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Global solutions to the Boltzmann equation near equilibrium in
the Besov spaces

Shota Sakamoto
Mathematical Institute, Tohoku University

1 Introduction

We shall consider a Cauchy problem of the Boltzmann equation

{ O F(t,z,v) + vV F(t,x,v) = Q(F, F)(t,x,v)

FO,0.0) = Fo(e,0), (1)

where t > 0 is time, v € R? is velocity of a particle, x € R? is position of a particle,
and the unknown f = f(¢,x,v) is a probability density function of a dilute gas. The
Boltzmann equation is a model for such a gas where interactions of particles consisting of
the gas play important roles in formulation of phenomena. The collision operator @ is a
bilinear form written

Q(F,G)(v) = /R3 /S2 B(v — v,w)(F(v.)G(0") — F(v,)G(v)) dwdv,.

The velocity variables v, v,, v' and v, satisfies the relations
V=v—(v—v) ww, v,=v,+ (-1 ww

for w € S?, which are equivalent to the conservation laws of momentum and energy in
collisions

vtve=0+, o ol = P+ o) (2)
As a physically suitable model, we assume that the collision kernel B is a product of two
functions, namely
B(v — vy, w) = [v — v,|"b(cos §),

where —3 < v < 1. We assume that 0 < b(cosd) < C|cosf| for some C > 0. This
is called the cutoff assumption (we may assume boundedness of integration of b over
S2, which includes some singularity of b, when we say the cutoff assumption, but our
assumption is enough for general arguments).

It is well-known that the Maxwell distribution (often referred as the Maxwellian)
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is an equiliburium of (1), which can be easily verified by (2). Hence we substitute F =
M + M2 f into (1) and reformulate as an equation of f; then it reads

{atf +0-Vof+Lf=T(f, f),

f(0,2,0) = fo(x,v) = M~Y2[Fy(x,v) — M]. ®)

Here L and T are the linear and the nonlinear part of @, respectively, that is,

Lf = —M7Y2Q(M, M2 f) + Q(MY2f, M)),

L(f,9) = M~V2Q(MY? f, M'g).
Under the cutoff assumption, it is known that L can be decomposed into v — K, where v
is a multiplicator equivalent to (v)?, and K is an integral operator.

Our aim is to establish existence and uniqueness of a solution to (3) in the Besov spaces
with respect to the space variable x, especially for the soft potential case —3 < v < 0.
Also, it is our aim to compare the results by Duan and the author [8] with those in [7]
and [12] so that we can see in what direction this research is going on.

Before stating our main theorem, we show the preceding results for comparison with
ours. For that purpose, we introduce the macro-micro decomposition. It is known that L
is nonnegative-definite on L?(R?) and

ker L = span{p'/*, p'?v; (i = 1,2,3), u"*|v]*}.

P denotes the projection operator onto ker L; therefore for each f, there exist functions
a, b, ¢ such that it holds

Pf(z,v,t) = [a(z,t) +v- bz, t) + |v]*c(z, 1)] 12 (v).

The decomposition f =Pf + (I — P)f is called the macro-micro decomposition.
For definitions of these norms, we refer Section 2. We define the energy term and the
dissipation term by

ST(f) ~ ‘|.f|‘i%oj%(33{12)7 DT(f) = HVz(a, b, C)||L2T(321(12) + ”(I - P)'inzTE%,V(B;/f)
for the first result giving the unique solution near Maxwellian in the Besov space.
Theorem 1.1. ([7]) There are g > 0, C' > 0 such that if

ol <

then there exists a unique global strong solution f(x,v,t) to (3) with indtial data fo(x,v),
satisfying
Er(f) +Dr(f) < C”fO”Eg(Bg/f)

for any T > 0.

