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A method for computing generic Lê numbers
associated with non‐isolated hypersurface singulrities

By

Shinichi TAJIMA*

Abstract

Lê cycles and Lê numbers introduced by D. Massey are considered in the context of symbolic
computation. A method for computing generic Lê numbers is proposed. Keys of the proposed
method are the use of parametric saturations in polynomial rings and of parametric local
cohomology systems.

§1. Introduction

In 1991, D. Massey studied non‐isolated hypersurface singularities and introduced

the concept of Lê cycles and that of Lê numbers ([8], [9]). The Lê numbers are gener‐
alization of the Milnor number. D. Massey showed, among other things, in particular
that the alternating sum of Lê numbers is equal to the leduced Euler characteristic of

the Milnor fibre. He also gave in [8], [9], a method for computing Lê cycles and Lê
numbers. However, as Lê numbers depend on the choice of coordinate systems used in
computation, they are not invariants of singularities. In contrast, generic Lê numbers

are complex analytic invariants of singularities (remark 9.1 in [10]). A problem comes
from fact that no effective way for computing generic Lê numbers is known.

In a series of papers, by using the langage of derived category and the theory of
perverse sheaf and micro‐support, D. Massey has developed and generalised the theory
of Lê cycles and Lê numbers in tnore general context. Nowadays, Lê cycles and Lê

numbers are extensively studied by several authors ([1], [2], [4], [6]). Note in particular,
as T. Gaffney pointed out, that Lê cycles and generic Lê numbers are closely related
with holonomic D‐modules associated with hypersurface singularities ([3], [10]) It is
therefore desirable to establish an effective method for computing generic Lê numbers.
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We propose in this paper an effective method for computing generic Lê numbers.
The main idea of our approach is the use of a familly of coordinate systems. Key tools
are parametric Gröbner systems [13], [19] and parametric local cohomology systems
[15]. We show that these two tools allow us to compute generic Lê numbers without
choosing a generic coordinate system.

§2. Polar variety and Lê cycle

In this section, we recall some basics on polar varieties and Lê cycles.
Let  X be an open neighbourhood of the origin  \mathcal{O} in  \mathbb{C}^{n+1} Let  h be a holomorphic

function defined on  X ,  S the hypersurface  S=\{x\in X|h(x)=0\} defined by  h . Let
 \Sigma_{h} denote the singular set of  S :

  \Sigma_{h}=\{x\in S|h(x)=\frac{\partial h}{\partial x_{0}}(x)=\frac{\partial 
h}{\partial x_{1}}(x)=. . . =\frac{\partial h}{\partial x_{n}}(x)=0\}.
Let  s be the dimension at  \mathcal{O} of the singular set  \Sigma_{h}.

Now let us breafly recall a method given by D. Massey for computing  L\hat{c} cycles and
Lê numbers. Suppose that a system of coordinates  z=  (z_{1}, z_{1}, \ldots, z_{n}) is given. AssuIne
that it is generic enough.

Remark D. Massey introduced in [8] several notion of genericity. We refer the
reader to [8], [9] for details.

For  s<k\leq n , set

 J_{h,z}^{(k)}= ( \frac{\partial h}{\partial z_{k}}, \frac{\partial h}{\partial 
z_{k+1}} \frac{\partial h}{\partial z_{n}}), I_{\Gamma_{hz}}^{(k)}=J_{h_{:}z}
^{(k)}\subset \mathcal{O}_{X}
 Z_{h,z}^{(k)}=V(J_{h,z}^{(k)}) , \Gamma_{h,z}^{(k)}=Z_{h,z}^{(k)}.

For  k=s , set

 J_{hz}^{(s)}=  ( \frac{\partial h}{\partial z_{s}}, I_{\Gamma_{hz}}^{(s+1)}) ,  I_{\Gamma_{hz}}^{(s)}=J_{h,z}^{(s)} :  I_{\Sigma_{h}}^{\infty} . (saturation)

 Z_{h,z}^{(s)}=V(J_{h,z}^{(s)}) , \Gamma_{hz}^{(s.)}=V(I_{\Gamma_{hz}}^{(s)},)
and

 I_{h,z}^{(s)}=J_{h,z}(s):(I_{\Gamma_{hz}}^{(s)})^{\infty} \Lambda_{h,z}^{(s)}=V
(I_{h,z}^{(s)}) .

