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Green’s function of compressible Navier-Stokes around a hyperbolic contact
discontinuity

Shih-Hsien Yu
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1. INTRODUCTION

In [1, 2, 3], one introduced Laplace transform in the time variable to obtain the solution of an
inial-boundary value problems in the Laplace transform. We will use this concept to investigate
a related problem for a contact discontinuity.

The one-dimensional compressible Navier-Stokes equation for ideal gas in the Lagrangian
coordinate is

UV — Uy = 07
(1.1) ut + pr = 1(ug/v) g,
Ei + (up)z = p(utg /v)y + 5(Ty/V) 4,
where
v (volume per unit mass),
u (fluid velocity),
T (thermal temperature),
p=T/v (pressure),
E =1u? 4+ T/(y—1) (energy),
> 0 (dissipation constant),
% > 0 (heat conductivity),
v > 1 (gas constant for a polytropic ideal gas),
C(U) = /vp/v, (sound speed at rest),U = (v,u,T).
In this paper, the constants (7, y, £) are assumed

(1.2) (v, 11, 8) = (5/3,1,1)

when one considers the Laplace wave trains for the ease of expression. The main interest of this
paper is to compute the Laplace transform of Green’s function in t¢-variable for the linearized
equation around a hyperbolic contact wave for the polytropic ideal gas in the Lagrangian coor-
dinate

vy — Uy = 0,
(1.3) ug +py =0,
E;+ (up)z = 0.

By a Galellian translation, one can assume the hyperbolic contact wave for (1.3) is a stationary
contact wave:

v Vgt v_
(1.4) Wz, t)= | u | (x,t) = H(x) 0 +(1— H(z)) 0
E vy /(v —1) v-/(y—1)
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where H(x) is the Heaviside function:

Hiz) = 1 for x > 0,
770 else .

The two end states (U_,Uy) of the hyperbolic contact discontinuity given in (1.4) is used to
denote the hyperbolic wave itself, i.e.

Us = (v, 0,04 /(v — 1))7.
It is conventional to develop an analysis in terms of vectors and matrices so that the developed

methodology can be applied to various problems. Thus, one rewrites both systems in (1.1) and
(1.3) as follows

(1.5) U + 9;F(U) = 8,B(U)d, U,
(1.6) AW + 0,F(W) =0,
where
V= (v,u, E)T,
F(V) = (—U,p, up)T7
0 0 0
B(V)=1[0 g 0
o GrO-DHwu &

2. PRELIMINARIES

2.1. Hyperbolic system.
For the system (1.6), the matrix F/(W), (W = (v, u, E)T), possesses three real eigenvalues,
(W) < &(W) < &(W),
{61,688} = {u = Vap/v,u,u+ /v
For the system (1.6), the 2nd characteristic field &2(W) is linearly degenerated. A hyperbolic con-

tact discontinuity (U_, U4 ) is a two-valued function with pressure and velocity remain constant
cross the discontinuity, i.e.

W(a, ) = U_ for x < ut,
T Us for @ > ut.

U— = Uy,
T_/’U_ = T+/’U+.
For any given p > 0, one denotes the set of all end states Uy of stationary hyperbolic contact
discontinuities with pressure p for (1.3) by %):

%, = {4 (v;p)|9(v;p) = (v,0,pv/(y — 1)), v > 0},

and the eigenvalues &;, i = 1,2, 3, become

(2.1) {&1,60, 8} = {*\/vp/v, 0, “/p/@'}v

and the Jacobian F'(U) can be diagonalized as follows
0 -1 0 6 0 0

(2.2) —19 D) =R-[0 & 0L
0 p 0 0 0 &




where the matrices L and R; and the right eigenvectors r; and left eigenvectors I; are given as
follows

D e e S |
b P »
T T2 T3 | = R(U) = _\/\/piv 0 \/\/P;; y

1 1 1
(2:3) _p  _yPU oyl
L 27 T2A
_ _ 1
Is _P VPU o y-1
2y 27 2y

2.2. Laplace transform of the Green’s function around a constant state: System of
ODE.

The linearized equation around Uy is

(2.4) (at +F (Ug)ds — B(uo)ag)v —0.
The Green’s G(z,t) for (2.4) is a matrix-valued solution of the initial value problem:
05 (at +F (Up)ds — B(uo)ag)G(x, t) =0,

' G(z,0) = 5(z)l.

