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Some remarks on Hayato Chiba’s theory
about Kuramoto conjecture
By

Kiyoomi KATAOKA® and Yu MADA**

Abstract

In §1 we review the celebrated result of H. Chiba about Kuramoto conjecture, and give
some remarks on his proof. In §2, after introducing some notation and the related results due
to Chiba, we explain our remarks more explicitly, for example, we give a rigorous analysis
of the resonance poles of the resolvent of some important unbounded operator, which is not
stated in his paper, but theoretically important.

8§1. A short review of H. Chiba’s theory

Y. Kuramoto [1] introduced in 1975 a mathematical model describing synchroniza-
tion phenomena between coupled harmonic oscillators moving over a unit circle :

n
ZIN

N
Zblll —0;(t)), i=1,...,N,

where 0;(t) € R/(27Z) is the phase of the i-th oscillator with a fixed frequency w; €
R (i=1,...,N), and K is the coupling constant. In this model, he used the center of
gravity of the oscillators

n(t) = Z VTG0 € (2 € C; 2| < 1)
]1
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as the order parameter of this system. Then, Kuramoto’s conjecture is the following
(2, 3)):

Let N be sufficiently large. Then, as t — 400, |n(t)] — 0 or [n(t)| converges to a
positive value. More precisely: K. > 0: independent of N such that

Llim In(t)] = 0 for 0 < K < K. (non synchronization),
litm inf |n(t)] >0 for K > K. (synchronization).
—0oC

H. Chiba considered the continuous version of this problem as follows: Let us consider
the density function of a discrete model:

p(t,0,w) : NZ&@ 0:(1))8(w — wy).

=1

Then we have the following equation:

i (oo [ [ et o)} —o

This is because we have

, 1 K ,
dtp:NZI —wi—NZsm (t) = 0:(t)) » 8" (0 — 0,(£))0(w — w;)

Jj=1

=0y —w——ZsmG(t —6)rp

Further we consider the following problem for p(¢,0,w) in [0,oc); X (R/27Z)s X Ry,:

%+—{<w+l{/ dw/27r (t,0',0") sin(6' 9)d9'>p}=0=

p(O, b, w) = g(w)h(a),

where the initial distribution is assumed to have a form g(w)h(6); g(w) is an analytic dis-
tribution on R, for example, Gauss or Cauchy distributions, and h(0) is any distribution
on S'. The order parameter 7(t) is written as

o0 27
n(t) := / dw/ eV00(t,6,w)d6.
—o0 0

By considering p’ := p(t,6,w)/g(w) instead of p, we have

op TPV / _
E+%{ (w—Q—K/ / p'(t, 0, w)sin(6" — 6)do =0,

/(0,0,w) = h(0).
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This form of initial value problems is argued in H. Chiba’s paper [4]. Hereafter we use
the notation p instead of p’. Then, his main results in [4] are the following:

Theorem 1.1. Let g(w) be a Gaussian distribution with mean m, deviation o > 0,
and let K :=2/(mg(m)). Suppose 0 < K < K.. Then, 36 > 0 such that if h(0) satisfies

27
(1.3) / e‘/‘_lj"h(t?)delgé, Vi=1,2,...,
0

[n(t)| decreases exponentially to 0 as t — +o0.

Theorem 1.2. g,m, o0, K. be as above. Then, Jep, 35 > 0 such that if K. < K <
K. + €y, and h(0) satisfies

2m
(1.4) / eﬁj9h,(9)d9‘ <45, Vji=1,2,...,
0
we have
. ~16(K — K.)
] Y B Gl 7} C K
Jm ()] TKigiimy O —Ke)

The following is a rough sketch of his proof.

(1) Expand p(t,0,w) = 3=,y Z;(t,w)eY 1% Then derive a system of equations for
Zi(t,w) (j € Z).

(2) Consider the linearization of the system of equations for infinitely small initial
data h(f). It is considered as a time-evolution equation in the Hilbert space
H = L*(R; g(w)dw). The analysis of this linearized system is used to approximate
the solution of the original equation.