For  0<k<s , set

 J_{h,z}^{(k)}=( \frac{\partial h}{\partial z_{k}}, I_{\Gamma_{hz}}^{(k+1)}) .  I_{\Gamma_{hz}}^{(k)}=J_{h,z}^{(k)}:I_{\Sigma_{h^{\dot{}}}}^{\infty}
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 Z_{h,z}^{(k)}=V(J_{h,z}^{(k)}) , \Gamma_{h,z}^{(k)}=V(I_{\Gamma_{hz}}^{(k)})
and

 I_{h,z}^{(k)}=J_{h,z}(k):(I_{\Gamma_{hz}}^{(k)})^{\infty}, \Lambda_{h,z}^{(k)}=
V(I_{h,z}^{(k)}) .

For  k=0 , set

 J_{h,z}^{(0)}=( \frac{\partial h}{\partial z_{0}}.I_{\Gamma_{hz}}^{(1)}) , 
Z_{h,z}^{(0)}=V(J_{hz}^{(0)}) ,

and

 I_{h,z}^{(0)}=J_{h.z}(0) , \Lambda_{h,z}^{(0)}=V(I_{h,z}^{(0)}) .

 \Gamma_{h.z}^{(k)} and  \Lambda_{h,z}^{(k)} are called polar variety and Lê cycles (or Lê variety) respectively.
Under the genericity condition, we have

Proposition 2.1. ([8], [9])

k)  \dim\Lambda_{h,z}^{(k)}=k
(ii)   \Gamma_{h_{:}z}^{(k+1)}=\bigcup_{i\leq k}\Lambda_{h,z}^{(i)}
(iii)   \Sigma_{h}=\bigcup_{k\leq s}\Lambda_{h,z}^{(k)}
The intersection numbers at the origin  \mathcal{O}

 \gamma_{h,z}^{(k)}=(V(z_{0}, z_{1}, \ldots, z_{k-1})\cdot\Gamma_{hz}^{(k)})
_{\mathcal{O}}, \lambda_{h,z}^{(k)}=(V(z_{0}, z_{1}, \ldots, z_{k-1})
\cdot\Lambda_{h,z}^{(k)})_{\mathcal{O}},
are called polar multiplicity and Lê number respectively.

Note that if we define

 \zeta_{h,z}^{k)}=(V(z_{0}, z_{1\cdots:}z_{k-1})\cdot Z_{hz}^{(k)})_{\mathcal{O}
}
then we have

Proposition 2.2. ([10])

(i)  \zeta_{h,z}^{(k)}=\gamma_{h,z}^{(k)}+\lambda_{h,z}^{(k)},  1\leq k

(ii)  \zeta_{h,z}^{(0)}=\lambda_{h,z}^{0)}
The result above will be used in the next section for computing generic Lê numbers.

The following example is taken from a paper of A. Zaharia [20].

Example 2.3.

Let  h  (x_{1}, x_{2}, y_{1}, y_{2})=y_{1}^{2}(y_{1}+x_{1}^{3}+x_{2}^{2})+y_{2}^{2} and set  S=\{x\in \mathbb{C}^{4}|h(z)=0\} , where

 x=(x_{1}, x_{2}, y_{1}, y_{2}) . The singular locus  \Sigma_{h,x} of the hypersurface  S is

 \Sigma_{h.x}=\{ (x_{1}, x_{2}, 0,0)|x_{1}, x_{2}\in \mathbb{C}\}\cong 
\mathbb{C}^{2}\subset \mathbb{C}^{4}

The dimension  s of  \Sigma_{h,x} is equal to 2.
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 J_{h,x}^{(3)}=( \frac{\partial h}{\partial y_{2}})=(y_{2}) , Z_{h,x}^{(3)}=V(J_
{h_{)}x}^{(3)}) ,

 I_{\Gamma_{hx}}^{(3)}=(y_{2}) ,  \Gamma_{h,x}^{(3)}= {(  x ı  :^{x_{2:}y_{1},0)}|x_{1},  x_{2}.y_{1}\in \mathbb{C}\}.

