Then for (C, D) € Mvg(p), C' is contained in A7 A for some 4,7,k (i > 1,

J,k>0). C runs the set A\A7;;xA, there is a bijection
A\ATijkA ~AN ATijk\A, TijkY Y.

Let Z, := AN A™k\A. For C = 7,;,Y with Y € =, if we write D =
DY~ then

(C, D) is symmetric < Ti;éD is a symmetric matrix.
Since

ep(CT'DN) = e, (Y 17 [ D'Y7IN) = e, (7 DN[Y 7)),

)
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as a consequence we can rewrite (2.1) to

Spr g :iip (3i4-25+k)s

i=1 7,k=0

x > w(det D)ey(r, i DN[YY]). (3.2)

Y€Zi5k D mod Tijk

In order to describe Z;;x, we prepare some notations. Let G3 be the
symmetric group of degree 3, that is the Weyl group of GL3. For ¢ € &3,
let (8i5)1<4,j<3 be the corresponding matrix in O(3), that is

1 iti=0()),
% = {O otherwise.
This matrix is also denoted by o. Note that
o tdiag(ay, ag, a3)o = diag(ag(1), as(2), @(3))-
We write the elements of G5 as
=id, 02 = (2,3), 03 =(1,2), 04 = (1,2,3), o5 = (1,3,2), 06 = (1,3).
We set E;i ={Y 1Y € 5}, since only Y ! appears in (3.2).
Lemma 3.1. The representative set E;i is given as follows.
(1) If j =k = 0, then 5 = {13}.

(2) Ifj > 1 and k=0, then B = [}, I; with

1 u w A
I, = 01 0)|uveZly ;,
0 01
o3 3| wez
2 — 3 . g ’
0 0 -1 veZlp
1 pu pv ‘
I3 =<o05]0 1 0 w,v € Z/p 1
0 0 1
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(3) If j =0 and k > 1, then E; = [}, J; with

1 0 u
T = 01 v u,UEZ/pk ,
0 0 1
1 0 wu
u € Z/pF
Jo=<0210 1 pv ) k-1 ,
(O 0 —1 veEZLlp
1 0 pu
T3=R o040 1 pv||uveZ/p!
0 0 1

(4) Ifj, k> 1, then E_1 = [, Ky with

ij
w u € Z/p
v v € Z/pk ,
1

at
w € Z/pTF

[
O = g

1 u w ueZ/p
Ko=<¢0oy|0 1 pv veZ/pFl ),

0 0 —1)| weZ/ptk

1 pu w uweZ/p!
Ks=<o3|0 1 w veZ/ph ,

0 0 -1)| wez/p+t

1 u pw u€Z/p
Ki=<04|0 1 pv veZ/pFl ,

00 1 w € Z/pr L

1 pu pw ucZ/pt
Ks=<¢o0o5{0 1 w v €T/ ,

0 0 1 w € Z/pi k1

1 pu pw uweZ/pPt
Ke=<os|0 1 pv v e 7Z/pFl )

0 0 —1)| weZ/ptkt

Now we have a decomposition

3 3 6

SEW, N,s) = S(1a) + > S(T) + > S(7A) + > S(Ky)



with

S(1g)=> p¥ w(detD)ep(]%DN),
i=1

DeSym?®(Z/p?)

=Y Y p e N N 4(det D)ey(r,0 DN[Y]),

i=1 j=1 YeT, p D mod Ti30
Z Zp (3i+k)s Z Z v,b(det D)ep( o;iDN[YD
i=1 k=1 YeJi D mod 70k

oo 0

DD p RSN g(det D)ey(, i DNY]).

i=1 j=1 k=1 YeK; D mod Tijk

3.1 Calculation of S(13)

For the calculation of S(13), we use the following theorem.

Theorem 3.2 (H. Saito [Sa, Theorem 1.3, Theorem 2.3]). Let p be a prime

number. For N € Sym(F,) and the Dirichlet characger 1y modulo p, we
define

WEN¥) = > z/)(detT)e(lNT).
TeSymI (Fp) p

Then we have an ezplicit formula of W3 (N, v).