Now, we introduce the Laplace transform with respect to the t-variable:
{o¢)
L[h|(z,s) = / e *'h(z,t)dt, (Laplace transform in t).
0

Under the Laplace transform, (2.5) becomes the system of ODE:
(2.6) (s + F'(U0)d: — B(Ug)d;)L[G](, 5) = ()I.

Stable manifold and Unstable manifold: Laplace wave numbers
The characteristic polynomial of the above ODE in A is

Py, (s;—iX) for Re(s) > 0.
The roots of this characteristic polynomial are £\; and £y and the roots \; satisfy
(2.7) Re(Ax(s)) < 0 for Re(s) > 0,
as well as the asymptotic around s = 0
(2.8) A1(s) = O(1)s, Aa(s) = O(1)y/s.
The stable manifold and unstable manifold of the ODE in (2.6) are the span of vectors:

{ Stable manifold = span{e*E{ (s), e}*E] (s)} for = > 0
Unstable manifold = span{e M*E; (s),e *2*E; (s)} for z < 0.
Here,
E£(s) € ker (sl + \F (Ug) — A?B(UO)).

The stable manifold represents wave motions travelling towards the right, and the unstable
manifold represents wave motions towards the left.
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The vectors IE]i(s) are normalized to satisfy

]ET(O) = T3(U0)7
E3 (0) = r2(Uo),
29 E; (0) = r1(Uo),
E;(O) = TQ(U()).

Definition 2.1 (Laplace wave number and wave train). For (2.4), the notions of Laplace wave
numbers, Laplace wave trains, Laplace spectral vectors are defined as follows:

Let A = £Ai(s), k = 1,2, be the implicit functions given by Py,(s, —i\) = 0 with the property
(2.7)

Ak(s) : Laplace wave number,

M Laplace wave train travelling towards the right,
(2.10) e M) Laplace wave train travelling towards the left,

E:(s) : Laplace wave vector towards the right,

E, (s): Laplace wave vector towards the left.

The stable and unstable manifolds of ODE (2.6) can be express in terms of the Laplace wave
trains and Laplace wave vectors; and one can express the solution of the ODE for L[G](z, s) in
terms of the Laplace wave train and Laplace wave vectors:

(211) LIG(z, ) = 8(x)Jo(s) + H(x)(E{ , 27E ) I () + H(—) (e MEy e E; ))_(s),
where J1 are 2 x 3 matrices, Jy is a 3 X 3 matrix.
We assume that (1.2), i.e. (v,u,%) = (5/3,1,1) to make the calculations easier.
3. LAPLACE WAVE NUMBERS \;(s) AND LAPLACE WAVE VECTOR

The Laplace wave number ); and the Laplace wave vector are defined by (2.10), which is a
system of ODE to find a solution of the form e*E:

(3.1) (54 F'(Up)@z — B(Up)d2)eME = 0.

The solution A is the root of the characteristic polynomial p(\):

224 (s + 1 A2 1 :
(41 5Ns(st1)

p(A) = det(sl + F'(Ug)A — B(Ug)A?) =

31)3 3’00
A\ = —V6s % ,
V8% 4+ 26s+ 25+ 55+ 5
(3.2) .
1| (V28 25 455 45) wo
A2 = _5\/5 s+1 ’

M) = —yBsym+ O, ats=0,
= - /5vivm,

(s)

(3.3) (s)
Al(s)z—ﬁ@ (@4—2), at s = oo.

(s)
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The right eigenvectors of F/(Ug) are

2
-1 2
(1‘1’!‘21“3) = _7% 0 ﬁ s
V%o V%o
1 1 1
2 2 -1
-1 3 -1 ~Cy 0 0 -1 3 -1
5 5 5 5
F'(Up) = _\/; 0 \/; 0 0 0 _\/; 0 \/; ;
V%0 V0 0 0 C T T
1 1 1 0 1 1 1
and the normalized Laplace wave vectors are
—1 2
3
+lo) — 504/2 +roy — | _10v/10s
El (5) - 7(50713){):\/% ’ EQ (8) - (75,95)\/% ’
5150 125+25
(3.4) 50— 195 25=3s
-1 2
3
Er)= | 00| By = | s
(195=50)\/vo |’ (75—95)\/v0
5450 125425
50—19s 25-3s