(3) The generator T of the linearized evolution equation is unbounded. So, following
Hille-Yosida theory, we must consider the resolvent (A — 7)~1. Chiba’s idea is the
analytic continuation in A of the inner product ((A — T) 1y, v), where p, v are
taken in suitable dense subspaces X4 of H. Indeed, (A — T)~! is defined only in
{A € C;Re X > 0, ¢ {eigenvalues}} with continuous spectrum on {Re A = 0}, but
he found that ((A —T) ', v) extends to {Re X < 0} as a meromorphic function in
A

(4) For a Gaussian distribution g(w), we can get detailed properties of (A —T) "1, ¥);
poles and residues. Indeed, the poles are all of first order, and Chiba called these
poles generalized eigenvalues of 17" (or resonance poles). Further for each general-
ized eigenvalue we can write down the eigen-vectors in X', explicitly, which are
generalized functions on R. By using these eigen-vectors, he obtained an expansion
theorem of the resolvent.
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(5) According to Chiba, X, are introduced as subspaces of H = L*(R;g(w)dw), and
they have DFS-space structures; topological vector spaces with uncountable semi-
norm systems. But their duals X/, are FS-spaces, in particular complete metric
spaces. He used this metric in the analysis of the original non-linear dynamical
system.

(6) In the same way as the usual arguments in dynamical systems in Banach spaces,
he could employ the center manifold theory. In this case, the center manifold is
1-dimensional, and so the argument reduces to the bifurcation theory for some
non-linear ordinary differential equation with parameter K.

Our remarks concerning his proof:

(a) We can choose dense subspaces X1 in H = L*(R;g(w)dw), which have Banach
space structures. So, the arguments become much simpler.

(b) For a Gaussian distribution g(w), we gave a rigorous proof for the existence and the
asymptotic behavior about the resonance poles. Further, our method covers some
class of analytic distributions including Gaussian distributions, and e—aw’ /M (a, M
are positive constant).

8§2. The key operator and the resonance poles of its resolvent

Firstly, we consider our equation by using Fourier coeflicients of the solution. Since
the distribution function p(t, §,w) is periodic in 6, we can define the Fourier coefficients:

2m
Zj(t,w) ::/0 eV =10 (t.6,w)do.

Then we have

(2.1) mzfimmmw
(2.2) i ez )20 - 102500), Vi

In particular, Zy does not depend on t, and so Zy(t,w) = Zoy(0,w) = 027r h(6)do = 1.
Thus, the equations on Z; (j > 0) are closed among them. Further the order parameter
7(t) is determined only by Z;.

Definition 2.1. (Key operator 7))
Consider the infinitesimal variation v; := 6 Z; (j € Z) of Z;. Then we have the following
linear equations for 1;’s:

o

dyp; | K
2.3) = VL + 0 [ it

— 00
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Put j = 1, then we have our key operator T*:

d
% =Tyy, T:=v—IM+ gp,

where M : g(w) — wq(w), and Pg = (g,1) - 1 with the inner product on L%(R, g(w)dw)
defined by

(2.4)

(2.5) (q1,q2) = /qu ()2 (w)g(w)dw.

Definition 2.2. (Eigen-vectors and the resolvent (A —T)~! of T)
T is not a bounded operator because Mg(w) = wg(w) is not bounded. On the other
hand, we can easily find the eigen-vectors for A € C because

Tq =X <= A\(w) = V-1wg(w) + K(q.1)/2,

that is, ¢(w) = K(q,1)/{2(A — v/—1w)} (Vw). Further the condition for an eigenvalue
A(€ C) is that
K 1

SRS ey ot

2
In the same way, as for the resolvent (A —T) ™!, we have

1) = 0.

(O=T) ') = ¢ ) = ;I

where ¢ = (K/2)(q’,1) is a constant, and so

. BT P v S

c=— (——,1) {1 - —(——r——. .

2 A—vV-lw 2 A—vV-1lw

Therefore, (A — T)~! is a bounded operator if Re A > 0 and the denominator above is

not equal to zero; that is, A is not any eigenvalue.

Proposition 2.3. ([4/). For m € R,0 > 0, we set §(z) := o - g(ox +m). Suppose
that g(z) is an even function of x, and is monotonously decreasing in x > 0. Then,
putting K. = 20/(w§(0)), T has no eigenvalue if K < K. Further, if K > K., T has a
unique eigenvalue A, and the eigen-vector is (Ay — /—1w)~!, where the condition of
At —V—=1m =u > 0 is the following:

o/K = / 9((u/0)y)

1+ y?