Since

 J_{h,x}^{(2)}=( \frac{\partial h}{\partial y_{1}}, y_{2})=(2(x_{1}^{3}+x_{2}
^{2})y_{1}+3y_{1}^{2}, y_{2}) ,

we have

 I_{\Gamma_{hx}}^{(2)}=J_{h,x}^{(2)}:I_{\Sigma}^{\infty}=(2(x_{1}^{3}+x_{2}^{2})
+3y_{1}, y_{2}) , I_{h,x}^{(2)}=(y_{1}, y_{2}) ,

and

 \Gamma_{h_{)}x}^{(2)}=\{ (x_{1}, x_{2}, y_{1}, 0)|2(x_{1}^{3}+x_{2}^{2})+3y_{1}
=0\} ,  \Lambda_{h,x}^{(2)}=\{(x_{1} , x_{2}, 0,0)|x_{1} : x_{2}\in \mathbb{C}\}.
From

 (x_{1}, x_{2}, I_{\Gamma_{hx}}^{(2)})=(x_{1}, x_{2}, y_{1}, y_{2}) , (x_{1}, x_
{2}, I_{hx}^{(2)})=(x_{1}, x_{2}, y_{1}, y_{2}) ,

thc polar mmltiplicity  \gamma_{hx}^{(2)} and the Lê number  \lambda_{hx}^{(2)} are

 \gamma_{h,x}^{(2)}=\dim_{\mathbb{C}}(\mathcal{O}_{X}/(x_{1} , x_{2}, y_{1}, 
y_{2})=1 ,  \lambda_{h,x}^{(2)}=\dim_{\mathbb{C}}(\mathcal{O}_{X}/(x_{1} , x_{2}, y_{1}, y_
{2})=1.

As  J_{h,x}^{(1)}=  ( \frac{\partial h}{\partial x_{2}}, I_{\Gamma_{hx}}^{(2)})=(x_{2}y_{1}^{2}, 
2(x_{1}^{3}+x_{2}^{2})+3y_{1}, y_{2}) ,

 I_{\Gamma_{hx}}^{(1)},=J_{h,x}^{(1)} :  I_{\Sigma}^{\infty}=(2x_{1}^{3}+3y_{1:}x_{2}, y_{2}) ,  I_{h.x}^{(1)}=J_{h,x}^{(1)} :  (I_{\Gamma_{hx}}^{(1)})^{\infty}=(2x_{1}^{3}+2x_{2}^{2}+3y_{1}, y_{1}^{2}, 
y_{2}) .

From

 (x_{1}, x_{2}, 2x_{1}^{3}+3y_{1} , y_{2})=(x_{1} ,  x_{2} , yı ,  y_{2}) :  (x_{1}, 2x_{{\imath}}^{3}+x_{2}^{2}+3y_{1} , y_{1}^{2}, y_{2})=(x_{1}, 2x_{2}
^{2}+3y_{1}, y_{1}^{2} : y_{2}) ,

we have

 \gamma_{h,x}^{(1)}=\dim_{C}(\mathcal{O}_{X}/(x_{1}, x_{2}, y_{1}, y_{2})=1 ,  \lambda_{h,x}^{(1)}=\dim_{C}(\mathcal{O}_{X}/(x_{1}, 2x_{2}^{2}+3y_{1}.y_{1}
^{2}, y_{2})=4.

 \Gamma_{h_{\backslash }x}^{({\imath})}=\{ (x_{1}, 0, y_{1} , 0)|2x_{1}^{3}+
3y_{1}=0\} ,  \Lambda_{hx}^{(1)}=\{(x_{1} , x_{2}, 0,0)|x_{1}^{3}+x_{2}^{2}=0\}.
Finally,  J_{h,x}^{(0)}=  ( \frac{\partial h}{\partial x_{1}}, x_{2},2x_{1}^{3}+3y_{1}, y_{2})=(x_{1}^{2}
y_{1}^{2}, x_{2},2x_{1}^{3}+3y_{1}, y_{2}) and  I_{h,x}^{(0)}=J_{h,x}^{(0)},

we have

 \lambda_{hx}^{(0)}=8
by direct computation.

