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g-analogue of a system of equations from geometry

By

JUN YAMAMOTO* and HIROSHI YAMAZAWA**

Abstract

R.Bielawski [1] studied some systems of partial-differential equations and gave the unique
existence theorem of holomorphic solutions. In this paper we investigate that a system of g-
difference-differential equations under some conditions which Yamazawa have given in [3]. Our
purpose in this paper is to obtain the same results in [3]. We show for a general equations an
existence of holomorphic solutions and for an example case we consider an existence of singular
solutions.

§1. Introduction and Result

Throughout this paper, let suppose ¢ > 1 and define |z| = maxigi<n |2;] for z =

(1, . xn) € C?. We denote

e N={0,1,---}, N* =N\ {0},

o Dp={z = (z1, - ,z,) € C%|z| < R},
Dr ={teCylt| < T},
Dr x D = {(t,a:) e Cy x Cg;t € Dr,x € DR},
O(Dg) be the set of all holomorphic functions on Dg,
O(Dr) be the set of all holomorphic functions on Dr,
O(Dpg x Dr) be the set of all holomorphic functions on Dg x Dr.

First we define the g-difference operator D, for a function f(¢,z) by

(t,l?) _ f(qt,m) B f(t,:l?).

D
af gt —t
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Let m; and my be positive integers. In this paper we investigate the following system
of g-difference-differential equations:

tDou = F(t,z,tDgu, {05 u}|a)<m, V)
Dgv = c(t,x) + Z|a\<m2 do ()0 u

where (t,z) = (t,z1,- - ,x,) € C; x C?, a = (a3, ,an) € N*, |a| = a1 + - + an,
o = 091---0gr, c(t,x) € O(Dr x Dg,) for some T, Ry > 0, F(t,z,u,V,W) with
V ={V, € C;|a| < my} is a function defined in some polydisk A centered at the origin
of C; x C? x C,, x C$, x Cw and 4 is the cardinal of {a € N"; |a| < m;}. Let us denote
Ag=AN{t=0u=0V=0W =0}

Yamazawa [3] considered the following nonlinear g-difference-differential equation

(1.1)

(1.2) tDqu = F(t,z,{05u} 1a1<m),

defined the g-difference-differential equations of Briot-Bouquet type and constructed the
holomorphic and singular solutions for the equation (1.2). In [3], Yamazawa gave the
definition of ¢g-Briot-Bouquet equation as below:

Definition 1.1 (H. Yamazawa [3]). The equation (1.2) is called a g-analogue of the
Briot-Bouquet type with respect to ¢t or simply ¢-Briot-Bouquet type with respect to ¢
if the equation (1.2) satisfies the following three conditions:

Ai: F(t,z.V) is holomorphic in A,
Ay: F(0,2,0) = 0 in Ao,
As: Oy, F(0,2,0) =0in Ap for all 1< |a] <m,
where A is a polydisk centered at the origin of C; x C? x C$,, ¢ is the cardinal of
{a € N*;|a| <m} and Ag = AN{t =0,V =0}.
Definition 1.2 (R. Gérard and H. Tahara [2]). Set
oF

p(x) = 5-(0,2,0)

then the holomorphic function p(x) is called the characteristic exponent of the equation

(1.2).

On the other hand, R.Bielawski [1] studied the conditions that the given Kéhler
metric h extends to a Ricci-flat Kdhler metric on a line bundle L in a manifold M such
that the canonical S'-action on L is Hamiltonian. The necessary condition which he
gave is to solve the following Cauchy problem:

tov = —1 + ce” " det|gy;]
31,1] v+ ayzij +cOgi; =0
(9ij)li—o = hijs  (€”)];=g = cdeth.
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In order to study this solvability for this Cauchy problem, R.Bielawski considered the
following system of partial differential equations:

tou = F(t, z,u, Opu, topu, {v;}Y;)

(1.3)
Btvi = Ci(t,I> =+ Z|a|<2 dita(z)ﬁg‘u fOT‘ 1= 1, s ,N,

where ¢;(t,z) € O(Dr x Dg,) and d; o(z) € O(Dg,). In [1], R.Bielawski gave the
following assumptions for (1.3):

B;: F(t,z,u,V,W, Z) is holomorphic in A,

B, : F(0,2,0.0,0,0) =0 in Ay,

Bs: 0y, F(0,2,0,0,0,0) =0in Ay for i=1,---,n,
where A is a polydisk centered at the origin of C; x C? x C, x C} x Cy x CY and
Apg=AN{t=0,u=0,V=0,W=0,Z=0}

Under these assumptions, R.Bielawski gave the unique exicetence theorem of holo-
morphic solutions of (1.3) provided that the characteristic exponent p(z) satisfies p(0) ¢
N*.