Novelty of this result is in showing well-posedness of (3) in the Besov space, and
the differentiability index s can take the value 3/2, which is the best to our knowledge.
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Readers interested in preceding well-posedness results in the Sobolev spaces may refer to
[7], which extensively collects research on well-posedness of the Boltzmann equation near
Maxwellian. We mention that this result is generalized by Tang and Liu [15] in view of
indices under the same assumption. These results concern with the cutoff case. In order
to apply techniques developed in [7] to the non-cutoff case, Morimoto and the author [12]
conbined these with those developed in a series of AMUXY papers, such as [1, 2, 3]. They
obtained the following result. Replace the energy and dissipation terms with

Er() ~ Wl sz Dr() = IVa(@,b, 0l g garmy + 10T P) Sl

Theorem 1.2. ([12]) Let 0 < s < 1 and v > max{—3, —2s — 3/2}. Instead of the cutoff
assumption 0 < b(cosf) < C|cosb|, we assume b(cos0) ~ 07272 as @ | 0. Then there are
constants g > 0 and C' > 0 such that if

||f0||[~/12)(33/12) S €0,

then there exists a unique global solution f(x,v,t) of (3) with initial datum fo(x,v). This
solution satisfies
Er(f) + Dr(f) < C||f0||Lg(Bg/f)

Positivity of the solutions is also shown both in [7] and [12]. Novelty of Theorem 1.2
is that they treated the non-cutoff case, which is much harder to tackle than the cutoff
case, and they succeeded in proving the same solution space used in [7] applies to their
problem. This yields the smallest differentiability index 3/2 for the non-cutoff case, better
than those obtained in [1, 2] or [10]. We remark that in both results, the case v is very
close to —3, which is sometimes called the very soft potential case, cannot be handled. It
is the main motivation of [8] to establish a solution in Besov spaces for that case.

We shall state the main theorems of [8]. In order to do so, we first clarify in what sense
f(t, z,v) is a solution to (3). In fact, the mild solution f(¢,z,v) to (3) is defined as the
following integral form:

ot
f(t z,v) :ef"(”)tfo(x —vt,v) + / e*”(”)(tfs)(Kf)(s, x— (t—s)v,v)ds
0

" / OIS, ) (s — (¢ — )0, 0) ds,
0

for t > 0, z, v € R3. In what follows, for a Banach space X and a nonnegative constant
a > 0 we define

I llo.x = sup(1 + )% £ (1),

for a X-valued function f(¢) on the real half line 0 < ¢ < oo, and for any Banach spaces
X and Y, the norm || - ||xny means || - ||x 4+ || - [[y- For more notations of function
spaces, especially Besov and Chemin-Lerner type spaces, readers may refer to the next
preliminary section.

The following are the results for the hard and the soft potential cases, respectively.



Theorem 1.3. Assume 0 <~y <1,q€[1,2],s>3/2, and 8 > v+3/2. Then there exist
positive constants € > 0 and C' > 0 such that if initial data fy satisfies

Hfo”igO(B;_l)ngLg <&
then the Cauchy problem (3) admits a unique global mild solution
f(ta xz, ’U) € LOO(O/ 003 Z/EO(B;J))
satisfying
(K Ly (s, = C||f0||L°° (B )NL2LY
where o = d/2(1/q — 1/2).

Theorem 1.4. Assume —3 <~ <0, s >3/2, 0 = 3|v|/4, and § > o, + 3/2, where o,
denotes o + 0 for an arbitrary small constant § > 0. Then there exist positive constants
e >0 and C > 0 such that if initial data fo satisfies

||fo||L<>o B3 )NL2, LL <¢
then the Cauchy problem (3) admits a unique global mild solution
ft,x,v) € (0,005 LF (B3 1))
satisfying
103 0z 85,) < Cllfollis, B3 nrz, 12

Here we only gave the results for the 3 dimensional case for comparison with [7] and
[12], which treat such the case, but these can be generalized into the d dimensional case
(d > 1 for Theorem 1.3 and d > 3 for Theorem 1.4). See [8] for finer details.

In this article, we will give outlined proof of Theorem 1.4 in more explanatory way than
that given in [8]. We give preliminary facts and lemmas in Section 2, and give outlined
proof of Theorem 1.4 in Section 3.