Definition 2.4. (Resolvent functions F(\; ¢, ), Fo(\; ¢, v)).
We define a holomorphic function F'(\; ¢, ) of A € C by

Fhip,v) = ((A=T) 'p,9).
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By the arguments above, we know that F is holomorphic in {ReA > 0,A # A}, and
that A, is a simple pole. Further, we have

@

with
K 0 K 1 -t
C_?(m’l)’{l’i(m’l)} -

Since

(@)¥(w)g(w)
e T e e

this term extends analytically to Re A < 0 across ReA = 0 if p(w)y(w)g(w) extends
analytically to Imw > 0. Hence, suppose that g is real analytic in R, ¢ is a boundary

7=

value of a holomorphic function from Imw > 0, and that 1 is a boundary value of a

holomorphic function from Imw < 0. Then, F(\; ¢, %) extends analytically to Re A < 0

across ReX = 0 (except for the zero point of 1 — K(1/(A — v/~1w),1)/2). Hence,

hereafter we suppose that

(1) g(w) is real analytic in R.

(2) ¢(w) and ¢*(w) are boundary values of holomorphic functions from Imw > 0, where
(W) = (@)

Further, by introducing the following change of the variable and the notation:

_ . T —
2= m, T:= m’
o o
with the fact g(w)dw = §(z)dz, we have only to consider the case m = 0,0 = 1.

Hereafter, we suppose that m = 0,0 = 1, and use the variable z instead of w. Thus,

F(h o) = / (0 - T)"Y9) (z) - 0" (2)g(z)dz

Further we define

(2.6) Fo(/\;tp,w)=/tk%;¢*($)g(fﬂ)d$

for Re A # 0.

Proposition 2.5. ([4]).
(i) For Re A > 0, we have

(K/2)Fo(\ 9, 1) Fo (X5 1,9)

(2.7) Fxs,9) = Fo(A . 9) + —7— (K/2)Fo(X;1,1)
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(ii)) We denote by Fy (X;¢,¢), F~(X;¢,1) the analytic continuation to ReX < 0 from
Re X > 0 of Fo(X; ¢, 9), F(X\; p,7), respectively. Then, for 0 < —Re X < 1, we have

(2.8) Fo (A 0,0) = Fo(\ 9. 9) + 277@(—1'/\)1#*(—2')\) (—M)

Definition 2.6. A\o(€ C,Re )y < 0) is called a resonance pole of the resolvent T' if
the analytic extension of F' to {Re A < 0} has a pole at \.

Chiba’s assumption on ¢, ¢ for the following proposition is stronger, that is, analyt-
icity in a neighborhood of R. But, it is obvious that the half-analyticity is sufficient.

Proposition 2.7. Suppose that g(x) is an entire function, and that ¢(z),v*(z) ex-
tend holomorphically to the upper half plane {z € C;Imz > 0}. Then, Ag(€ C,Re\g <
0) is a resonance pole if and only if 1 — (K/Z) 7 (A;1,1) = 05 that is,

(2.10) 2K = / T o+ 2mg(—iN).

The following condition for a resonance pole of the resolvent for the Gaussian dis-
tribution g(z) = e~*"/2/y/27 is more useful than Chiba’s condition in [4].

Lemma 2.8. ) is a resonance pole iff Re A <0, and
(2.11) 1—(K/2) (\/Qﬂe)‘z/z —/ 6_82/2+’\Sd8> = 0.
0

Further, we can calculate the asymptotic expansion of the above integral as |A\| — oo in
the following way:

/ /\s s /2dS =\~ / a /\S) e s /ZdS
0

_—A +/\ / 8 AS .Se_SZ/st:...

Proof.

G(\) ~—/ 9(2) 4o 1 /"’_12/2 dz (Re\ < 0)
T ]R)\—'L$ _\/27]‘ R)\—ZZE o '
Then,

7 1
\/27r/ LI)2 do = V2T RE ()\—ix

\/2_/7,56—)\"'/\ evz2/2 dl':—].-f-)\G(A)
Y

G'(\) = ) e /2 gy
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Therefore,
A
G\ = —6)‘2/2/ e~ /2ds + CeN' /2,

Considering G(—o0) = 0, we have C = 0, and so

A
(2.12) / @) 4 G\ = —e*z/z/ e /24s.
RA— T o
Hence,
A
(2.13) Fy (A1,1) = G(\) + 2mg(—iA) = /2 (—/ e /2ds + \/57_r> .
Put s = X\ — §’, and finally we have
(2.14) G(A) +2mg(—iX) = Varer /2 - / e s g
0

O

Theorem 2.9. (i) Any resonance pole is simple. (ii) If there is a resonance pole
Ao on ReX =0, then Ao = 0 and K = K.. (ii) There exists a large constant C > 0
depending only on K such that for any resonance pole satisfying |A| > C, there exists
an integer n # 0 satisfying at least anyone of inequalities:

A =2/ |n|r b4 (1 - log( 7r/.2K) < © (n<0),
4dnmi In|+v/|n]

N—oyamemia (12 VT2 C )
i ENE

Further, there is a large integer N > 0 such that for any integer n satisfying |n| > N
there exists just one resonance pole in each disc above.