In this paper we assume the following assumptions for (1.1):
g-B1 : F(t,z,u.V.W) is holomorphic in A,
g-By : F(0,2,0,0,0) =0 in Ay,
g-Bs : 0y, F(0,2,0,0,0) =0in Ay for all 1< |a] < my.

We concern the following Yamazawa’s result [3]:

Theorem 1.3 (H. Yamazawa [3]). If (1.2) is of the g-Briot-Bouquet type and p(0) #
(¢ —1)/(g—1) fori=1,2,---, then we have:
(1) (Holomorphic solutions) The equation (1.2) has a unique solution ug(t,z) holo-
morphic near the origin of C; x C% satisfying uo(t.z) = 0.
(2) (Singular solutions) Set p,(z) = log{1+ (¢—1)p(z)}/logq. When Rp(0) > 0 for
any o(z) € C{z} there exists an O -solution U(yp) of (1.2) having an expansion of
the following form:

o
Ulp) =D ()t + > i ()P0 (log 1),
i=1 k<it2m(j—1),5>1

where the coefficients {u;(z) € C{z}:i > 1} and {¢; jk(z) € C{z}:j > 1,k <
i+2m(j — 1)} are determined by o(x).

In the above theorem, C{z} is the ring of germs of holomorphic functions at the
origin of C* and for the definition of O, see Definition 5.2. In relation to this result,
we aim to get the structure of holomorphic and singular solutions for (1.1). Our main
result is as follows:
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Theorem 1.4. If the first equation of (1.1) satisfies the conditions q-By,q-By and
q-Bs and p(0) # (¢* —1)/(q — 1) for i € N*, then the system (1.1) has a pair of unique
holomorphic solutions (u,v) satisfying u(0,z) = v(0,z) = 0.

This paper is organized as follows. In section 2 and 3 we prepare lemmas in order
to show Theorem 1.4. In section 4 we show Theorem 1.4 and in section 5 give a proof
of an existence of formal solutions as singular solutions for the particular case of (1.1).

§2. Lemma

In this section we give some lemmas. Set ||u||r = sup,cp, [u(z)| for u(z) € O(Dg,)
and 0 < Ry < R.

Lemma 2.1 (Nagumo’s lemma). Assume u(z) be holomorphic on Dg. If for any
0<r<R,

C
”uHr < (—R——T)p

holds for some p > 0. then we have

Ce(p+1)

Uy < ——m————
(102, ull < (R —r)pt!

forany 0<r<R and j=1,---.n.

Lemma 2.2. There exists a constant M such that for any i € N*

(m*ie)nl*

qi

N

M

where m* = max{my, my}.
Proof. Let consider a function f(z) = (m*ze)™ /¢* = (m*e)™ 2™ ¢~ %, then we
have
f(@) = 2™ {(m*e)™ (mz 1 — log g)}.
Therefore, this function f(x) takes the maximum value at x = m*/logq. Setting ¢ =
m*/log q then we have

f(z) < f(zo)

and this f(zg) means the constant M of the statement in Lemma 2.2. O
Lemma 2.3 (H. Yamazawa [3]). Let ¢ > 1. Suppose
Nz) # ¢ for z € D,
Then there exists a constant o > 0 such that

(2.1) lg" = X\(z)| = 0¢° for z € D,.
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8§3. Reduction equations

In this section we reduct the system (1.1) into the following system of ¢-difference-
differential equations under the assumptions ¢-Bj,q-Bs and ¢- B3 to show Theorem 1.4.
(0qg — AM@))u = a(z)t + b(x)v + Ga(x)(t, oqu, {03 U} |aj<m, - V)

OV =D is ci(z)th + > lal<m, da(z)t07u

where oqu(t,z) = u(gt. z), a(z). ¢;(x). do(z) € O(Dpg,) and the function Gy (z)(t,u, V, W)
has the following expansion:

(3.1)

(3.2) Go(z)(t.w, VW)= > gpuue()tPulV'We
ptut|v|+£22

where V' =[], <m, {Va "

Lemma 3.1. If the system (1.1) satisfies the condition q-B,q-B2 and q-B3, then
we can reduct (1.1) into the system (3.1) with (3.2).