2 Preliminaries

Following [5], we define the Besov spaces in this section. We first introduce the Littlewood-
Paley decomposition. Let A be the annulus {¢ € R? | 3/4 < |¢| < 8/3} and B be the ball
B(0,4/3). Then there exist radial functions x € C5°(A) and ¢ € C§°(C) satisfying the
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following:
0<x() <1land0< (&) <1 forany £ € R®,
X§)+Z¢ “9¢) =1 for any £ € R?,
>0
Z@ “9¢) =1 for any ¢ € R*\ {0},
q€EZ
supp ¢(277+) Nsupp ¢(277+) = 0 for any ¢, ¢ with |g — ¢/| > 2,
supp x Nsupp ¢(277-) = 0 for any ¢ > 1, and
29 AN29A = ) for any ¢, ¢’ with |g — ¢'| > 5,
where A := B(0,2/3) + A. We write h := F ¢ and h := F~'x. For each f € S'(R?),
the non-homogeneous dyadic blocks A, are defined by
A f=x(D)f = / y)dy.
A,f = 0(27D)f = 2 / (@) f@ ~y)dy (g €NU{0})
R
and A,f = 0if ¢ < —2. The non-homogeneous low-frequency cutoft operator S, is
defined by
Suf = ) Ayt
q'<g—1

For 1 < p < oo, LP = LP(R3) is the usual LP-space endowed with || - ||z» For 1 < p,
q < oo, we define
Lyl =18 (Ry; L(RY)), LYLY = L7 (Ry; L(Ry)) -
A velocity-weighted L? space with a weight index § € R is defined as
Ly={f=f@[ferrt, Iflwy=10"flw

where (v) = (1 + |v]?)"/2. .
We denote the set of all polynomials on R* by P. The homogeneous dyadic blocks A,
are defined by

Buf = o2 D)f =2 [ n(zw)f(a - )y
R3
for any f € S'(R3)/P and ¢ € Z. Since it holds that A,P = 0 for any P € P C S’ and

q € Z, it is reasonable to define A, over the quotient space.
We are now in position to give the definition of non-homogeneous Besov spaces.

Definition 2.1. Let 1 < p,r < oo and s € R. The nonhomogeneous Besov space B, is
defined by

B, = {f € S'R}) B = 1271 Agfll2)gz-1ll,r < o0}

with the obvious modification for the case r = co.




The definition of homogeneous Besov spaces is as follows:

Definition 2.2. Let 1 < p,r < 0o and s € R. The homogeneous Besov space B;T is
defined by

| <>}

Z’f‘

Next, we define Chemin-Lerner spaces, which is (to some extent) a generalization of
the Besov space.

B, ={1eS® a5, = || 1A Npeez

with the obvious modification for the case r = oco.

Definition 2.3. Let 1 < p,7,a, 8 < 0o and s € R.
L55,) = {7 € S (RS xR \ 2,0 = 185 g < o0 |
L35 - {r e sme xR \ 53 = 3 sp(e) 18, o)y < o .
For T' € [0, ), the Chemin-Lerner space L%Lf(B;T) is defined by

LeL8(By,) = {1 0.t) €S| 1 lga0m,,) < )
where

Hf”i%iff(B;,.) = H(2qs||AquL%L§Lg)qulle )

T B/p a/B He
18ufllprsne = | [ ( L[ suroora) d) i
i 0 R3 R3

with the usual convention when at least one of p,7, o, 8 is equal to co. We also define
L§LE(Bs,) similarly.

We denote L§LJ(Bs,) by L$LS(B:), and L$LS(Bs,) by LELP(B2). The spaces
LQ(BM) and Z/EO(BSJ) play essential role in [8], while L°°L2(B3/2) 312 (Bgf) and

7}7272 were employed in [7] and [12].

Finally, we give the definition of the non-isotropic norm || - || and the space and

. Tpr
T#,r, which are endowed with the ‘Chemin-Lerner type triple norm’. This is used in [12]
for the dissipation term to take advantages of AMUXY’s works.

Definition 2.4. Let 1 < p,r < oo, T > 0 and s € R. || f|| is defined by

1= [[[ B v~ pidudo.do
/// (v = v, 0) f2(V ! = i) dvdv.do

_Jf)’y +J2¢)’Y( )1
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and the space 77, is defined by

T = {F U1, = [| @AM 2)2 |, < o0}

quT is defined in the same manner.