Lê numbers  \lambda_{h,x}^{(2)},  \lambda_{h,x}^{({\imath})} :  \lambda_{h,x}^{(0)} are 1, 4, 8. Note that since  \zeta_{h,x}^{(2)}.  \zeta_{h,x}^{(1)} and  \zeta_{h,x}^{(0)} , are equal

to 2.5 and 8, it follows from  (\gamma_{h,x}^{(2)}, \gamma_{h,x}^{(1)})=(1,1) that  (\lambda_{h,x}^{(2)}, \lambda_{h,x}^{(1)}, \lambda_{h,x}^{(0)})=(1 , 4, 8  ) imme‐

diately. Note also, as a set we have  \Lambda_{h,x}^{(1)}=\Gamma_{h,x}^{(2)}\cap\Sigma_{h}.
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For a relation with holonomic  D‐modules associated with  b‐functions, we refer the
readers to [18].

§3. algorithm

We give an outline of an algorithm for computing generic Lê numbers. The main idea

of the proposed method is the use of a family of linear change of coordinate systems.

Key tools utilized to realise the idea above are parametric Gröbner systems [13], [14]
and parametric local cohomology systems [15], [17], [19].

For a given system of coordinates,  x= (  x_{0}, xı  x_{n} ) in  \mathbb{C}^{n+1} , we set  z=(z_{0}, z_{1}, \ldots, z_{n})
by

 x_{0}=z_{0}+t_{0} , lzı  +t_{0,2}z_{2}+\cdot  \cdot  \cdot+t_{0,n}z_{n}

 x_{1}=z_{1}+t_{1,2}z_{2}+t_{1,3}z_{3}+\cdots+t_{1,n}z_{n}

. . .  =\cdots

 x_{n}=z_{n}

where  t_{i,j} are parameters.

Algorithm

input  h(x) : polynomial

output  (\lambda^{(s)} , \lambda^{(s-1)}, \ldots, \lambda^{(1)}, \lambda^{(0)}) : generic Lê numbers

stepl. compute the radical of the Jacobi ideal  I_{\Sigma x}=\sqrt{(\frac{\partial h}{\partial x_{0}},\frac{\partial h}
{\partial x_{1}}\frac{\partial h}{\partial x_{n}})}
step2. compute the dimension  s at  \mathcal{O} of the singular set  \Sigma.

step3.  I_{\Sigma} : rewrite  I_{\Sigma} . in terms of variable  z.

step4. set  J_{h}^{(s+1)}=  ( \frac{\partial h}{\partial z_{s+1}}, \frac{\partial.h}{\partial z.+2}, \frac{
\partial h}{\partial z_{n}})  I_{\Gamma_{h}}^{(s+1)}=J_{h}^{(s+1)}
step5. for  k=s to 1,

 J_{h}^{(k)}=  ( \frac{\partial h}{\partial z_{k}}, I_{\Gamma_{h}^{(k+1)}}),  I_{\Gamma_{h}}^{(k)}=J_{h}^{(k)} :  I_{\Sigma}^{\infty} (saturation)

 \zeta^{k}=(V(z_{0}, z_{1}, \ldots.z_{k-1})\cdot Z_{h}^{(k)})_{\mathcal{O}}, 
\gamma^{(k)}=(V(z_{0}, z_{1}, \ldots, z_{k-1})\cdot\Gamma_{h}^{(k)})
_{\mathcal{O}},
where

 Z_{h}^{(k)}=V(J_{h}^{(k)}), \Gamma_{h}^{(k)}=V(I_{\Gamma_{h}}^{(k)}) .

 \lambda^{(k)}=\zeta^{(k)}-\gamma^{(k)}, |\Lambda^{(k)}|=\Gamma_{h}^{(k)}
\cap\Sigma
step6, set  J_{h}^{(0)}=  ( \frac{\partial h}{\partial z_{o}}, I_{\Gamma_{h}}^{(1)}) ,

compute  \lambda^{(0)}=multiplicity_{\mathcal{O}}(J_{j}^{(0)}),  |\Lambda^{(0)}|
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