Proof. We give only the proof of (iii). Let ReA < 0. Then, the condition for a

resonance pole is
26_)‘2 /2

Vor —

Hence, under Re A < 0, A # 0 we have

I(\) = /\/ A2 g = / Ds (%) - e~ /2ds = —1 +/ se*e " /2gs,
0 0 0

2 e 2
— e—/\ /2/ eks-—s /2d8.
0

Therefore,

(2.15) T\ <1 +/ se*?ds=1+1=2 (Re)<0).
0
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Note that
1- (K/2)Fy (\1.1) =1 (K/2) (\/%ev/2 - I(A)/A) .

Hence we have the following condition for A:

2 V2
er/? = W(1+(K/2)I()\)/)\).

So we have some integer n satisfying
A?/2 = 2nmi —log(\/7/2K) + log (1 + (K/2)I(\)/)).

Suppose |A| > 2K, then
[(K/2)I(A)/A] < 1/2.

Hence,
log (1 + (K/2)I(\)/\)| <log2+ 7/6.

Further we suppose
IN2/2 > 3(|log(\/7/2K)| + log 2 + 7 /6),
then
|2n7| > 2(|log(\/7/2K)| + log 2 + 7/6).
So, n # 0, and
2nmi — log(\/m/2K) + log(1 + (K/2)I(X)/X)
g <1 | —log(V/7/2K) +log(1 + (K/2)I(N) /)\))

2nmi

where we have the following estimate:

arg (1 |~ log(v/7/2K) +log(1 + <K/2>I<A>/A)>

2nmi

< /6.

Since

X = /2(2nmi — log(v/7/2K) + log(1 + (K/2)I()/\))

and Re A < 0, we can conclude A =

(1 , ~los(/7/2K) + log(1 + (K/2)I(A)/A)>l/2 n=0)

2 1
Inlme 2nmi

0).
2nmi (n<0)

2Tl o <1+ _log(\/ﬂ—/ﬂ()+log(l+(K/2)I(/\)/,\))l/2

47
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Put

2nmi

( —log(\/ZK) +log(1 + (K/2)I()) //\)) 12
Then, since Re H (A

4dnmi

(N2 — (1 _ MLZ’_(_)>2|

‘ < 1og<mz<>> M

dnmi - ReH(A) +1

_ Nlog0 -+ (R/2)T00/) + Hoglym/2K))?

8|n|m
2|n|mw
Because
[log(1+ 2)/2| < 2log(3/2) (V22| < 1/2),
we have
H(\) — <1 - Lg(ﬂ”)

—1 , (log(y/m/2K))*
< 2log(3/2)K A7 + S 167r10g(3/2)K|n||/\| '+ (log(y/7/2K))
- 2|n|mw 16n272

On the other hand, since

N = 23/ [HO)| > ZW\J Re <1+ —log(\/ﬂ/QK)+log(1+(K/2)I(/\)//\)>

2nmi

> \/4|n17r (1 - 27"7{&) > /11[nl7/3.

we obtain

A7 < /3/(11m)|n| V2 < |n| 712

Hence,
HO) - [1- log(\/7/2K) 167Tlog(3/2)K\n|[)\| !+ (log(\/7/2K))
4nm 16|n|?m?
167r log(3/2)K + (log(\/7/2K))*/+/|n| 167r10g (3/2)K + (log(y/7/2K))
1672|n|3/2 1672|n|3/2

Thus we can take the large constant C' in the theorem as

szax{ZK, \/6(110g(\/7ﬁ§K)| +log2 + 7/6), 167rlog(3/2)K1_g7r(2log(\/mK))2}.
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As for the existence of the resonance poles, we use Rouché’s theorem. We put
fA) := A?/2 — 2n7i + log(\/7/2K) — log(1 + (K/2)I(\)/)),
h(X) := A?/2 — 2n7i + log(\/7/2K),

where n # 0 is any integer satisfying [n| > log(y/7/2K). Since the argument goes in
the same way, we consider only the case n > 0. Easily to see, the zero point of h in
Re A <0 is given by

1/2
An = VAnmeomilA <1 _ lalym/2K) )> |

2nmi

For some ¢ satisfying n|A,|/2 > ¢ > 0, which will be determined after this argument,
we put
D, :={X € C;|A = \,| <c¢/n}.