Il - I is called the triple norm, and it is known that this norm is estimated from both
above and below by weighted Sobolev norms:

2 2 < 2 < 2
1Fs + 00, SIS I s

In order to deduce Chemin-Lerner estimates in the following sections, we will use some
properties of the above spaces. Here we give some of them.

Lemma 2.5. There exists a constant C' > 0 such that for any 1 <p < oo and f € LP it
holds

18¢f Ny < Cllfllzzs 1Safllze < Cllfllze-
In short, Ay and S, are bounded operators on L.
Lemma 2.6. Let 1 < p,r < oo. Then
1. Byl — B2 when sy < s1. This inclusion does not hold for the homogeneous case.
2. B%p — L* and Bz,/lp — L™ when 1 < p < oco.
Lemma 2.7. Let 1 < p,q,r < 00 and s > 0. Then we have
||sz||LqT(B;,,) ~ ||f||L"T(B;';r1)7 ||f||i"T(B;,,.) < ||f||i"T(B;,,)~

Lemma 2.8. Let 1 <p,a, 8,7 < o0 and s > 0. If r <min{«, 8} then
”f”Lf;,L?,(B;,_) < ||fHLs;,L5(B;,.) and ”f”Lg;,LE(B;,,,) < HfHL%LE(B;,,_y

We emphasize that || - is usually easier to handle than || - because

”E%Lf?(B;T) ”L%Lﬁ(B;T)’
summation comes after all the integration in definition of the former one. The above
Chemin-Lerner spaces are used in [7] for the cutoff case and in [12] for the non-cutoff
case.

Regarding the time-decay property in the soft potential case, we cite the following
lemma from [9] (see also [14]). Note that, compared to [16], which treats the case —1 < ~y

for technical reason, v can take the full range of values for soft potentials.

Lemma 2.9. Let —3 <y <0, and let £ >0, J > 0 be given constants. Set pn = p(v) :=
(v)™/2. There is a nonnegative time-frequency functional E(t,€) = E(f(t,€)) with



such that the solution to the Cauchy problem on the linearized homogeneous equation

{Otf—Hwaf—l-Lf:O,

F(0,2,0) = fo(x,v) (4)

satisfies

E(t,€) < C(L+p(&)t) 7 €1, (0,8),
for allt >0 and &€ € R, where p(&) = |£]?/(1 + |€[*), and C > 0 is a generic constant.

3 Proof of Theorem 1.4

We now turn to the proof of Theorem 1.4. We start from considering the time-decay in
the space L?(B 51) for the solution to the Cauchy problem (4) with the help of Lemma
2.9 whose proof is based on the pure energy method.

Lemma 3.1. Assume —3 < v < 0. Take ¢ >0,1<¢<2, and J > 3(1/q —1/2) = 2a.
Let f(t,z,v) be the solution to the Cauchy problem (4) with initial data fo(x,v). Then it

holds that
=2 FO 223 ) <CA+ O™ 2 foll o g

+ O+ ) 2 fo | pa g ()

for all t > 0.

Proof. Recall p(€¢) = [£]?/(1 + |€[*). The proof is based on the usual decomposition into
low- and high-frequency parts in the Fourier variable. By Lemma 2.9 we have

=203, = /lR 2o ) f(t.€) 17 de
<c / (14 p(&)t) 7 = +T0720(277€) o (€) 2 de

c{/ /} dE = 1+ I
=1 Jg<t

For the high-frequency part I;, we notice 1+ p(§)t ~ 1+t on {|¢| > 1}. Thus, one has
L < O+l 2 fol2,

For the low-frequency part I, we take the triplet (q,p,p’) satisfying 1/p + 1/p’ = 1 and
1/2p +1/q = 1, where ¢ is given in the assumption. The Holder inequality gives