The existence of this theorem is informed to the author by professor
Hayashida in Joetsu University of education. Thanks to this theorem, we
can compute S(1,) for any degree g.

For N € Sym9(Z)*, we put N = p™N', N’ # 0 mod p. Then

oo

S(ly) =Y _p ™ > y(detT)e (%TN’).

im1 TeSymd(Z/p) P

Decompose T' = T + pT» with 71 € Sym9(Fp), Ty = Sym?(Z/p*~!), then we

have
1
TN’ )
—m

=y pe zp(detTl)e(pi
=1

Ty €Sym9 (Fp)

1
X Z e<pz m— lTZNI)

T2€Sym? (Z/p*~!)
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The summation for 75 vanishes when i — m — 1 > 0, thus we may assume

1
i <m+1. If i <m then e ( Z._mT1N/> =1, thus
m+1 _ ] 1
S(lg) _ Zl p_«Lgs+g(g+l)(1,fl)/2 ) Z 1/)((161“, Tl)e (pi—m 71N/>
i= 1€8ym? (Fp)
=) piestaleti-D2 N ydet Ty)
i=1 T1€Sym?(Fp)
4 p(mH)gs+g(g+1)m/2 Z P(detTy)e <ET1N/> .
T1€Sym?(Fp) P

The second line equals to W (N’,¢). For the computation of the term
> t(detTy), it is regarded the case of N = 0 in Theorem 3.2, or we can
compute it by using the order of the orthogonal group over finite field.

Our case of degree 3 are as follows. Let G(¢) be the Gauss sum for a
Dirichlet character v¥. We put

1 p =1 mod 4,
En ==
P v—1 p=3mod4.

Proposition 3.3. Let p be an odd prime and v a primitive Dirichlet char-
acter modulo p. For N = p™ diag(a, p”8,p" ) we have the following.

(1) If ¥ # Xp,
S(1s) = {p“““’m—?’%(aﬂw)G(x,,)3a(¢)(;(¢xp) ifr=t=0,

0 otherwise.

(2) If Y = xp,

_Xp(a/67)€pp(6—33)m+5/2~3s if?“ —+=0
S(13) =< 0 ifr=0,1t>0,
Xp(_a)(p _ l)p(6~3s)m+7/2—35 Zf?" > 0.

Remark. Even in the case of higher level, for example level | = p®, similar
arguments holds if the Dirichlet character 1) comes from the character mod-
ulo p. On the other hand if ¥ is primitive in level p¢, we need the result of
Wg (4, N), similar to Theorem 3.2, for Sym?9(Z/p¢). However in [Sal, Saito
calculated W§ (N, ) using the Bruhat decompsition of 7. Thus it seems
difficult to extend the result of [Sa] to the case of Z/p°.



3.2 Contribution for the other terms
For the remaining terms, we have the following.
Lemma 3.4. Forl > 2, we have

S(L) = S(Ky) = 0.

By this lemma, it suffices to consider S(Z), S(7;) (1 <! < 3) and S(Ky).
To calculate theses terms, we use Theorem 3.2 and the following lemma.

Lemma 3.5. (1) If (\,p) =1,

Z <)\x2> p/2 n is even
e —_— prsnd
p" ep Xp(N)DP™? 1 is odd.

z€ZL/p™

(2) Leti>1 and (\,p) = 1. If ¢ is a primitive Dirichlet character modulo
p, then

> wie (2

a€Z/p*
On the other hand if ¥ = xo,

) _ {M(»G(m i=m+l
0

otherwise.

(p—1p~ ' i<m

Aa .
Z Xo(a)e <pi—m> =4 -p" i=m+1

a€Z/pt 0 1> m+ 2.
Now we explain the calculation of S(K1). Since 7, ; kD is symmetric, it
is of the form
a d f
TaD=p |+ pib pie |,
« % p Utk

here * means that it is a symmetric matrix. Then det D = abe mod p and
a,...,f run

a,d, f €Z/p', becZ/p™t, ceZ/ptitk

Thus we have

Z > Z p~ BRIy () (b)) (c)

1 o U wa a d f
X e< : x wla+p'p auw + p’Bu x pIb  ple )
* * wra+ vl B+ p Tty \x o« p Utk
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with 4, j,k > 1, u € Z/p?, v € Z/p* and w € Z/pTHF.