Proof. We multiply the both side of (1.1) by ¢— 1. Then we get A(z) = 1+(¢—1)p(x)
and (3.1). O

Remark. The assumption p(0) # (¢* — 1)/(g — 1) for i € N* implies A\(0) # ¢* for
1 € N*.

84. Proof of Theorem 1.4

In this section we will prove Theorem 1.4. This proof is divided into two steps; the
first step is to construct a pair of formal power series solutions (@,?) of the system
(1.1) and the other one is about the convergence of the pair of the formal power series

solutions (&, 0).
§4.1. Formal power series solutions
Let us show the system (1.1) has a pair of formal power series solutions of the form
(4.1) i=Y w2t o= vi(a)t'
i>1 i>1
Set v = vy (2)t+v* with v* = 37, v;(x)t". By substituting a pair of formal power series

solutions (4, 0) into the system (3.1), then we have the following recurrence formulas:

qui(z) = c1(z)

(4.2)
(¢ — A@)ua(z) = a(z) + b(z)vi ()
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and for 1 > 2
(4.3)

q'vi(z) = ¢;(x) + Z do ()05 u;—1 (1)

|| <me2

(¢ = A@))ui(z) = b(z)vi(w)

LD DD DI RE) § PRI | R § TR | NG

ppt|v|+e=i lal<my j=1 k=1

where

Z*: > with [, =1+ + Ly, [nle = ny + - +ne

Uyt |m|m, v +Inle+p=i

Vo
and |m|m, , = Z Zma,j-

la|<my g=1

Therefore, by the assumption we find out that the system (3.1) has a pair of formal power
series solutions (4, 0) whose coefficients are given by the above recurrence formulas.

§4.2. Convergence of the formal power series solutions

We will show that the pair of the formal power series solutions (u,?) converges in
a neighborhood of the origin ¢ = 0. Since the fact that @ = >_,-, v;(x)t' is written as
the form o = vy (z)t + v*, we can rewrite the system (3.1) by the following system of
reduction equations:

(0g — Mx))u = a(z)t + b(z)v* + Go(z)(t, 0qu, {0:u*} a)j<m, - V)

(4.4)
Oqu™ =D 50 GT)E + 30 4 <m, da(2)t0F U

Remark. The function Ga(z)(t,u, V,W*) of (4.4) differs from (3.1) in the following
sense:
Go(z)(t,u, V,\IW*) = Z g;_#_y{(.T)tpu““/"’I/V*5
put|v[+£2>2

where

c1(z)* (& + &2)!
> ()2 ( )

g;.#-,l/.ﬁ(r) = £1|£2' 9p,puv,€ (m)

§1+82=¢

This system of reduction equations (4.4) has a pair of formal power series solutions
(4, 0*) of the form

(4.5) i=Y w(x)t, 07 = vi(x)t’

i>1 i>2
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and the coefficients u;(z) for ¢ > 1 and v;(z) for ¢ > 2 satisfy the recurrence formulas
(4.2) and (4.3).
Let us consider the following system of analytic equations:

(4.6)
M PG e
_ v wtlvly €
oX = oAt + -——(R — {BY + Z (R — r)m* (ptutiv|+26-2) X Y }
Pt v +€22
V= Z —7‘)’” 12)1‘/1+ Z DatX
i>2 |a|<m2
where M is in Lemma 2.2, A = |(a[|r, B = |bl|r, G} , ¢ = 95 40 ¢llr: Ci = |lci||r for

any ¢ € N* and D, = ||do||g for |a| < ma.

Lemma 4.1. The system of analytic equations (4.6) has the pair of holomorphic
solutions (X,Y) of the form

(4.7) X(tr) =Y X;(r)t, Y(t.r) =Y Yi(r)t

i>1 i>2

moreover the coefficients X;(r),Y;(r) have the following forms:

E;
X; = (&= r)m D for i>1
Y, = =

= m fO'r 1 2 2
with constants £y = A and E;, F; >0 for i > 2.
Proof. First we will show that the system of analytic equations (4.6) has a pair of

formal power series solutions (X,Y") of the form (5.4). By substituting (X,Y) into the
system (4.6), then we have the following recurrence formulas for X;(r), Y;(r):

Xi=A
and for i > 2
M
=
o) Z *?pi:f\ws 2 HXZ 11 HXmaJ HYnk}
p+u+|VHé£ i i=1 la|<my j=1
Yi:(—m+a§nzz} o Xi 1.