1/p
I 1 7Jp/d —(b+Jy)/2 9~ j 2p2d
2 < (/§<1( + p(§)t) f) (/<1 lv (2776 fol€ )HL f)
< Oy (1) (/ [y EHII2g(279¢) fo (¢ )||i’§,d€)1/”

l€1<1
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where

~ 1 2 gy
2
D () = / (1+7t) r2dr.
0

1472
By the change of variable r — s = r%t/(1 + r?), it holds that

t—s

oy (t) = /Ot/2(1+5)””'( - )T\tﬁ(t— $)72ds < C(1+ )72,

due to J > 3(1/qg — 1/2) = 3/2p'. Therefore, combining estimates on I; and Iy, we have
obtained

I8 DNz, < CO+ O A Rl
LA 1/p
e+ / v~ o298 fo(@)lfde)
jgl<t “

Taking the square root of the above inequality, further taking summation with respect to
j with the weight 27¢, and noticing that

S e e o)

is bounded by C||v= ¢ )/2f|| 1214, the desired estimate (5) then follows. This completes
the proof. O

1/2p

In [7] and [12], the macro-micro decomposition is fully used to derive estimates of the
energy and dissipative terms, which close a priori estimates. On the other hand, in [8] we
are looking for a mild solution which require different recipe, and by Lemma 3.1 one can
further derive the time-decay of solutions in the space L;°(B3 ;) with a suitable velocity
weight.

Lemma 3.2. Assume -3 < v < 0,0 < 8 < |y]+2, and §/ > 0. Then the solution
f(t,x,v) to the Cauchy problem (4) with initial data fo(x,v) satisfies

1 Ollzg s, < €O+ (W follis,, g, + 1 sy z2cos,)) (6)

for allt > 0.

Outline of proof. We shall follow the proof of [6, Lemma 4.5]. First, due to L = v — K,
we write the linearized equation in the form of

Ohf+v-Vof+vf=Kf
Define h(t, z,v) = (v)? f(t,2,v). Then the equation for & reads

Oh+v-Vih+vh = Kgh,



where we have defined

Ky (B)(v) = (0)” K(&)(v) _ /R (o h( )
(

with a new integral kernel kg (v,v') = k(v,v")(v)? /{v/)?". Therefore, to show the desired

estimate (6) it suffices to prove
IOz 55, < CO 07 (ol g + sz ) (7)
for all t > 0. Indeed, the mild form of the equation for A is written as
t
h(t,z,v) = eV hy(z — vt,v) + / e_”(”><t_s)(Kg,’ + K5 )h(s,x — (t — s)v,v)ds, (8)
0
where we have denoted
(Kgh)(v /kﬂ, 0, V) X (Jv = vi|) R (04 dv,
with
0<xm <1 xn(t)=1fort <m, xn(t)=0fort>2m,

and K§ = Kp — Kj. The small constant m > 0 will be chosen later. Applying A; to
(8) and taking the L2-norm, we have

it
140t 02 < e Ajho(0)]| 2 +/ 1A, (Kgh)(s,v)lr2ds
Jo

t
+/ 1A (K5 h)(s,0) | ads
0
=: L]+ L} + Lj. (9)
To the end, for brevity we put & = 3/|y| > 0 and
170 = W0l iy e (5, = Wella, e 3.,
Not to be confused with the triple norm. Notice 0 < & <1 —2/7.
Before starting the estimates on L], (k = 1,2,3) in (9), we recall some useful facts for
Kj and K, cf. [6].
(K5g)(v)] < Om** e/ 0)|g] o, (10)
(K59)0) = [ 5 (omgmin

. c n < y—1 I/(U) .
| 165l < € 2 (1)

[ ety < cer, (12)
Rd
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Now, since it holds that z%e~* < C, on {z > 0} for each a > 0, we have
ZL] < CZG W N Aho()llzgrz < CA+ 1) holl sy ,)-
By (10) it holds that
[(Kp1)(v)| < Cm™e” 2710 ()" < Capm®™ e~ fof*/15,
Thus we have

ZL < Cam®1e 1PP/15| | / vE=9) (1 4 §)~%ds

< Cam™e1F/20) | / (1+t—s5)"*H1+s)%s
0
< Com® e P2 b1+ £)77,
where we have used the inequality e~ ["*/10¢=»(®)(t=s) < C’be“”‘2/2()(1 +t—s)""for b > 0.