4. JUMPS AND THE ALGEBRAIC RELATIONSHIP

One continues to determine the matrices Jo(s) and Ji(s) given in (2.11). From (2.11) and the

property that the d(z)-function singularity only arouses in (1, 1)-entry of the Green’s function
so that

oo
(4.1) Jo={[0 00
0 00

Next, one sets )
Gj(x,s) = LIG] - (6},67,69)";
and [Gy] and [0, Gy]:
(4.2)
(Gl = Gi(0+,5) — Gr(0—,5) = ((EF By — (BT, E3)I- ) (6, 02,0D)7,
[0,GE] = 0:G(0+,5) — D,GL(0—,5) = (Al(Ef, MEDN I+ (M(Er, AQJE;)J,) (64,062,687,

For each k, the function Gg(z, s) is corresponding to the equation

s 00 0 -1 0 o}
(4.3) 0 s 0|+, | 2 —%£0, - Gy =6(z) |
00 s 0 Do 7(7;(]1)*6836 (5,3;

For k = 1, by balancing the 6(z)-functions in the conservation law of mass and ¢'(z)-function
in the momentum flux of (4.3) it results in

(4.4) shp— [GR] = 1,
(4.5) —poJp — p[GF] = 0.



Then, the balance of the d-function in the momentum equation becomes

(4.6) —polGi] + (v = DIGT] — plGi] = 0.
Next, the continuity in energy and conservation law of energy yield that
(4.7) G} =0,
(4.8) polGE] — (v = 1)r[0:G]] Jvo = 0.
For k = 2,3, the equations for [Gi] and [0,G1] are
(4.9)
G =[G} =0, (continuities in velocity and energy)
—polGL]/vo + (v — 1)[G3]/vo — p[0:G3] /v = 62,  (momentum flux)
po[Gi] —(v- l)ﬁ[f%ch]/UO = 5k, (energy flux).
Thus,

J5(5) = 1/ (s + po),
and one has the following 12 jump conditions:

(4.10)
[GH] = —po/(1s + po), [G3] = [G3] =0,
(G} =0, (G3] = G} =0,
[0:G3] = —[G1lpo/p, [0x Gg] = 0 [0:G3] = =[G3]po/ s,
(v = DR[0:GF] = pgoo/ (s +po) =0,  [0:G3] = —([Galpo +vo) /1, \=(v = D)k[0.G] = vo.

This gives 12 jump conditions on Gi, k = 1,2,3. Substitute these 12 jump conditions into
(2.11), then it gives 12 equations on matrices J_ and Jy, where each J is a 2 X 3 matrix. One
can solves J+ uniquely. It yields that

1
1+s
(4.11) Gi(z.8) = d(z) | 0 +H(a:)(
0
3(\/s2 5 5 ) E— V/s24265+254+55+5 ),
\/;( s +263+2O+5+1) V/524265+25+55+5 (—\/ 2+263+25-‘r5'-0—25) (:Jr—l)qo
2(s+1)V's2+265+25 8y/s(s+1)(s+25)
_ /82+4265+25+s+1 Az Vs24265+25—s—25 Aoz _
A(s+1)V/5? +265+25 e TAD(5125) e )+ H(~x)
B\f v (\/ s24265+25+55+5)vg
V52 426542545545 S S
V524265425 4/5v/524+265+25
\/g(\/s;’+268+25+s+1) —te
52+4265+25+55+5
2(s+1)v/'524265+25
Vs24265425+s+1 e—)\lz
4(s+1)Vs24+265+25
3 Y%
[\/ V2 4265+25+55+5
524+265+25
V/52+4265+25+55+5 )
(V2265 +25—s—1) (VoZraterasssess)u 1 Jro
8v/s(s+1)Vs24+265+25
+ V52426542551 67)\21
4(s+1)V/s2+265+25 ’

(V572654255 1) (V5242651 25+s+1) —(‘52+265j§+5”5)”°

324/5(s+1)Vs2+26s+25
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(4.12) Ga(z,s)