This means that there exists a pair of unique formal power series solutions (X,Y"). Let
us show that this pair of formal power series solutions is holomorphic in a neighborhood
of the origin ¢ = 0. Let consider the following functions:
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M
F(t, =o(X - A -
(t. X,Y) := o At) (R —r)m {BY " p+u+%':+522 (

Git,X,Y):=Y — Z et ~ ) DotX.

122 || <ma

PGy Xeye
R— 7)m* (p+}i+[l/[+2{ 2) }

Then it follows

dx F(0,0,0) dxG(0,0,0)
F(0,0,0) = G(0,0,0) = 0, det — 0 #0.
(0,0,0) = G(0,0,0) ¢ (ayp(o,o, 0) 9y G(0,0,0)) ~° 7

Therefore, by the implicit function’s theorem we get holomorphic solutions (X, Y') satis-
fying (X (0,7),Y(0,7)) = (0,0). We will prove the latter in the statements by induction
on 7. Since X; = A holds from the recurrence formulas, it is clear for i = 1. For the
general case i > 2 we have

Ci
}/i = (R—T‘)m*(ifz) + Z DaXi—l

|a|<ma

z 1
( _r)m i— 2)+ Z (R_Tm (1—2)

la|<ma
B Ci + ngm? D,E;
- (R —r)m (-2)

and
X
o M Fi pu,vE
- U(R _ T)m* (B (R _ r)m*(i—?) + Z Z (R _ T)m*(p+;t+|l/|+2§—2)
ptput|v|+€=i
I
m(, j
X H (R —1" m (l -1) H H m"(mo,j—l) H (R m (nk 2))

i=1 la|<my j= 1
B M BF;
o(R—r)m \(R—r)m (-2

(3 5
+ > Z Gpuwe 121 B Lo com, T2 B [Tk P
R— 1) prat D723 (R — ) (Tt imlomy o F e~ Get [1142)
P+t o] +€=i
M BE,

o(R—r)™" \ (R — r)m"(i=2)
Z Z* G;.u,u.g H?:l Eli H|a‘<m1 H'inl Ema,j Hi:l F’”-k )

R — T)nL" (i—p)+m*(p—2)

" (
ptpt|v[+E=i

M/o(BF+ Y upves 9 G It Bt T comy T2 B, Tl Fe)
(R _ T)m*(i——l)
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|

We give the following proposition in order to show the convergence of the pair of the
formal power series solutions (1, 7).

Proposition 4.2. For any 0 <r < R we have

(4.8) lg*willr, 10guillr < Xi for i>1. |a| <m",
(4.9) loill <Y;  for i>2.

Proof. We prove the evaluations by induction on i. For the case i = 1 it follows by
the definition of A. For the case i = 2 by recurrence formulas and induction hypothesis
we have

co + Z da 0% uy

|al<ma

<Cot Y DuX

[a|<m2

llg*valr =

T

=Y,

therefore we have

[zl < Xo.

For i > 3 we have in the same manner

lg'vill, = |lei + Y dadfuioa
al<m, r
<G+ Z Do Xy
[a|<ma
c
SGE= e T > DaXio

lal<m2

=V,

thus we get

Jvill- < Yi.

Hence on v;(z) for i > 2 we get the inequalitiy (4.9) in Proposition 4.2. On the other
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hand, for 7 > 2 we have

1(g" = Auallr
3
ZEIED D SR u,qul w, T1 TLo2wn, Tl v
pptlv|+E=i o af<my g=1 k=1 r
cwie Y Yaudln 11 HXmaJHYnk
ptutlv|+€=i =1 Ja|<my j=1
puVﬁ
< BYi + Z Z “(ptutv|+26—2) HXl H HXma] HYnk
ptutlv[+E=i [a|<my j=1
(R—r)™
=) X,
o C
therefore by Lemma 2.3 we have
1 (R—r)™ X;
(410) sl <« =D oy, < X0
oqt M q*

Let give estimates of the derivative of u;(z) for ¢ > 2. By applying Lemma 2.1 to (4.10)
with m,-times, then we have for |a| < my

||3fuz“r<(m (1_2)+1>+"'%(m (7’_2)+m>em‘ Fiz _
]\_[ql (R _ T‘)"” (i—2)4+m
< (m*(i—2)+2m*)+~~-+(m*(2’—2)+2m*)em* E;
h Mgt (R—r)ym -1
_ (mtie)™
Mq*
< X;.
Therefore we get the desired results. O

Thus, by summing up from Proposition 4.2 we have
lal < X, 0] <Y

Therefore the formal power series solutions (i, 9) of (3.1) converges in a neighborhood
of the origin t = 0.