This then completes the estimates on L{ and Lg. Furthermore, by substituting those
estimates into L3, one has

¢
L%S/ 67”(”)(“5)/ M%/(v,v'ﬂ[e*l’(“ )s||Ajh0(1/)HL%
0 Rd _
b [ e A g ) s
0

t s
+ / efu(v)(tfs) / efu(v’)(sf‘r) / |£%/(U7 Ul)éf;/(vl, @//)‘
0 0 RAxR4

X || A h(T, v")|| L2 dv” dv'drds
=: L} + Ll + L.

It should be emphasized that, by this substitution, just one iteration is sufficient for proof.
This is the novelty of methods given in [6] (see also [11]). L%, and Li, can be similarly
estimated as L] and L}, respectively. In fact, it follows from (11) that

ZLél < Cwm%l”houigowgyl)(l +1)°%,
and, by (10) and (12), one has
Y Lip < Com™R)(L+ )"

L, is the hardest term to estimate. We divide it into three cases, in terms of magnitude
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of velocity variables. First, if |v| > N, applying (11) two times, it holds that

e t s
Z / / / 67u(v)(t75)87u(v’)(377) |€c/(1}, UI)E%/ (UI’ 1}//)‘
0 Jo R xRd

X || AGR(T)| Lo 2 dv" dv'drds

t s
< CA/’ITL’)/71|||]L|”/ / / efu(v)(tfs)efz/(v’)(sz)(1 +T)7&
0 Jo R4

v(W) e
X mwﬁ,(v, V)| dv'drds

t s
< Cym A / / eV =) (1 4 g — 7)1 4 1) 70 ”() drds

+ |of?

< Gy N / / (14t — 1+2/v+5(1+S—T)*1+2/7(1+7)*&drds

< Cym" N (1+¢)~

Here, § > 0 is a suitably small constant such that both 0 < @ < 1 —2/y — ¢ and
1 —2/4—19 > 1 hold true. Notice that such a constant 6 > 0 exists by the assumption
0<pB<y+2

The second case is to consider either {|v| < N, [v'| > 2N} or {|v/| < 2N, |v"| > 3N}.
For simplicity we only consider the former one since the proof for the latter one is almost
the same. Recall that

|05 (v,0")] < Ce’N2/2O|€C (v, v/)|e‘”’”/|z/20,

v—v'|?/20 (U)
/|£ﬁ,vv)|cl PrRogy < o, LSE

where the second estimate has been shown in [6]. Therefore, 3> 2% L%, is bounded by

e
C.my 1 / / / efl/(v)(t—s)efu(v/)(s—r)wc,(uU,)‘
LD S
v(v')
1+ v /|2||A P (1) | pee 2 dv'drds

e 2799 V(V) i
<Con ) [ [ e m Oy s (1 ) s

o Jo 14 v
< Cym e NORY|(1 4 6)

Third, if |[v] < N, |v/| < 2N, and |v”| < 3N, then we take a small constant A > 0 to be
chosen later. We divide the -integration into two parts [ = [ + [7 . For the first
integral [ |, we notice

/ e VD1 4 1) "% < CA1 +5) 79,
s—A
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where C'is independent of A\. Therefore, > 2<75L§3 is correspondingly dominated by

t
CA|A|| / / (1+ )% W02 |05, (0,0/) 05, (v, 0") |dv" dv'ds
0 J|v'|<2N,|v"|<3N

t . 2
< Com> 2\ h / e_”(”)(t_s)( v(v) ) 14+ s)"%s
<y A1l ; T+ o2 (1+s)

t
< Comt A [ (490200 4
0
< Cm? AR+ 1)),
where the estimate (11) has been used twice in the first inequality. For the second integral

f;*/\y we notice that one can take £y v € C5°(R? x R?) satisfying

sup / 105, (p,v') — Ly v (p,0)|do' < CpNT1
[p|<3N J|v/|<3N

With this approximation function, we decompose the product £§, (v, v')£5, (v, v") into
05 (0, 0" )5 (V' 0") = (3 (v,0") — Ly n(v,0"))05 (v, 0")
+ (05 (v, 0") = Loy w (0, 0") b (0, )
+ Zﬁ/,N(QL ’U/)ZB/,N(UI, ’U”).