(V5742654254541 )w (V/s2+265+25—5—25)vp
4(s+1)Vs®+265+25 4(s+1)(s+25)
2296 \ /2 . )
— H(x) (V57 +265+25+s+1)vg ey V5(—V/52F265+25+5+25)vo Ao
4 1)V52 1265425 vo V'524265425+55+5 )vg
\f(b+) +26s+ \/ 2012545015 2(s+1)(s+25) %
S 1/ R 3w
24/824+265+25 2v/524+265+25
(Vs2+265+25+s+1)vo (V/s2+265+25—s—1)vo
4(s+1)Vs24+265+25 4(s+1)Vs24265+25
FH(—2) (Vs2+265+25+s+1)vo e e V/5(Vs?+265+25—s—1)vo oz
4 1)v/s24265425, [0 s24265+25+5545 ) v,
VB(s+1)V5T 265+ \/\/ s2+265+25+55+5 2(s+1)V's2+265+25 #
3w v
2v/824265+25 21/52+265+25
(4.13) Gs(z,s)
V6 [ (\/52+265+25+55+5)1JU
V/s2+4265+25+455+5 T
- V21265425 25 s2+1265+25
_ [ Az 1 Aoz
= H(z) V524265125 e+ /521265125 e
3 /524265+25—s5— vo V2426542545545 ),
\/;( 52+265+25—s—1) T (VoZF 265+ 05+5+1) w
21/524+265+25 8,/5vV/s2+265+25
VB [——v
V52 426542545545 1
+ H(—x) V/'524265+25 T V5T 265425 e~ M7
6(s+1) (V5242654 25—545) ( ——0_——— }3/2
V6(s+ )( 24265+ s+ )( T3 265 43505905
V52426542500
( 52+263+25+55+5)v0
S+l
2/5Vs2+26s+25
+ [ — e heT
524265425

V/524265+2545545 ),
(V242654 25+s+1) (VeZia0i2545045)u e 5)eo
81/5V's24+265+25

and the Green’s function L[G](z, s) is expressed in terms of Gy, k = 1,2, 3:
(4.14) (L[Gij](x, s))m = L[G](z, s) = (010203).

This also yields that
(4.15)
e)\lﬁc

\/2 e (3L[G22}(s +1) (m s+ 5) + 2L[Gs]s (fm +s+ 1))
(s+3) ’
s (L[Gzz} ( V2 +26s+25+ s+ 1) +er[Gsi}]()(\/m+ 5+ 5))

3) (V/s2+265+25+55+5)vo
s+ s+1




This also gives

(4.16)

)\16)\1w =

\/g1 /m (3]14[81@22](8 + 1) (\/ 52 + 26s + 25 + s+ 5)

(s + 3)vo
NEIY S — (QL[ﬁng‘s]s (ﬂ/s2 265125+ 5+ 1))
(s +3)vg '
2 (L[E)IGQQ} (—\/52 T 265+ 25+ s+ 1) +L[9,Gs3] (\/52 T 265+ 25+ s+ 5))

)\26 2T —

) (V52 4265+25+55+5)vo -
(‘S + 3)\/ s+1

By this one has the asymptotic of the symbols e’ satisfy the asymptotic at s = oo

ame  (11L[Go;] — 8L[Gs3] | 2L[Gas]y/s s
. _< s =2 )(1+O(1/ )
(17 . 2/3LiGulv5  2y/3(6LIEx] - SLIGw)) (140(1/3))
oo _ (_ 2(70:L[Gag] — 40, L[Gss)) 26%1[‘[@22])(1 +0(1/s))
" D & |
Sar _ (8(38wL[G2§8v023xL[G33]) B 48x£)—;£?33]>(1 +0(1/s)),
Ale:lz _ (8L[G33] ;8]14[@22} _ QL[GQQO (1+0(1/s)),
Agehw [ 4V6L[Ga3) — 13\/§L[G22] VEBL[G }) (1+0(1/s))
_ - 22 5))
(4.19) S )
)\269 2 (121L[Gao] ; 12L[Gg3s] _ 2]L[G33]> (1 + 0(1/8))7
6)\21 —
M — 12\/6L[G22]3S 7V/6L[G 3] _ 2\/§L[G33]> (1+0(1/s)).

5. ASYMPTOTIC STRUCTURE OF L[G](z, s)

In this section, we conclude the relevant asymptotic of L[G](z, s).
Around s =0,

51616 (x
(5.1) (L[G}ij(@"vs)_ o ( ))3><3

1+s
da(-3/203s — 100y 252852y /205 - 1)y
= H(z) 535(23s — 25) 51/ 2(27s — 50)\ /iy (25— 13s) ME(110(1)s)
%\/%(95 —10)y/vo 5(—=3)(13s — 25)vg  —151/2(s — 2)\/0