We compare the numbers of zero points in D,, for f,h. Since ¢/n < |\, it is clear that
the number of zero points in D, of h is just 1. So, we will show the following inequality:

sup{|f(A) = h(A)|; A € D, } < inf{|h(A\)|; A € 8D, }.
Indeed,

sup{[f(A) = A(A)|; A € Dy} = sup{|log(1 + (K/2)I(A)/A)|; A € ODy}
< sup{2log(3/2)|(K/2)I(X)/N)|; A € ID,} < sup{2Klog(3/2)/|\|; A € 0D, }
< 2K10g(3/2)/(|An| — ¢/n) < 4K log(3/2)/|An| < 4K log(3/2)/V4n.

On the other hand, since
R(An +w) = Aw + w?/2 = Aw(1 4+ w/(2\,)).
we have
inf{[h(\)}; A € 8D, } > [Aal(e/n) (1~ (c/n)/|2Xn) = Vanm(c/n)(1 = 1/2)) > ev/7/n.
Therefore we have only to take c¢ as
e\/m/n > 4K log(3/2)/V4Anm  (or equivalently, 2K log(3/2)/m < ¢).

In fact, we can choose such c if

1— log(\/7/2K) 2 .

2nmi

2K log(3/2)/m < n|An|/2 = Vn3w
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Therefore, it is sufficient if n > max{log(\/7/2K), {2K log(3/2)}?/3/7}. Hence take
N = max{log(y/7/2K). {2K log(3/2)}*/? )7} + 1.

By the following lemma 2.10, the resonance pole which we obtained is just the one in
(23¢). This completes the proof. |

Lemma 2.10. Put
. V2K
E,:= { A = 24/[n|m e5mi/4 (1_—log( "/ )>‘ ¢ }

- < —=
Anmi nly/T
Then, for large integers n,m, we have

DoNEn =0 (n#m).

Proof.
1/2
. log(\/7/2K ) log(+/7/2K
dy := |2¢/[n]m 579/ (1 - M) — VanzeSTilt <1 _ log(v/7/2K) ))
Anmi 2nmi
<1 i 1og(mx)>2 ~ <1 _ log(\/w_/_EK))
—9 {n|7r 4nT 2n7e - 2 /}nlﬂ(log( /TF/QK>)2.

1/2 2212
(1 B 1og<\/rr/21<)> N (1 B log(\/'lr/QK)> / 16n°m

4dnmi 2nmi

Therefore, suppose that n satisfies

2y/|n|m(log(y/7/2K))? <

16n272

Slo

1672¢

M(log(\/r/fm))?)z

, | or equivalently n > (

Then, since d,, < ¢/n, the center of E,, belongs to D,,. As for the distance between the
centers of E,. E,, (n # m) we have

d(n,m) = |2y/|n|m e57/4 (1 _ log(v/m/2K) 7T/2K)> — 24/|m|m 574 <1 _ log(V/m/2K) ﬂ/2K)> '
’ Anmi dmmi
B log(y/7/2K) log(+/m/2K)
=2vm|Vin (“W) — Vimi (1_W>}

> 2v/7 (| /Il = v/l
(see the real part and the imaginary part). Therefore, in order to prove

D,NE,=0
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for n # m,n,m > N with a sufficiently large N, we have only to see

c C

Further, by the arguments above, we have only to prove the following inequality:

2\/7?(I\/W— \/M‘) > % + % + % = 2¢/n + C/(my/m).

Put
F(n) =27 (|V/Inl = Vil ) = 2¢/n = C/(my/m).
Then, when n > m, f =2y/7(y/n—/m)—2¢c/n— C/(my/m) and so f'(n) > 0. Hence,

f(n) = f(m+1) =2v/7/(Vm +1+Vm) - 2¢/(m +1) = C/(my/m).

It is clear that the right side above is positive for any sufficiently large m. On the other

hand, when n < m, f = 2\/7(y/m — /n) — 2¢/n — C/(m+\/m) and so

F(n) = —\/7/n+2c/n? = 2 — Vmn®

n2

is negative for any sufficiently large n. Therefore, since
f(n) 2 f(m = 1) = 2/7/(vm + Vm = 1) = 2¢/(m — 1) = C/(mv/m),

f(m —1) and so f(n) is positive for any sufficiently large m. Consequently we have a
large N > 0 such that for any n,m > N(n # m) we have f(n) > 0. O
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