By difference they cancel the singularities and this decompotion suffices to the bounds.
Indeed, the integral with the kernel (¢g:(v,v") — lg n(v,v"))ls (v, ") is bounded by

t s—A
|||h||| / / / (1 + 7_)7&6—11(1;)(1573)efu(v’)(sfﬂ
o Jo [v/|<2N, || <3N

X €5 (v,0") — Uy v (0,0)||lg (0, 0" |do" du' drds

t s—A
< C-meyilmhm / / / (1 + 7.)*&efll(v)(tfs)efu(v’)(sf‘r)
o Jo |v/|<2N
v(v')

x m'gc’@v V') = Ly n(v,0)|dv' drds
t S—A i
< Com N[ [T ) s =) s
0 Jo
< Cym NI+ ),

where we have used the fact that v(v) > ¢N7 if |v] < N. The estimate on the second term
is similar and simpler, because £g y(v,v') is not singular. Also, in terms of boundedness
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of EB'-, ~ and the Cauchy-Schwarz inequality, we have

—— bt ps—=A
Cy / / / 671/(v)(t75)e—u(v’)(sfﬂ')
Z 0 Jo [v/|<2N,|v"|<3N

X |Cgr (0, 0" e (0, 0")| | s h(T, 0" | L2dv” dv'drds
— gt s—=A
< CNZ / / echV(tfs)ech“/(sz)”Ajf(T)”L% udeS
Jo

< CNM””@,Lz(B 1)/ / e~ (i=5) ;—cN7(s— T)(1+T) &grds
< Conllflla z3s5,) 1+

Here, once again we have used the fact that v(v), v(v') > ¢N7 if || < N and |[o'| < 2N.
Also, boundedness of the integral domain has reduced the L2-estimate of h(v) = (v )5 f(v)
to that of f(v).

Finally, summing up all the above estimates, we obtain

187t )|z < C(L+ ) (lhollzee (3 ,) + 1 ls.22055,)
FO L+ (MDA +m Y (N 4 N0 4 NPy Lot |

where C'= C(v,m,N) > 0 and C’ > 0 is independent of (v, m, N). Now, by taking first
m > 0 small, next A > 0 sufficiently small, and then N > 0 sufficiently large, we then
derive the desired estimate (7). This completes the proof of Lemma 3.2. O

We note that, on the very last point of the above proof, we first make the term con-
taining K5, which has a singularity near the origin, small, and then the others, concerned
with the term K, smaller and larger. This is the reason why K™ is called the small part
and K° the compact part in [8].

Combining Lemma 3.1 and Lemma 3.2 immediately yields the following:

Corollary 3.3. Letq € [1,2], 3 >0, and o = 3/2(1/q—1/2). Then the solution f(t,z,v)
to the linearized Cauchy problem (4) with initial data fo(x,v) satisfies

HfHZEO(B;’l) <C(1+ t)_u<‘|f0||ig<‘>ﬂ+5(35,1) + ||V_a+f0||ig(351) + v fo

We shall apply the preceding statements for the linear problem to the nonlinear one.

Theorem 3.4. Assume s > 3/2, q=1,>0and 8> (1 —a/2)y+3/2=~/4+3/2.
Then the solution f(t,x,v) to the mild form of the Cauchy problem on the nonlinear
Boltzmann equation

t
F(t) = B fo + / BT (£, £)(s)ds,
0

where €'© is a semigroup generated by the linear part of the Boltzmann equation, enjoys
the following estimate:

g - 3/4
I Ollzzss,) < CAFD W folzgs, o, @500 st 4y B3N 1100, T

+CO+ DT 0 5 55, "

tB
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Outline of proof. Owing to Corollary 3.3, Heth()”igch ) can be bounded by the first term
on the right-hand side of (13). Thus it suffices to consider the estimate of