§5. Formal solutions for the particular case of (1.1)

In this section we will construct formal solutions as singular solutions for the partic-

ular case of the system (1.1). Let us consider the following system:

(0q — AMx))u = a(z)t + v + udyu

(5.1)
oqv = b(z)t + tozu
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where (t,z) € C; x Cy, A(z), a(zx), b(z) € O(Dg,).

Definition 5.1. Let us denote by
e R(C\ {0}) the universal covering space of C\ {0},
e Sp the sector in R(C\ {0});{t € C\ {0};|argt| < 6},
e S(e(s)) = {t € C\ {0}:0 < |t| < e(argt)} for some positive-valued function e(s)

defined and continuous on R.

Definition 5.2. We define the set O of all functions u(t, z) satisfying the following

conditions:
1. u(t, ) is holomorphic in S(e(s)) x Dg for some ¢ and R > 0,
2. there is an a > 0 such that for any # > 0 and compact subset K of Dp

mea,})(c}u(t,x)[ =0([t|*) ast—0in Sy.

Theorem 5.3. Set \;(z) = log A(z)/log q. If the holomorphic function X(z) satisfies
A0) # ¢* for i € N*, then there exists a pair of formal solutions of (5.1) having an
expansion of the following forms:

Ulp) =Y w@)t' + Y pijr(a)t ) (log )k

(5.2) i1 k<itj—-1,j>1
Vip) =Y wvi(x)t' + S (@)t te® log )k
i>1 k<itj—1,i.5>1

where ¢ = @o1,0(x) is any holomorphic function on Dpg,, u;(x),v;(x) € O(Dg,) for
i 21 and ¢i;k(x), Vijk(z) € O(Dr,) forj > 1Lk <i+j—1
Proof. Set for I > 1
(5.3) ur(t,z) = ur(@)t', or(t,z) = Y > eigu()t e (log )k
itj=1,j>1 k<itj—1
and for I > 2
(54)  wvilt.z) = o)t vrlta) = Y > Yigk(a)t ) (log )k,
itj=Lij>1 k<itj—1
Then we can rewrite the form (5.2) as follows:
(5.5) Ule) = Z(ul +e1), V() =v1+ Z(’UI + 1)
I>1 I>2
By substituting the pair of formal solutions (5.5) into the system (5.1), then we have
the following recurrence formulas for u;, vy and ¢y, ¥;:
qui(z) = b(z)
(¢ = A(@))ua(z) = a(z) + vi(z)
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and for 7 > 2

q'vr(z) = Opus—1(z)

(a" = A@)ur(x) =vi(z) + Y ur, (2)0zup,(z)

h+I=1
and:
(04 = A@))pa(t2) =0
and for I > 2
oqr(t.x) = Ozpr-1(t, x)
(0q = AMz)pr1(t, z)

(56) = 1#1(75,55) + Z (uh (t,ac) + ¢ (t1 x))aﬂ?(uh (tvI) + @1, (t,x))
I1+1,=1
— Z ur, (t,2)0pur,(t, x).
I1+1,=1

By assumption, it is clear that u;(z) and v;(x) are determined for I € N*. We take any
holomorphic function ¢(z) € O(Dg,) and put p(z) = @o.1.0(z). For I > 2 we will show
that ¢; and 1 are determined by induction. By the above recurrence formulas, it is
obvious that 1y is determined for I > 2 if ¢ is determined for I > 1. Therefore, for
verifying that it is sufficient to see that ¢; is determined for I > 2. We substitute the
function ¢; of the form (5.3) into the second equation of (5.6), then we have

iti—1-k

7 1 T 7 y k + k/ ! ’
(g7 = (@) pij k() + Z q “A"(I)(—Wq)(log Q)* @i jktr (z)
k=1
= Yiik(z)+ Y {jax/\q(ff)uil(Z)%a,j42+j—1($)
11+1i2=1

1121,i220

S {azwil(x)%.j,k(m»+jazxqmuh<z>soi1.j,kﬁ1<m>}}

k<izt+j—1

Y {wil.]-l,kl(x)(axsomh(w+jzaqu<x>soiz,j2;k21<x)>}
i1 +12=1

J1t+J2=3.J1,J221
ki+ko=k

where
Z Pir.gr.ka (z)arsoiz,jz-,kz (l’) =0.
11 +i0=1
J1t+j2=3.722
kitke=1+j—1
The definition of A\y(z) and this recurrence formulas tell us that the system (5.1) has
the pair of formal solutions in the form (5.2). d
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