By Lemma 3.5 (2), the summation for a remains only when i = m + 1.
Then the summation for b or d vanish if u or w are co-prime to p, respectively.
Thus we change u + pu and w + pw, and we have

SUCL) = T(@)Gp)p m I 30N S Ry ()

jyk b,e,c u,v,w

e 1 (p*ula+p'B ap?uw + p"Bu b e
pj+1 * w2a + ,U2p'r‘ﬁ + pT—f—t,y * p-—kc

with
, i—1
_ be € Z/pitmtl “e Z/p;
Gk €Z>1, ¢ € L pithtmil 0 ”eZ/p.
w e Z/p]+k—1

Next the summation for v and w are given by

U= Z Z e <p%(u2b + 2uwe + wzp_kc))

u€ZL/pi—1 weZ/pith-1

ab(u+b7tew)?  alc —pFble?)w?
= > >, e pi1 + PR :

u€Z/pi—1 weZ/pith-1

By lemma 3.5 (1), U depends weather j and k are even or odd. The result
is

egxp(bc)p”k/z'l j, k are even
epxp(ab)p? TR/2=1 j s even, k is odd
pitk/2-1 j is odd, k is even
epxp(ac)p?TF2=1 j k are odd.

(3.3)

We decompose S(K;) = Ziwzo S, so that in Sy, j and k run satisfying
(4, k) = (1, v) mod 2.

Continuing to calculate in a similar way, we get the final results. Note
that if 1 is not quadratic character, S,,, remains only when (u, v) = (r,t) mod
2 and S, becomes a single term. On the other hand if v = x,, more com-
plicated term appears, because the character x, in (3.3) cancels with the
original Dirichlet character 1 = x;, and the trivial character xo appears in
the summation. Thus Lemma 3.5 (2) shows that the summation becomes
complicated.
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3.3 final results

We state the results of the ramified Siegel series for ¢ = x;, case.
Theorem 3.6. Letp be an odd prime number and N = p™ diag(c, p" 8, p" 7).
(1) If r is even,

SE(xps N, 8) = xp(—)ep(p — 1)pB=sIm=1/2=s

m+1 r/2-1 ' m+1
p__l)zp3 QSLZ (5— 23)]+ 5/2 57‘ Zpd 28)i

7=0

r—1 r/2—1 r/2—1—j
+p(3 2s)(m+1)+ p4 2s)j + 1) Z p(8f4s)] Z p(5—23)k

j=1 j=1 k=0

4+ Xp(7,Y>Xp(“aﬂ)t+1epp(d—s)m+(o/2—s)r+(2~s)t~1/2—3

m+r/2 A
% (p _ 1) Z p(3423)z _ p(3—28)(m+7'/2+1) '

i=1
(2) If r is odd

S???(Xpa N7 S) = Xp(—C(>Ep(p — 1)p<3‘3)m_1/2—8

m~+1 r/2—1 m-+1
« {(pQ . 1) Z p(3~25)z Z p(5—25)] + (1 + Xp(aﬁ)p(5/2_5>r+1/2) Z p(3—23)z
i=1 =0 i=1

=1 j=1 k=0
(8—s)m~+(5/2—s)r—1—s

r1 | (r-1)/2 (r-1)/2—j
4 pB3-2s)(m+1)+1 Zp(4—2s)] L p-1) Z p(B-45)i Z po-25)k
+ Xp(—B)epp

x {<p DY (Bt ) - (xp(aﬁ)p2“‘“’)t}
k=0

m+(r+1)/
% {(p_ 1) Z p(3 2s)i +Xp (aﬁ) (3— 25)(m+r/2+1)+1/2}_

i=1

We note that the final formula contains the term coinsides with the
degree 2 ramified Siegel seires S5 (xp, N, s) with N = p™diag(a,p”3) (cf.
[Tal, Proposition 3.1]).
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