¢
R EORL TS (14)
First, we claim that for s > 3/2 and (3;, 32) € R? with v + 81 < /35, it holds that
||F(f7 Q)HL;OI(B ) = C||fHL°° (B3 1)”9”@;(35’1)- (15)

To prove this, we introduce the Bony decomposition followed by decomposition of the
nonlinear part I'. For f and g € §'(R?), the Bony decomposition is

fg="Ti(g9) +Ty(f) + R(f, 9).
where
Ti(g) = Si1(f)Ng. T, ZS] QAL R(Fg) =D Y AjfAg.
J Joli—g'I<t

Since I' is a bilinear form in the z-variable, according to this decomposition, I'(f, g) can
be decomposed into the six parts, namely,

Z Fgam F1oss(f 9);
where

i>-1 j>-1

= > > T(Ajf.Ag).

J2=1j—-5'I<1

Advantage of the decomposition is that, when we apply A; in definition of the Besov
norms, range of i is restricted according to each j by definition of the cutoff functions
x and ¢. Term-by-term estimates work by this reason. Establish the estimates term by
term, we can obtain (15). Here we only give the estimate of the term involving 1"1 bb(f, 9)
for brevity. It holds that

lel()SS(fag)HfPC 351)

<(‘Z Z sup (/ ( |'U—’U*|7]V[j/2Aj(Aif*Si_lg)dv*)Zd;L')1/2
R

li—jl<4

<Oy sw / [ = 0. [T MY|Af.S g 2o,

li—jl<a ”

< Ol fllzee (s ll9lleg 2ee sup(v)” / [o — v, [T M2 (0,) P2 (v) P2,
85521 2 N Rd

< CHfHZ?;JQ(B; 1)||g||Lg.;(le) Sup<v>ﬁl—52+7.
’ ' ’ v



Here, the supremum in the last line is finite thanks to v + 81 < fs.
Second, by the same strategy, we can also prove that for s > 3/2, 8, € R, and 5 > 0
with v + 3/2 + 81 < Ba, it holds that

IT(f, 9)||£§1(B;1) = C”fHLg;(B;,l)||9HL[302(35’1)~ (16)

We remark that, instead of boundedness of sup, (v)*~%2+7 above, we require that of

/ <v>2(ﬁrﬁz+v)dv_
Rd

and this is the reason we assume the condition v+ 3/2 + ; < Ss.
Third, as for showing (16), one has

ICCE Gz, < ICguin(F. Ollzs, + [Tuoss( B2 G 1z,
< Ol G (17)

for v+ 3/2+4 51 < B2 with 51 € R and 3, > 0.
Now, applying Corollary 3.3, (14) is bounded by

¢ [ =) (NG DO Nips + 7 TGN O 200,
0

+ v (f, f)(S)lleL;)dS-

Applying estimates (15), (16), and (17) with suitable choices of §; and B2, we obtain the
desired estimate. O

The theorem above provides the global a priori estimates stated in the following
Corollary 3.5. Assume —3<v<0,¢q=1,s>3/2,>0and B> (1—a/2)y+3/2=
~v/4+3/2. Then there exist £ > 0 and C > 0 such that if

1 foll 2o

s 72 s 2 1 S 3
(3+3l1/2) (B3,1)0L (B50N L iy jay e = 7

Bl/9+

then the solution f(t,z,v) to the Boltzmann equation with initial datum fo(z,v) satisfies

”|f|||3/4,1i30(B§J> < CHfOHL?O

ﬂ+3\7\/4)(35’1)mL2 (BS,I)OLQ(

.
Glvl/a, (Gl e

Together with the inclusion L3’ < L%Q for 81 > B2+3/2 and the local-in-time existence,
Corollary 3.5 yields Theorem 1.4 with the help of the standard continuity argument. This
is outlined proof of Theorem 1.4. O

4 Conclusion

Although well-posedness of (3) has been thoroughly studied for decades, the theory of
harmonic analysis shed light on new approaches to the equation. We expect that there
are other properties of the equation (not necessarily the perturbation problem) that can
be uncovered via such theories; see [4] and [13] for example. For this reason, we believe
that the analysis in this direction is a strong tool for the study of the Boltzmann equation.
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